ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ТЕХНОЛОГИИ СВЕРХКРИТИЧЕСКОГО ДИОКСИДА УГЛЕРОДА В ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ. ОБЗОР ПРЕДМЕТНОГО ПОЛЯ
OVLGSU
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.01.004Ключевые слова:
консервирование, , нетермическая технология,, СК- СО2, микроорганизмы, ферменты, инактивация, биологически активные соединения, пищевая ценность, антиоксидантная активностьАннотация
Технология сверхкритического диоксида углерода ( СК- СО2) используется для экстрагирования и извлечения соединений из пищевого сырья и продуктов его переработки. В последнее десятилетие данная технология рассматривается как нетермический метод консервирования пищевых продуктов, так как сочетание СО2 с умеренным давлением и температурой вызывает инактивацию микробных вегетативных клеток и денатурацию ферментов, максимально сохраняя при этом органолептические показатели свежего продукта, его биологически активные соединения и пищевую ценность. Цель статьи - критический обзор результатов научных исследований использования технологии СК-CO 2 для консервирования пищевых продуктов, механизмов микробной инактивации и влияние на физико-химические, технологические и сенсорные свойства, а также сохранении пищевой ценности. В обзор включены статьи, опубликованные на английском и русском языках за период 2014–2024г. Для поиска были использованы базы данных PubMed, Scopus, Webof Science, Elibrary и Google Scholar. Материалом для исследования послужили 64 научные публикации. В ходе оценки результатов научных исследований установлено, что использование технологии СК-CO 2 способствует снижению микробиологической обсемененности более 5 log КОЕ/мл), инактивации ферментов и улучшении стабильности при хранении фруктовых и овощных соков, мясных и молочных продуктов.Для достижения максимальных результатов необходимо оптимизация параметров обработки , таких как,температура, давление, объем CO 2 и время обработки. Дальнейшие научные исследования должны быть направлены на возможность расширения использования технологии сверхкритического диоксида углерода для различных видов пищевого сырья и продуктов переработки, оценки срока годности, биодоступности биологически активных соединений, а также исследований in vitro и in vivo, с целью определения преимущества использования технологии СК-CO2 перед другими способами и методами обработки и консервирования пищевых продуктов
Библиографические ссылки
Burak L.Ch., Sapach A.N. Use of ohmic heating technology in the process of processing fruits and vegetables. Review of the subject field // Food systems. 2024. No.7(1). P.59-70.. 73 (In. Russ.) https://doi.org/10.21323/2618-9771-2024-7-1-59-70
Chacha J. S., Zhang L., Ofoedu C. E., Suleiman R. A., Dotto J. M., Korzwniowska M., & Guiné,R. P. Revisiting non-thermal food processing and preservation methods—Action mechanisms, pros and cons: A technological update (2016–2021) // Foods. 2021. V. 10(6). p. 1430. https://doi.org/10.3390/foods10061430
Liu J., Bi, J., McClements, D. J., Liu, X., Yi, J., Lyu, J., Zhou, M., Verkerk, R., Dekker, M., Wu, X., & Liu, D. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit-and vegetable-based products: A review // Carbohydrate Polymers. 2020.V. 250. p. 116890. https://doi.org/10.1016/j.carbpol.2020.116890
Burak, L. Ch. The use of modern processing technologies to increase the shelf life of fruits and vegetables. Review of the subject field // Polzunovsky Bulletin. 2024. No. 1. P. 99-119 (In. Russ.) https://doi.org/10.25712/ASTU.2072-8921.2024.01.013
Burak, L. Ch. Modern methods of food processing. Critical review // The Scientific Heritage. 2024. No. 130(130). pp. 45-59( In. Russ.) https://doi.org/10.5281/zenodo.10632041
Martins, I. B. A., Oliveira, D., Rosenthal, A., Ares, G., & Deliza, R. Brazilian consumer's perception of food processing technologies: A case study with fruit juice // Food ResearchInternational.2019.V. 125. P.108555.
Dhakane-Lad, J., Kar, A., & Patel, A. S. SC–CO2 extraction of lycopene from red papaya using rice bran oil as a co-solvent lessens its degradation during storage. Separation Science and Technology. 2023. V. 58(13). pp.23572368. https://doi.org/10.1080/01496395.2023.2255738
Kariyawasam, T., Doran, G. S., Howitt, J. A., & Prenzler, P. D. Optimization and comparison of microwave-assisted extraction, supercritical fluid extraction, and eucalyptus oil–assisted extraction of polycyclic aromatic hydrocarbons from soil and sediment // Environmental Toxicology and Chemistry. 2023. V. 42(5).p.982994. https://doi.org/10.1002/etc.5593
Luca, S. V., Zengin, G., Sinan, K. I., Korona-Glowniak, I., Minceva, M., Skalicka-Woźniak, K., & Trifan, A. Value-added compounds with antimicrobial, antioxidant, and enzyme-inhibitory effects from post-distillation and post-supercritical CO2 extraction byproducts of rosemary// Antioxidants. 2023.V. 12(2).p. 244. https://doi.org/10.3390/antiox12020244
Wang, W., Rao, L., Wu, X., Wang, Y., Zhao, L., & Liao, X. Supercritical carbon dioxide applications in food processing // Food Engineering Reviews. 2021.V. 13. pp. 1–22. https://doi.org/10.1007/s12393-020-09270-9
Allai, F. M., Azad, Z. A. A., Mir, N. A., & Gul, K. Recent advances in non-thermal processing technologies for enhancing shelf life and improving food safety // Applied Food Research. 2022.V.3(1). p. 100258. https://doi.org/10.1016/j.afres.2022.100258
Amaral, G. V., Silva, E. K., Costa, A. L. R., Alvarenga, V. O., Cavalcanti, R. N., Esmerino, E. A., Guimarães, J. T., Freitas, M. Q., Sant'Ana, A. S., Cunha, R. L., Moraes, J., Silva, M. C., Meireles, M. A. A., & Cruz, A. G. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physical properties and sensoryacceptance // LWT. 2018.V. 92. pp.80–86. https://doi.org/10.1016/j.lwt.2018.02.005
Silva, E. K., Meireles, M. A. A., & Saldaña, M. D. Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices // Trends in Food Science & Technology. 2020. V. 97. pp.381390. https://doi.org/10.1016/j.tifs.2020.01.025
Almada, C. N., Almada-Érix, C. N., Bonatto, M. S., Pradella, F., dos Santos, P., Abud, Y. K. D., Farias, A. S., Martínez, J., Sant'Anna Filho, C. B., Lollo, P. C., Cost, W. K. A., Magnani, M., & Sant'Ana, A. S. Obtaining paraprobiotics from Lactobacilus acidophilus, Lacticaseibacillus casei and Bifidobacterium animalis using six inactivation methods: Impacts on the cultivability, integrity, physiology, and morphology //Journal ofFunctional Foods. 2021.V. 87. p.104826. https://doi.org/10.1016/j.jff.2021.104826
Almada, C. N., Almada- Erix, C. N., Roquetto, A. R., Santos-Junior, V. A., Cabral, L., Noronha, M. F., Gonçalves, A. E. S. S., dos Santos, P., dos Santos, A., Martínez, J., Lollo, P. C., Costa, W. K. A., Magnani, M., & Sant'Ana, A. S. Paraprobiotics obtained by six different inactivation processes: Impacts on the biochemical parameters and intestinal microbiota of Wistar male rats // International Journal of Food Sciences and Nutrition. 2021.V. 72(8). pp. 1057–1070. https://doi.org/10.1080/09637486.2021.1906211
Ferreira, D. P., Magnani, M., Silva, F. A., de Oliveira, L. H., Rosset, M., Verruck, S., & Pimentel, T. C. Understanding the potential of ultrasound as an innovative tool for microbial inactivation, functionalization of plant-based foods, and improvements of functional food potential // Food Bioscience. 2023.V. 56. p.103342. https://doi.org/10.1016/j.fbio.2023.103342
Pedrosa, G. T. S., Pimentel, T. C., Gavahian, M., de Medeiros, L. L., Pagán, R., & Magnani, M. The combined effect of essential oils and emerging technologies on food safety and quality // LWT. 2021.V.147.p.111593. https://doi.org/10.1016/j.lwt.2021.111593
Pravallika, K., Chakraborty, S., & Singhal, R. S. Supercritical drying of food products: An insightful review // Journal of Food Engineering. 2022.V. 343. p.111375. https://doi.org/10.1016/j.jfoodeng.2022.111375
Smigic, N., Djekic, I., Tomic, N., Udovicki, B., & Rajkovic, A. The potential of foods treated with supercritical carbon dioxide (SC-CO2) as novel foods // British FoodJournal.2019. V. 121(3). pp. 815–834. https://doi.org/10.1108/BFJ-03-2018-0168
Buszewski, B., Wrona, O., Mayya, R. P., Zakharenko, A. M., Kalenik, T. K., Golokhvast, K. S., Piekoszewski, W., & Rafińska, K. (2021). The potential application of supercritical CO2 in microbial inactivation of food raw materials and products. //Critical Reviews in Food Science and Nutrition. 2021.V. 62(24). pp. 65356548. https://doi.org/10.1080/10408398.2021.1902939
Chen, Z., Spilimbergo, S., Mousavi Khaneghah, A., Zhu, Z., & Marszałek, K. The effect of supercritical carbon dioxide on the physiochemistry, endogenous enzymes, and nutritional composition of fruit and vegetables and its prospects for industrial application: A overview //Critical Reviews in Food Science and Nutrition. 2022. Dec 28 .pp. 115. https://doi.org/10.1080/10408398.2022.2157370
Silva, E. K., Bargas, M. A., Arruda, H. S., Vardanega, R., Pastore, G. M., & Meireles, M. A. A. Supercritical CO2 processing of a functional beverage containing apple juice and aqueous extract of Pfaffia glomerata roots: Fructooligosaccharides chemical stability after non-thermal and thermal treatments //Molecules. 2020. V. 25(17).p. 3911. https://doi.org/10.3390/molecules25173911
Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Cappato, L. P., Guimaraes, J. T., Alvarenga, V. O., Esmerino, E. A., Portela, J. B., Sant'Ana, A. S., Freitas, M. Q., Silva, M. C. & Cruz, A. G. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects // Trends in Food Science & Technology.2017.V. 64. pp. 94–101. https://doi.org/10.1016/j.tifs.2017.04.004
Bastante, C. C., Cran, M. J., Cardoso, L. C., Serrano, C. M., De La Ossa, E. M., & Bigger, S. W. Effect of supercritical CO2 and olive leaf extract on the structural, thermal and mechanical properties of an impregnated food packaging film // The Journal of Supercritical Fluids.2019.V. 145.p 181. https://doi.org/10.1016/j.supflu.2018.12.009
Braga, M. E., Gaspar, M. C., & de Sousa, H. C. Supercritical fluid technology for agrifood materials processing // Current Opinion in Food Science. 2023. V. 50.p.100983. https://doi.org/10.1016/j.cofs.2022.100983
Ceni, G., Silva, M. F., Valério, C. Jr., Cansian, R. L., Oliveira, J. V., Dalla Rosa, C., & Mazutti, M. A. Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent // Journal of CO2 Utilization.2016.V. 13. pp.24–28. https://doi.org/10.1016/j.jcou.2015.11.003
Silva, E. K., Alvarenga, V. O., Bargas, M. A., Sant'Ana, A. S., & Meireles, M. A. A. Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters //The Journal of Supercritical Fluids. 2018.V. 139. pp. 97104. https://doi.org/10.1016/j.supflu.2018.05.013
Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Martins, C. P., Andrade, L. G. Z., Moraes, J., Alvarenga, V. O., Guimaraes, J. T., Esmerino, E. A., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Sant'Ana, A. S., Meireles, M. A. A., & Cruz, A. G. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. //Food Chemistry. 2018.V. 239. pp. 697–703. https://doi.org/10.1016/j.foodchem.2017.07.003
González-Alonso, V., Cappelletti, M., Bertolini, F. M., Lomolino, G., Zambon, A., & Spilimbergo, S. Research note: Microbial inactivation of raw chicken meat by supercritical carbon dioxide treatment alone and in combination with fresh culinary herbs//Poultry Science. 2020. V. 99. pp.536–545. https://doi.org/10.3382/ps/pez563
Marszałek, K., Woźniak, Ł., Barba, F. J., Skąpska, S., Lorenzo, J. M., Zambon, A., & Spilimbergo, S. Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chemistry. 2018.V. 268. pp. 279286. https://doi.org/10.1016/j.foodchem.2018.06.109
Cappelletti, M., Ferrentino, G., & Spilimbergo, S. Supercritical carbon dioxide combined with high power ultrasound: An effective method for the pasteurization of coconut water //The Journal of Supercritical Fluids. 2014. V. 92. pp.257263. https://doi.org/10.1016/j.supflu.2014.06.010
Huang, S., Liu, B., Ge, D., & Dai, J. Effect of combined treatment with supercritical CO2 and rosemary on microbiological and physicochemical properties of ground pork stored at 4°C //Meat Science. 2017.V. 125. pp. 114120. https://doi.org/10.1016/j.meatsci.2016.11.022
Morbiato, G., Zambon, A., Toffoletto, M., Poloniato, G., Dall'Acqua, S., de Bernard, M., & Spilimbergo, S. (2019). Supercritical carbon dioxide combined with high power ultrasound as innovate drying process for chicken breast // The Journal of SupercriticalFluids. 2019. V. 147. pp. 24–32. https://doi.org/10.1016/j.supflu.2019.02.004
Rawson, A., Tiwari, B. K., Brunton, N., Brennan, C., Cullen, P. J., & O'donnell, C. P. Application of supercritical carbon dioxide to fruit and vegetables: Extraction, processing, and preservation // Food Reviews International. 2022.V. 28. pp. 253276. https://doi.org/10.1080/87559129.2011.635389
Zeng, R., Lian, K., Su, B., Lu, L., Lin, J., Tang, D., Lin, S., & Wang, X. Versatile synthesis of hollow metal sulfides via reverse cation exchange reactions for photocatalytic CO2 reduction //Angewandte Chemie International Edition. 2021.V. 60(47). pp. 2505525062. https://doi.org/10.1002/anie.202110670
Yu, Z., Tang, J., Gong, H., Gao, Y., Zeng, Y., Tang, D., & Liu, X. Enzyme-encapsulated protein trap engineered metal–organic framework-derived biomineral probes for non-invasive prostate cancer surveillance // Advanced Functional Materials,. 2023. V.33.p.2301457. https://doi.org/10.1002/adfm.202301457
Chen, Y. Y., Temelli, F., & Gänzle, M. G. Mechanisms of inactivation of dry Escherichia coli by high-pressure carbon dioxide // Applied and Environmental Microbiology.2017.V. 83(10). e00062-17. https://doi.org/10.1128/AEM.00062-17
Rao, L., Wang, Y., Chen, F., Hu, X., Liao, X., & Zhao, L. High pressure CO2 reduces the wet heat resistance of Bacillus subtilis spores by perturbing the inner membrane // Innovative Food Science & Emerging Technologies. 2020. V. 60. p.102291. https://doi.org/10.1016/j.ifset.2020.102291
Bertolini, F. M., Morbiato, G., Facco, P., Marszałek, K., Pérez-Esteve, É., Benedito, J., Zambon, A., & Spilimbergo, S. Optimization of the supercritical CO2 pasteurization process for the preservation of high nutritional value of pomegranate juice // The Journal of Supercritical Fluids. 2020.V. 164. p.104914. https://doi.org/10.1016/j.supflu.2020.104914
Guo, M., Wu, J., Xu, Y., Xiao, G., Zhang, M., & Chen, Y. Effects on microbial inactivation and quality attributes in frozen lychee juice treated by supercritical carbon dioxide // European Food Research and Technology. 2011.V. 232. pp. 803811. https://doi.org/10.1007/s00217-011-1447-3
Marszałek, K., Skąpska, S., Woźniak, Ł., & Sokołowska, B. Application of supercritical carbon dioxide for the preservation of strawberry juice: Microbial and physicochemical quality, enzymatic activity and the degradation kinetics of anthocyanins during storage // Innovative Food Science & Emerging Technologies. 2015. V. 32. pp. 101109. https://doi.org/10.1016/j.ifset.2015.10.005
Ortuño, C., Balaban, M., & Benedito, J. Modelling of the inactivation kinetics of Escherichia coli, Saccharomyces cerevisiae and pectin methylesterase in orange juice treated with ultrasonic-assisted supercritical carbon dioxide // The Journal of SupercriticalFluids. 2014.V. 90. pp.18–26. https://doi.org/10.1016/j.supflu.2014.03.004
Oulé, K. M., Dickman, M., & Arul, J. Properties of orange juice with supercritical carbon dioxide treatment // International Journal of Food Properties. 2013.V. 16(8). pp.1693-1710. https://doi.org/10.1080/10942912.2011.604893
Paniagua-Martínez, I., Mulet, A., García-Alvarado, M. A., & Benedito, J. Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality // Innovative Food Science & EmergingTechnologies. 2018.V. 47. pp. 362–370. https://doi.org/10.1016/j.ifset.2018.03.024
Porębska, I., Sokołowska, B., Skąpska, S., & Rzoska, S. J. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice // Food Control,. 2017.V.73. pp. 2430. https://doi.org/10.1016/j.foodcont.2016.06.005
Yuk, H. G., Sampedro, F., Fan, X., & Geveke, D. J. Non-thermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas–liquid metal contactor // Journal of Food Processing and Preservation. 2014.V. 38(1). pp.630638. https://doi.org/10.1111/jfpp.12013
Omar, A. M., Norsalwani, T. T., Khalil, H. A., Nagao, H., Zuknik, M. H., Hossain, M. S., & Norulaini, N. N. Waterless sterilization of oil palm fruitlets using supercritical carbon dioxide // The Journal of Supercritical Fluids. 2017.V. 126. pp. 6571. https://doi.org/10.1016/j.supflu.2017.02.019
Zambon, A., Facco, P., Morbiato, G., Toffoletto, M., Poloniato, G., Sut, S., Andrigo, P., Dall'Acqua, S., Bernard, M., & Spilimbergo, S. Promoting the preservation of strawberry by supercritical CO2 drying // Food Chemistry. 2022. V. 397.p.133789. https://doi.org/10.1016/j.foodchem.2022.133789
Bourdoux, S., Zambon, A., Van der Linden, I., Spilimbergo, S., Devlieghere, F., & Rajkovic, A. Inactivation of foodborne pathogens on leek and alfalfa seeds with supercritical carbon dioxide // The Journal of Supercritical Fluids. 2022.V. 180.p. 105433. https://doi.org/10.1016/j.supflu.2021.105433
Michelino, F., Zambon, A., Vizzotto, M. T., Cozzi, S., & Spilimbergo, S. High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander // Journal of CO2 Utilization. 2018.V. 24. pp. 516521. https://doi.org/10.1016/j.jcou.2018.02.010
Castillo-Zamudio, R. I., Paniagua-Martínez, I., Ortuño-Cases, C., García-Alvarado, M. A., Larrea, V., & Benedito, J. Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham // Innovative Food Science & EmergingTechnologies. 2021. V. 67. p. 102557. https://doi.org/10.1016/j.ifset.2020.102557
Feng, J., Zheng, Y., Zhang, X., Zhou, R., & Ma, M. Effect of supercritical carbon dioxide on bacterial community, volatile profiles and quality changes during storage of Mongolian cheese // Food Control. 2023. V. 143. p.109225. https://doi.org/10.1016/j.foodcont.2022.109225
Sikin, A. M., Walkling-Ribeiro, M., & Rizvi, S. S. Synergistic effect of supercritical carbon dioxide and peracetic acid on microbial inactivation in shredded Mozzarella-type cheese and its storage stability at ambient temperature// Food Control. 2016. V.70. pp.174182. https://doi.org/10.1016/j.foodcont.2016.05.050
Ferrentino, G., Balzan, S., & Spilimbergo, S. Optimization of supercritical carbon dioxide treatment for the inactivation of the natural microbial flora in cubed cooked ham // International Journal of Food Microbiology. 2013.V.161. pp.189–196. https://doi.org/10.1016/j.ijfoodmicro.2012.12.004
Ferrentino, G., Balzan, S., & Spilimbergo, S. Supercritical carbon dioxide processing of dry cured ham spiked with Listeria monocytogenes: Inactivation kinetics, color, and sensory evaluations // Food and Bioprocess Technology. 2013.V. 6(5). pp.11641174. https://doi.org/10.1007/s11947-012-0819-4
Silva, E. K., Guimaraes, J. T., Costa, A. L. R., Cruz, A. G., & Meireles, M. A. A. Non-thermal processing of inulin-enriched soursop whey beverage using supercritical carbon dioxide technology // The Journal of Supercritical Fluids. 2019.V. 154 .p.104635. https://doi.org/10.1016/j.supflu.2019.104635
Jauhar, S., Ismail-Fitry, M. R., Chong, G. H., Nor-Khaizura, M. A. R., & Ibadullah, W. Z. W. Application of supercritical carbon dioxide (SC–CO2) on the microbial and physicochemical quality of fresh chicken meat stored at chilling temperature// International Food Research Journal. 2020.V. 27. pp. 103–110.
Marszałek, K., Krzyżanowska, J., Woźniak, Ł., & Skąpska, S. Kinetic modelling of tissue enzymes inactivation and degradation of pigments and polyphenols in cloudy carrot and celery juices under supercritical carbon dioxide // The Journal of Supercritical Fluids.2016.V.117. pp. 26–32. https://doi.org/10.1016/j.supflu.2016.07.016
Ren, R., Cai, G., Yu, Z., & Tang, D. Glucose-loaded liposomes for amplified colorimetric immunoassay of streptomycin based on enzyme-induced iron (II) chelation reaction with phenanthroline // Sensors and Actuators B: Chemical. 2018. V. 265. pp. 174181. https://doi.org/10.1016/j.snb.2018.03.049
Zeng, R., Huang, Z., Wang, Y., & Tang, D. Enzyme-encapsulated DNA hydrogel for highly efficient electrochemical sensing glucose // ChemElectroChem. 2020.V. pp.15371541. https://doi.org/10.1002/celc.202000105
Liu, X., Wang, R., Liu, H., Wang, Y., Shi, Y., & Zhang, C. High-pressure treatment enhanced aromatic compound concentrations of melon juice and its mechanism // Frontiersin Nutrition. 2022.V. 9. p.1052820. https://doi.org/10.3389/fnut.2022.1052820
Debbabi, H., El Mokni, R., Majdoub, S., Aliev, A., & Hammami, S. The effect of pressure on the characteristics of supercritical carbon dioxide extracts from Calamintha nepeta subsp. Nepeta //Biomedical Chromatography. 2020.V. 34(9).e4871. https://doi.org/10.1002/bmc.4871
Trych, U., Buniowska, M., Skąpska, S., Kapusta, I., & Marszałek, K. Bioaccessibility of antioxidants in blackcurrant juice after treatment using supercritical carbon dioxide//Molecules. 2022.V. 27. p.1036. https://doi.org/10.3390/molecules27031036
Bušić, A., Vojvodić, A., Komes, D., Belščak-Cvitanović, A., Stolk, M., & Hofland, G. Comparative evaluation of CO2 drying as an alternative drying technique of basil (Ocimum basilicum L.) —The effect on bioactive and sensory properties // Food Research International. 2014. V. 64. pp.34–42. https://doi.org/10.1016/j.foodres.2014.06.013
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Леонид Чеславович Бурак

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.