

1
2022

ФГБОУ ВО
«Алтайский государственный
технический университет
им. И. И. Ползунова»

СТРОИТЕЛЬНО-
ТЕХНОЛОГИЧЕСКИЙ
ФАКУЛЬТЕТ

НА ОБЛОЖКЕ:
Сереброплавильный завод города Барнаула в середине XIX века

ПОЛЗУНОВСКИЙ АЛЬМАНАХ

№ 1 / 2022

Свидетельство о регистрации выдано 17 марта 2022 г.
Федеральным государственным унитарным пред-
приятием «Информационное телеграфное агентство
России (ИТАР-ТАСС)», Российская книжная палата

Главный редактор

А. М. Марков

Зам. главного редактора

Е. С. Ананьева

Редакционная коллегия:

С. Б. Поморов

И. В. Харламов

И. Н. Сычева

А. С. Авдеев

С. В. Ананьин

А. С. Баранов

В. И. Полищук

Редакционный совет выпуска:

И. В. Карелина

В. В. Логвиненко

В. Н. Лютов

Г. С. Меренцова

И. В. Носков

Г. И. Овчаренко

В. Л. Свиридов

Под общей редакцией:

к.т.н., профессора И. В. Харламова

Адрес редакции и издательства:

656038, г. Барнаул,

пр. Ленина, 46,

тел: 29-09-48

В НОМЕРЕ:

<i>Б. Ф. Азаров</i> РЕШЕНИЕ ЗАДАЧИ УСТАНОВКИ ПРИБОРА В СТВОР С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАХЕОМЕТРОВ	5
<i>Б. Ф. Азаров, В. Л. Свиридов, М. М. Кинжibalова</i> ОПЫТ СОЗДАНИЯ ВЫСОТНОЙ ГЕОДЕЗИЧЕСКОЙ ОСНОВЫ ДЛЯ ОПРЕДЕЛЕНИЯ ИЗНОСА ДОРОЖНОГО ПОКРЫТИЯ	8
<i>А. В. Аксенов, И. А. Бахтина</i> СОЗДАНИЕ ИНФОРМАЦИОННОЙ МОДЕЛИ СЛАБОТОЧНЫХ СИСТЕМ В REVIT	12
<i>Н. В. Аллатов, И. В. Харламов</i> ИССЛЕДОВАНИЕ ВОЗМОЖНЫХ КОНСТРУКТИВНЫХ РЕШЕНИЙ УЗЛОВ ФЕРМ ИЗ ПРЯМОУГОЛЬНЫХ СВАРНЫХ ТРУБ	16
<i>Л. Н. Амосова, С. В. Краморенко</i> ВОЗМОЖНОСТИ ЭФФЕКТИВНОГО ОСВОЕНИЯ МАЛЫХ КОМПЛЕКСНЫХ ПОЛИМЕТАЛЛИЧЕСКИХ МЕСТОРОЖДЕНИЙ КАК ОСНОВА ГЕОИНЖИНИРИНГА И ЦИФРОВОЙ ТРАНСФОРМАЦИИ ПРОИЗВОДСТВА ФОРМИРУЮЩЕГОСЯ ГОРНОДОБЫВАЮЩЕГО КЛАСТЕРА АЛТАЙСКОГО КРАЯ	20
<i>О. С. Анненкова, А. В. Дорофеев</i> ОСОБЕННОСТИ ТЕХНОЛОГИИ СТРОИТЕЛЬСТВА ЗДАНИЙ ИЗ ЛЕГО-КИРПИЧА	24
<i>О. С. Анненкова, Е. С. Ромашкина</i> ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ СТРОИТЕЛЬСТВА ВЫСОТНЫХ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ ЗДАНИЙ С ВНЕДРЕНИЕМ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ	28
<i>И. Ю. Борзенко, В. В. Логвиненко</i> УМЕНЬШЕНИЕ ВЫБРОСОВ ГАЗОСНАБЖЕНИЯ АЛТАЙСКОГО КРАЯ	31
<i>В. В. Борисенко, Е. Р. Кирколуп, Д. А. Реутов</i> ВЫЯВЛЕНИЕ ПРЕИМУЩЕСТВ ТЕХНОЛОГИИ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ ПУТЕМ АНАЛИЗА РАБОЧЕЙ ДОКУМЕНТАЦИИ ПРОЕКТА ПЕРЕПЛАНРИРОВКИ ПОМЕЩЕНИЙ	34

<i>А. В. Бочкарева, Б. М. Черепанов</i> АНАЛИЗ СУЩЕСТВУЮЩИХ МЕХАНИЧЕСКИХ МЕТОДОВ УПЛОТНЕНИЯ ГРУНТОВ НА ПРИМЕРЕ МНОГОЭТАЖНОГО ЖИЛОГО ДОМА В БАРНАУЛЕ	37	<i>А. А. Кикоть, К. А. Красулина</i> АНАЛИЗ ФОРМ ПОТЕРИ УСТОЙЧИВОСТИ СТАЛЬНОГО СТЕРЖНЯ ИЗ ТОНКОСТЕННОГО ХОЛОДНОГНУТОГО ПРОФИЛЯ	81
<i>О. В. Буйко, В. А. Плюснин, А. В. Попцова</i> БОЙ ТАРНОГО СТЕКЛА КАК АЛЬТЕРНАТИВА ГРАНУЛИРОВАННОМУ МИКРОКРЕМНЕЗЕМУ ..	40	<i>А. А. Кикоть, А. А. Кунц</i> СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОЦЕДУРЫ ПОСТРОЕНИЯ МОДЕЛИ МЕТАЛЛИЧЕСКОЙ ФЕРМЫ В ПРОГРАММНЫХ ОБЕСПЕЧЕНИЯХ TEKLA STRUCTURES И AUTODESK REVIT	84
<i>Н. С. Бунин, И. А. Бахтина</i> ВИДЫ РИСКОВ И ПРИМЕНЕНИЕ ВИМ-МОДЕЛИРОВАНИЯ ДЛЯ СНИЖЕНИЯ РИСКОВ ИНВЕСТИЦИОННОГО ПРОЕКТА	44	<i>А. И. Кириллова, А. А. Сапай, Л. Н. Пантиюшина</i> О ВОЗМОЖНОСТЯХ СОЗДАНИЯ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ ИСТОРИЧЕСКИХ ЗДАНИЙ НА ОСНОВЕ ТЕХНОЛОГИИ ЛАЗЕРНОГО СКАНИРОВАНИЯ ..	87
<i>Г. М. Бусыгина, Ю. В. Халтурин, П. А. Гончаров</i> О ВОЗМОЖНОСТЯХ РАСЧЕТА ДОЩАТОКЛЕЕНИХ АРОК В ЛИРЕ 10.12	47	<i>В. К. Козлова, А. М. Маноха, А. В. Вольф</i> О ДИНАМИКЕ ИЗМЕНЕНИЯ СОДЕРЖАНИЯ В АТМОСФЕРЕ КИСЛОРОДА И УГЛЕКИСЛОГО ГАЗА	91
<i>К. Е. Воронина, Л. Г. Плотникова</i> ПОЛУЧЕНИЕ УЛЬТРАВЫСОКОПРОЧНЫХ БЕТОНОВ НА ОСНОВЕ МЕСТНЫХ СЫРЬЕВЫХ МАТЕРИАЛОВ	51	<i>Е. А. Кривошайцева, М. Н. Корницкая</i> 4D МОДЕЛИРОВАНИЕ ЗДАНИЙ С ИСПОЛЬЗОВАНИЕМ AUTODESK NAVISWORKS	94
<i>Е. И. Вяткина, В. В. Костев</i> СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ КАК ОСНОВА ОЦЕНКИ НАДЕЖНОСТИ ТЕРРИТОРИЙ ДЛЯ СТРОИТЕЛЬСТВА	55	<i>А. В. Кулешова, Е. Р. Кирколуп</i> ПРИМЕРЫ РЕАЛИЗАЦИИ ВЗАИМОДЕЙСТВИЯ СТРОИТЕЛЬНЫХ ОТДЕЛОВ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ	97
<i>Ю. В. Гильмиярова, К. Э. Алиева, К. В. Максимова</i> ЯЧЕЙСТВЫЕ БЕТОНЫ НА ОСНОВЕ ОТХОДОВ ТЭЦ	59	<i>В. Н. Лебзак</i> СТАБИЛИЗАЦИЯ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВЫХ ОСНОВАНИЙ	100
<i>Ю. В. Гильмиярова, А. Ю. Фролов</i> ТЕПЛОИЗОЛЯЦИОННЫЕ ШТУКАТУРНЫЕ РАСТВОРЫ	62	<i>В. В. Логвиненко, С. М. Гордиенко</i> РАЗРАБОТКА ШАБЛОНА СЕМЕЙСТВ ОБОРУДОВАНИЯ ECTOCONTROL В AUTODESK REVIT ДЛЯ СИСТЕМЫ «УМНЫЙ ДОМ»	103
<i>И. К. Калько, С. И. Калько, В. К. Козлова, Д. И. Остапова</i> ПРОИЗВОДСТВО РАБОТ ПО УСТРОЙСТВУ МОНОЛИТНОГО ЖЕЛЕЗОБЕТОННОГО ДНИЩА КОНУСНОГО ТИПА, ИМЕЮЩЕГО УКЛОН К ЦЕНТРУ ИЛОУПЛОТНИТЕЛЯ	65	<i>В. Н. Лютов, С. А. Ананьев</i> ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ УСТАНОВКИ БОРДЮРНЫХ ОГРАЖДЕНИЙ НА ЗАКРУГЛЕНИЯХ	106
<i>И. К. Калько, С. И. Калько, Г. С. Меренцова, Д. И. Остапова</i> ПРОКЛАДКА ИНЖЕНЕРНЫХ СЕТЕЙ ЧЕРЕЗ АВТОМОБИЛЬНЫЕ ДОРОГИ БЕЗ ВСКРЫТИЯ ГРУНТА СПОСОБОМ ПРОКОЛА	70	<i>В. Н. Лютов, М. А. Ботабаев</i> МЕТОДЫ РАСЧЕТА ОГРАЖДЕНИЙ КОТЛОВАНОВ ВОЗВОДИМЫХ ЗДАНИЙ ИЗ ГРУНТОБЕТОННЫХ СВАЙ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОГО КОМПЛЕКСА «GEOWALL» В УСЛОВИЯХ ГОРОДА БАРНАУЛА	110
<i>И. К. Калько, С. И. Калько, Д. И. Остапова</i> ПРОИЗВОДСТВО РАБОТ ПО УСТРОЙСТВУ МОНОЛИТНОЙ ЖЕЛЕЗОБЕТОННОЙ ЦЕНТРАЛЬНОЙ ПОЛОЙ КОНУСНОГО ТИПА ОПАРЫ ИЛОУПЛОТНИТЕЛЯ	74	<i>В. Н. Лютов, К. А. Красулина, Ю. С. Юрина</i> ИССЛЕДОВАНИЕ СОВРЕМЕННЫХ МЕТОДОВ РЕКОНСТРУКЦИИ ПРОМЫШЛЕННЫХ БОЛЬШЕПРОЛЕТНЫХ ЗДАНИЙ	114
<i>И. К. Калько, С. И. Калько, Д. И. Остапова</i> ПРОКЛАДКА РАБОЧЕЙ ПЛАСТМАССОВОЙ ТРУБЫ В КОЖУХЕ ЧЕРЕЗ АВТОМОБИЛЬНЫЕ ДОРОГИ	78		

<i>Т. Е. Лютова</i> ОРГАНИЗАЦИЯ ОТВОДА ВОДЫ ПРИ ЭКСПЛУАТАЦИИ ДОЖДЕВЫХ И ЛИВНЕ- СТОЧНЫХ КАНАЛИЗАЦИОННЫХ СИСТЕМ	117	<i>Г. С. Меренцова, К. С. Перевалов</i> СТАБИЛИЗИРУЮЩИЕ ДОБАВКИ ДЛЯ СТАБИЛИЗАЦИИ РАБОЧЕГО СЛОЯ ЗЕМЛЯНОГО ПОЛОТНА ПРИ СТРОИТЕЛЬСТВЕ, РЕКОНСТРУКЦИИ АВТОМОБИЛЬНЫХ ДОРОГ.....	146
<i>В. В. Малиновский</i> УСИЛЕНИЕ РОЛИ ЯЗЫКОЗНАНИЯ, КАК ЭЛЕМЕНТ СОВЕРШЕНСТВОВАНИЯ МЕТОДИКИ ПОДГОТОВКИ ИНЖЕНЕРНЫХ КАДРОВ В ОБЛАСТИ СТРОИТЕЛЬНЫХ, ДОРОЖНЫХ, ПОДЪЕМНО-ТРАНСПОРТ- НЫХ КОММУНАЛЬНЫХ МАШИН	121	<i>А. В. Митусов, А. А. Митусов</i> АНАЛИЗ ОТЛИЧИТЕЛЬНЫХ ОСОБЕННОСТЕЙ ИМПУЛЬСНЫХ ГИДРООБЪЕМНЫХ ПРИВОДОВ	149
<i>В. В. Малиновский, Д. В. Тищенко</i> О ВОЗМОЖНОСТЯХ ИСПОЛЬЗОВАНИЯ ПРИНЦИПОВ СИНЕРГЕТИКИ В ПРОЦЕССЕ ОБУЧЕНИЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ НА ПРИМЕРЕ ПРОФИЛЯ ПОДГОТОВКИ «ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО»	123	<i>И. М. Михаилиди, И. А. Зайцев</i> ИССЛЕДОВАНИЕ ВЛИЯНИЯ АВТОСТОЯНOK ВДОЛЬ ПРОЕЗЖЕЙ ЧАСТИ ДОРОГ НА АВАРИЙНОСТЬ ДОРОГ В БАРНАУЛЕ	152
<i>К. В. Матвеев, И. А. Бахтина</i> РАСЧЕТ СИСТЕМ ПРОТИВОПОЖАРНОЙ ВЕНТИЛЯЦИИ С МЕХАНИЧЕСКИМ ПОБУЖДЕНИЕМ ВОЗДУХА ПРИ СОЗДАНИИ ИНФОРМАЦИОННОЙ МОДЕЛИ ЖИЛОГО МНОГОКВАРТИРНОГО ЗДАНИЯ	127	<i>И. В. Носков, С. А. Ананьев, К. И. Носков</i> ОСНОВНЫЕ СПОСОБЫ БОРЬБЫ С ПЛЫВУНАМИ ПРИ СТРОИТЕЛЬСТВЕ ЗДАНИЙ И СООРУЖЕНИЙ	155
<i>Н. В. Медведев, О. В. Агафонов</i> АНАЛИЗ ПРОГРАММНОГО КОМПЛЕКСА PLATEIA ДЛЯ ПРОЕКТИРОВАНИЯ, СТРОИТЕЛЬСТВА И РЕКОНСТРУКЦИИ АВТОМОБИЛЬНЫХ ДОРОГ	130	<i>И. В. Носков, С. А. Ананьев, К. И. Носков</i> ПЛЫВУНЫ КАК ОПАСНЫЕ ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ	158
<i>Г. С. Меренцова, Н. В. Медведев, А. А. Добрынина</i> СТАБИЛИЗАЦИЯ ГРУНТОВ РАБОЧЕГО СЛОЯ ЗЕМЛЯНОГО ПОЛОТНА С ПРИМЕНЕНИЕМ ПОЛИМЕРНО- МИНЕРАЛЬНОЙ ДОБАВКИ «NICOFLOK»	133	<i>Г. И. Овчаренко, А. В. Викторов, А. И. Зверев, В. А. Швец</i> ЗИМНИЕ РАСТВОРЫ ДЛЯ МОНТАЖА ПАНЕЛЕЙ ЗДАНИЙ КПД	161
<i>Г. С. Меренцова, Н. В. Медведев, М. А. Кулимов</i> ЭФФЕКТИВНЫЕ МЕТОДЫ ПОВЕРХНОСТНОЙ ОБРАБОТКИ АСФАЛЬТОБЕТОННЫХ ПОКРЫТИЙ	136	<i>М. А. Осипова, М. Ю. Королев</i> ПРИМЕНЕНИЕ МАТЕРИАЛОВ ПО ШУМОИЗОЛЯЦИИ ПРИ СТРОИТЕЛЬСТВЕ АЭРОВОКЗАЛОВ	164
<i>Г. С. Меренцова, Н. В. Медведев, Д. А. Сураев</i> ОБОСНОВАНИЕ РАЦИОНАЛЬНЫХ СПОСОБОВ ПРЕДОТВРАЩЕНИЯ НАЛЕДЕОБРАЗОВАНИЙ НА АВТОМОБИЛЬНЫХ ДОРОГАХ В ГОРНЫХ УСЛОВИЯХ АЛТАЙСКОГО КРАЯ И РЕСПУБЛИКИ АЛТАЙ	139	<i>М. А. Подъяпольская, И. О. Вербицкий, Е. В. Вербицкая</i> ДЕРЕВЯННЫЕ МОСТЫ. МОСТОСТРОЕНИЕ С ИСПОЛЬЗОВАНИЕМ ДРЕВЕСИНЫ В ПРОШЛОМ И СЕЙЧАС	168
<i>Г. С. Меренцова, Н. В. Медведев, И. А. Таратынов</i> РАЗРАБОТКА РАЦИОНАЛЬНЫХ СПОСОБОВ БОРЬБЫ С НАЛЕДЯМИ НА ИСКУССТВЕННЫХ СООРУЖЕНИЯХ АВТОМОБИЛЬНЫХ ДОРОГ	142	<i>Т. И. Саурина, И. В. Харламов</i> О ПРИЧИНАХ ОБРУШЕНИЯ АНГАРА ИЗ СТАЛЬНЫХ ХОЛОДНОГНУТЫХ АРОК	171
		<i>А. А. Соболев, Д. А. Рейтров</i> ИССЛЕДОВАНИЕ СОБЛЮДЕНИЯ ТЕХНОЛОГИИ МОНТАЖА НЕСУЩИХ КОНСТРУКЦИЙ ПРИ ВОЗВЕДЕНИИ КРУПНОПАНЕЛЬНОГО ЗДАНИЯ	174
		<i>В. В. Соколова, Д. Д. Шершинева</i> АНАЛИЗ СРЕДСТВ АВТОМАТИЗАЦИИ РАСЧЕТА ОБЪЕМОВ РАБОТ ДЛЯ СМЕТНЫХ РАСЧЕТОВ С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ НА БАЗЕ REVIT-5D СМЕТА	177

<i>И. А. Спирин, Л. Н. Пантиюшина, Е. В. Вербицкая</i> ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ ПОЛИМЕРНЫХ СОСТАВОВ ПРИ РЕКОНСТРУКЦИИ ДЕРЕВЯННЫХ ЗДАНИЙ ИСТОРИКО-АРХИТЕКТУРНОЙ ЦЕННОСТИ	181	<i>Е. В. Хатина, М. А. Ботабаев</i> ИССЛЕДОВАНИЕ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ НАСЫПНОГО ШАРООБРАЗНОГО УТЕПЛИТЕЛЯ	190
<i>Д. К. Стариченко, И. А. Бахтина</i> СОЗДАНИЕ СПЕЦИФИКАЦИИ ДЛЯ СИСТЕМ ВЕНТИЛЯЦИИ В REVIT	184	<i>Б. М. Черепанов, Ю. С. Батракова</i> УСТРОЙСТВО ФУНДАМЕНТОВ НА ЗАБИВНЫХ СВАЯХ В УСЛОВИЯХ ПЛОТНОЙ ГОРОДСКОЙ ЗАСТРОЙКИ	193
<i>Ю. В. Халтурин, Н. Е. Лопухов</i> О НИЗКОМ КАЧЕСТВЕ ОБСЛЕДОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ В АЛТАЙСКОМ КРАЕ	187	ПРАВИЛА ОФОРМЛЕНИЯ СТАТЬИ	207
		ОТЗЫВ СТАТЕЙ	208

Дата выхода в свет 10.04.2022 г.

Учредители журнала:

Федеральное государственное бюджетное
образовательное учреждение высшего образования
«Алтайский государственный технический
университет имени И. И. Ползунова»

РЕШЕНИЕ ЗАДАЧИ УСТАНОВКИ ПРИБОРА В СТВОР С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАХЕОМЕТРОВ

Б. Ф. Азаров

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассмотрен способ установки электронного тахеометра в створ измеряемой линии. Отмечено, что необходимость устанавливать прибор (теодолит, электронный тахеометр) в створ закрепленной на местности линии возникает довольно часто при выполнении геодезических работ непосредственно на строительной площадке. В статье предложен вариант решения данной задачи с помощью электронного тахеометра LEICA TS07. Данный вариант выгодно отличается от классического решения задачи отсутствием необходимости непосредственного выполнения угловых и линейных измерений и расчета величины смещения прибора (нестворности). Приведено описание последовательности действий при решении задачи установки электронного тахеометра LEICA TS07 в створ с помощью программного приложения «локальная обратная засечка». В заключение приведены опции тахеометров таких производителей, как TOPCON, TRIMBLE, которые можно использовать в качестве аналога процедуры локальной обратной засечки при решении задачи установки прибора в створ измеряемой линии.

Ключевые слова: створ, нестворность, электронный тахеометр LEICA TS07, локальная обратная засечка, базовая линия.

В настоящее время при выполнении геодезических работ непосредственно на строительной площадке, таких как вынос проекта сооружения в натуре, разбивка и передача осей на монтажные горизонты, широко используются электронные тахеометры. Довольно часто приходится также восстанавливать на местности положение основных осей сооружений и пунктов геодезической разбивочной основы (ГРО), закрепленных в пределах строительной площадки. При этом возникает необходимость устанавливать прибор (теодолит, электронный тахеометр) в створ закрепленной на местности линии [1] (например, линии между двумя пунктами ГРО или оси сооружения). Также следует отметить, что в программном обеспечении (ПО) электронных тахеометров имеются приложения, использование которых позволяет решать большинство геодезических задач, связанных со строительством.

Описанный в [1] способ установки прибора (теодолита, электронного тахеометра) в створ измеряемой линии требует выполнения угловых и линейных измерений, а также пусть элементарного, но расчета нестворности (величины, на которую необходимо сместить прибор). Опишем вариант решения данной задачи с помощью электронного тахеометра LEICA TS07. Общеизвестно, что работа с прибором начинается с создания проекта и установки станции. Фактически «установка станции» означает определение координат

точки стояния прибора в заданной системе координат. При использовании тахеометра LEICA TS07 установка станции может быть выполнена несколькими способами в зависимости от решаемой задачи и наличия исходных пунктов. Для установки прибора в створ наилучшим образом подходит метод локальной обратной засечки (ЛОЗ). Во-первых, для его реализации достаточно иметь две точки, закрепленные на местности, во-вторых, метод может быть реализован при минимальном числе измерений, в-третьих, реализация метода возможна как при работе на отражатель, так и в без отражательном режиме. В качестве закрепленных точек могут быть использованы створные знаки (например, в виде штырей из арматуры диаметром 8-12 мм). Для определения координат прибора при использовании метода ЛОЗ достаточно выполнить измерения на две точки (сторные знаки): Тч1 – точку, которая будет служить началом координат в условной системе и Тч2, которая задаст направление оси X или оси Y [2]. Если измерения при реализации метода ЛОЗ выполнять в безотражательном режиме, то отпадает необходимость использовать помощника.

Ниже приведено описание последовательности действий при решении задачи установки электронного тахеометра LEICA TS07 в створ с помощью приложения ЛОЗ.

Предварительно прибор устанавливается примерно в створе точек 1 и 2. После при-

введения тахеометра в рабочее положение и создания проекта в меню ПО выбирается опция «Установка станции» и способ установки «Локальная засечка». При этом возможно два варианта:

1) Прибор находится справа от створа 1-2. Пусть Тч2 задает направление на Север (ось X на рисунке 1-а). После измерений последовательно на точку 1 (Тч1) и точку 2 (Тч2) будут определены координаты точки стояния прибора ($X_{ст}$; $Y_{ст}$). Тогда величина нестворности будет равна ординате точки стояния прибора: $q = Y_{ст}$. В случае, когда Тч2 будет задавать направление на Восток (ось Y на рисунке 1-б) величина нестворности будет

равна абсолютному значению абсциссы точки стояния прибора: $q = |-X_{ст}|$.

2) Прибор находится слева от створа 1-2. Пусть Тч2 задает направление на Север (ось X на рисунке 1-в). После определения координат точки стояния прибора ($X_{ст}$; $Y_{ст}$) величина нестворности будет равна модулю ординаты точки стояния прибора: $q = |-Y_{ст}|$. Если Тч2 будет задавать направление на Восток (ось Y на рисунке 1-г), то величина нестворности будет равна модулю абсциссы точки стояния прибора: $q = |-X_{ст}|$.

При наличии лазерного отвеса в приборе LEICA TS07 достаточно от точки, фиксирующей проекцию его оси вращения, отложить отрезок, который в зависимости от вы-

Рисунок 1-а

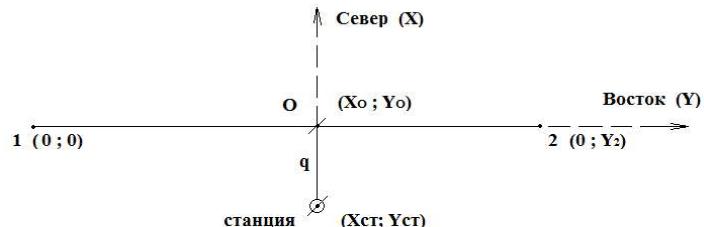


Рисунок 1-б

Рисунок 1-в



Рисунок 1-г

РЕШЕНИЕ ЗАДАЧИ УСТАНОВКИ ПРИБОРА В СТВОР С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАХЕОМЕТРОВ

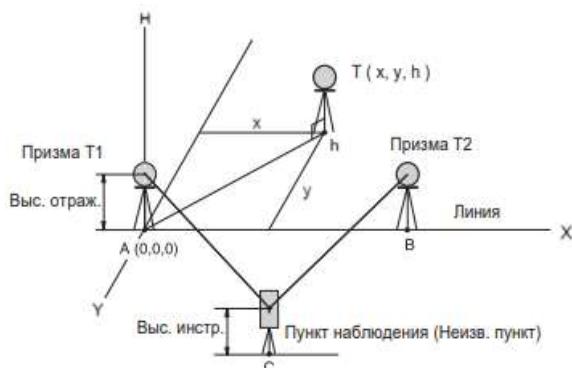


Рисунок 2 – Определение координат точки стояния прибора относительно базовой линии

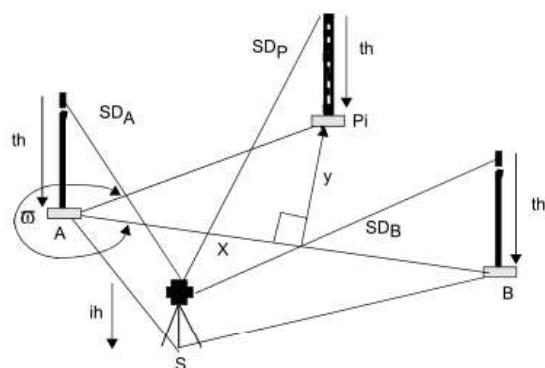


Рисунок 3 – Схема определения прямоугольных координат любой точки относительно опорной линии А-В с помощью процедуры «Пикеты и смещения»

бора направления Тч2 на Север или Восток при реализации ЛОЗ, равен абсциссе $X_{ст}$ или ординате $Y_{ст}$ точки стояния прибора по направлению к створу, чтобы зафиксировать т. О – точку, лежащую на одной линии с точками 1 и 2, задающими створ 1-2.

Преимущества использования описанного выше способа очевидны. Во-первых, нет необходимости в вычислениях, так как величина нестворности задается в виде координат точки стояния прибора, которые вычисляются прибором автоматически по окончании измерений. Во-вторых, при использовании безотражательного режима измерения могут быть выполнены одним человеком (они сводятся к визированию на точки 1 и 2 створа).

В заключение отметим, что в тахеометрах других производителей имеются опции, аналогичные процедуре ЛОЗ. Так, в приборах фирмы TOPCON (Япония) есть задача определения базовой линии, когда она задается путем измерения двух точек. Согласно [3], задавая базовую линию, имеется возможность определения координат точки стояния прибора относительно ее начальной точки А (рисунок 2). Для этого нужно выполнить измерения на две точки А и В, которые образуют створ.

В приборах фирмы TRIMBLE (США) также имеется процедура «Пикеты и смещения» – аналог задачи определения координат точки относительно базовой линии [4], которая позволяет определять прямоугольные координаты любой точки относительно опорной линии А-В. С ее помощью можно определить координаты станции S в условной системе координат относительно линии А-В (рисунок 3). Ордината станции $Y_s = q$ – величине смещения прибора к створу (нестворности).

СПИСОК ЛИТЕРАТУРЫ

1. Авакян, В. В. Прикладная геодезия: технологии инженерно-геодезических работ: Учебник / В. В. Авакян. – 3-е изд., испр. и доп. – М., Вологда : Инфра-Инженерия, 2019. – 616 с.
2. Тахеометр Leica TS03/TS07. Руководство пользователя [Электронный ресурс]. – Режим доступа : <https://geo-solutions.ru/files/Leica-TS03-TS07-Rukovodstvo-polzovatelya.pdf> (дата обращения 21.02.2022).
3. Тахеометры Topcon серии ES-50 [Электронный ресурс]. – Режим доступа : <http://geodesicsofoborudovaniye.ru/rukovodstva-polzovatelya-i-instruktii> (дата обращения 21.02.2022).
4. Тахеометры серии Trimble M3DR. Руководство по эксплуатации [Электронный ресурс]. – Режим доступа : https://www.prin.ru/images/documents/instrukcii/trimble/taheometry/m3/trimblem3dr_v3b_23_01_2014.pdf (дата обращения 21.02.2022).

Азаров Борис Федотович – к.т.н., доцент, заместитель заведующего кафедрой «Основания, фундаменты, инженерная геология и геодезия» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stf-ofigig@mail.ru.

ОПЫТ СОЗДАНИЯ ВЫСОТНОЙ ГЕОДЕЗИЧЕСКОЙ ОСНОВЫ ДЛЯ ОПРЕДЕЛЕНИЯ ИЗНОСА ДОРОЖНОГО ПОКРЫТИЯ

Б. Ф. Азаров, В. Л. Свиридов, М. М. Кинжикалова

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассмотрен опыт создания высотной геодезической основы в виде пунктов (реперов) долговременной сохранности при проведении научно-исследовательских работ с целью оценки степени и причин разрушения отдельных слоев оснований и дорожных покрытий автомобильных дорог федерального значения Алтайского края в процессе их многолетней эксплуатации. Отмечено, что для сокращения времени и объема земляных и бетонных работ при закладке реперов целесообразно использовать винтовые сваи различной конструкции. Приведены сведения об апробации различных способов закладки реперов высотной основы, в том числе с использованием винтовых свай разных производителей. В заключение сделан вывод о целесообразности использования механического способа при использовании винтовых свай.

Ключевые слова: репер, высотная основа, дорожное покрытие, автомобильная дорога, винтовая свая.

Сотрудниками кафедры «Строительные материалы» и кафедры «Основания, фундаменты, инженерная геология и геодезия» в период с 2017 по 2021 гг. по заданию ФКУ Упрдор «Алтай» проводились научно-исследовательские работы с целью оценки степени и причин разрушения отдельных слоев оснований и дорожных покрытий автомобильных дорог федерального значения Алтайского края в процессе их многолетней эксплуатации. При этом использовался прибор Strato Test 4100, работающий по принципу эхолота, генерирующий вихревые токи Фуко до отражающей поверхности, что позволило реализовать неразрушающие дорожное полотно методы контроля.

В процессе выполнения научных исследований были сформулированы и решались следующие задачи:

а) заложение в местах производства дорожных работ под рабочие слои асфальтобетонных покрытий листов-отражателей из алюминиевой фольги для последующего определения расстояния от поверхности покрытия до них с помощью прибора Strato Test 4100;

б) создание долгосрочной геодезической основы путем заложения реперов ниже глубины промерзания грунтов для фиксации вертикальных сезонных колебаний поверхности дорожного покрытия. При этом высотные реперы должны находиться в непосредственной близости от мест закладки пластин-отражателей.

Изменение отметок пунктов высотной геодезической основы и отметок точек, рас-

положенных на поверхности дорожного покрытия в местах установки пластин-отражателей, полученные за достаточно длительный промежуток времени, предполагалось использовать для определения фактического износа дорожного покрытия или просадки основания автомобильной дороги, а также для установления устойчивости сформированного земляного полотна или отсутствия такой устойчивости.

Традиционно в качестве высотной основы при выполнении геодезических работ используются типовые конструкции реперов [1], что требует производства земляных и бетонных работ. Для сокращения объемов и сроков проведения работ по созданию высотной основы в качестве реперов были использованы винтовые сваи марки BAU серии FM24 76×(3,5)×3000 и СВН 76 длиной 2,5 м Барнаульского завода винтовых свай. Своя марки BAU представляет собой изделие из стальной, обсаженной на конус трубы с закованым окончанием и с приваренной многовитковой спиралью (рисунок 1-а). Отличительной особенностью данной серии является фланцевый оголовок с шестью отверстиями под болты и одним центральным резьбовым отверстием М24. Выбор длины сваи обусловлен глубиной промерзания грунтов на исследуемых участках автомобильных дорог.

Винтовая свая СВН 76 представляет собой изделие из стальной, обсаженной на конус, трубы с закованным окончанием и с приваренной многовитковой спиралью. По специальному заказу для свай, используемых в качестве реперов, были изготовлены и при-

ОПЫТ СОЗДАНИЯ ВЫСОТНОЙ ГЕОДЕЗИЧЕСКОЙ ОСНОВЫ ДЛЯ ОПРЕДЕЛЕНИЯ ИЗНОСА ДОРОЖНОГО ПОКРЫТИЯ

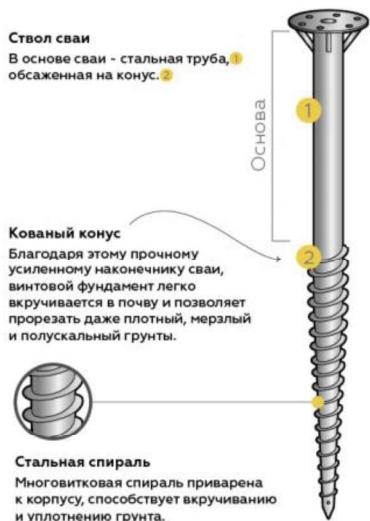


Рисунок 1-а – Винтовая свая марки BAU FM24 76 x (3,5) x 3000

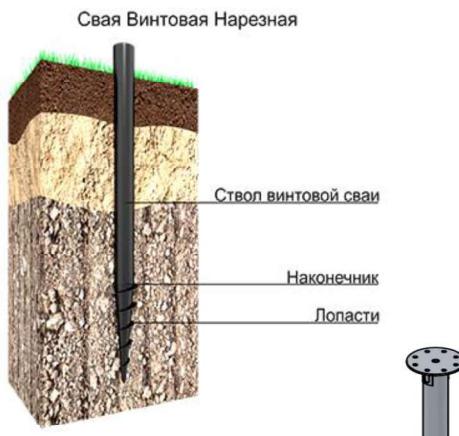


Рисунок 1-б – Винтовая однолопастная свая СВН 76 с фланцевым оголовком

варены к верху свай фланцевые оголовки с шестью отверстиями под болты и одним центральным резьбовым отверстием M24. Использование винтовой сваи в качестве репера позволяет сократить сроки проведения и

объем работ по закладке и установке реперов на местности.

Закладка 16 реперов в виде сваи марки BAU в 2017 г. осуществлялась на 8 участках федеральных трасс Р-256 и А-322 механическим способом специалистами ООО «БАУ-Сервис» с применением специальной техники (рисунок 2, справа). В качестве нивелирной марки использовался болт M24×50 с полной резьбой. После вкручивания сваи в грунт болт ввинчивается в центральное резьбовое отверстие сваи (рисунок 2, справа).

В 2018 году для определения величины степени износа отдельных слоев дорожного покрытия еще на четырех участках федеральных автомобильных дорог Алтайского края было выполнено создание геодезической основы и осуществлена планово-высотная привязка мест установки пластин-отражателей. Один участок расположен на трассе А-322, и три участка находятся на трассе Р-256.

По согласованию с ФКУ Упрдор «Алтай» в качестве реперов высотной основы использовались винтовые сваи марки BAU серии FM24 76×(3,5)×2500.

Закладка реперов осуществлялась механическим способом с помощью специальной техники (рисунок 3, слева). В качестве нивелирной марки используется болт M24×600 с полной резьбой. Всего на данных участках механическим способом было установлено 6 реперов в виде винтовых свай.

Следует отметить, что при закладке реперов в виде винтовых свай на одном из участков трассы Р-256 в условиях горной местности (с. Майма Республики Алтай) специалисты ООО «БАУ-Сервис» в 2018 году столкнулись со следующей проблемой. При завинчивании первой сваи на 2/3 длины она уперлась в плотный галечник. Усилие гидравлики буровой машины оказалось недостаточным

Рисунок 2 – Закручивание винтовой сваи механическим способом с помощью специальной техники

Рисунок 3 – Установка винтовых свай BAU механическим способом в условиях горной местности

Рисунок 4 – Процесс закручивания винтовой сваи вручную

Рисунок 5 – Конструкция составного репера для закладки в Кош-Агачском районе Республики Алтай

для раздвижки камней на такой глубине (порядка 2,0 м), поэтому сваю не удалось погрузить на проектную отметку (3,2-3,5 м). Трехкратная попытка заменить место установки сваи не дала результата. Максимальная глубина погружения сваи составила 2,2 м. При установке второй сваи после двукратной попытки произошло ее разрушение (рисунок 3, справа).

В 2019 году было заложено 8 реперов на 4-х участках федеральных трасс Р-256 и А-322.

На участке автомобильной дороги А-322 при создании высотной основы две сваи марки BAU серии FM24 были закручены вручную. В процессе завинчивания свай, несмотря на предварительно выкопанные приямки глубиной 1,0 и 1,5 м для первой и второй сваи соответственно, грунт оказался настолько плотным, что закрутить вручную до проектной отметки не удалось ни одну из них (рисунок 4, слева).

Устройство с крестовиной, устанавливаемое на фланец винтовой сваи, лопнуло от созданного напряжения. После оперативно проведенных сварочных работ по усилению крестовины было начата установка второй сваи, но закончить процесс не удалось, так крестовина лопнула пополам (рисунок 4, справа).

Также в 2019 г. на участке трассы Р-256 при установке реперов в виде винтовых однолопастных свай СВН 76 с фланцевым оголовком был применен комбинированный метод закладки. Предварительно с помощью мотобура формировалась лидерная скважина глубиной 1,5-2,0 м диаметром, равным диаметру сваи (рисунок 5). Далее установка сваи на проектную глубину осуществлялась уже вручную.

ОПЫТ СОЗДАНИЯ ВЫСОТНОЙ ГЕОДЕЗИЧЕСКОЙ ОСНОВЫ ДЛЯ ОПРЕДЕЛЕНИЯ ИЗНОСА ДОРОЖНОГО ПОКРЫТИЯ

При закладке реперов на двух участках в районе распространения вечной мерзлоты в Кош-Агачском районе Республики Алтай, где нормативная глубина промерзания согласно [1], составляет от 2,34 до 3,46 м в зависимости от типа грунтов, использовались составные реперы.

Такой репер представляет собой две металлических трубы диаметром 76 мм с толщиной стенок 3 мм, каждая длиной по 2,0 м (рисунок 5). Труба от верхней части репера на одном конце имеет оголовок в виде полусферы, предназначенный для установки нивелирной рейки. На другом конце трубы приварена муфта длиной 15 см меньшего диаметра с отверстием, служащим для болтового соединения верхней части репера с нижней. В трубе, служащей нижней частью репера, имеется несколько отверстий: в верхней части – соединительное, в нижней части – отверстия для установки металлического якоря.

Закладка сборных реперов осуществлялась в траншее, предварительно открытую экскаватором на глубину ниже промерзания грунта на 0,5 м. После установки в нижней части репера якоря в виде металлического штыря длиной 20 см нижняя часть бетонировалась жесткой бетонной смесью с применением быстросъемной инвентарной опалубки. Тем самым формировался железобетонный якорь диаметром 30 см и высотой 20-25 см.

После схватывания и начального твердения бетонной смеси, открытая траншея засыпалась этим же материалом с формированием над оголовком репера тура из крупного галечника.

Таким образом, в процессе подготовки участков автомобильных дорог для оценки

причин и величины разрушения отдельных слоев оснований и дорожных покрытий в процессе многолетней эксплуатации были апробированы варианты создания долговременной геодезической основы в виде винтовых свай и составных реперов.

В первом случае установка осуществлялась механическим, ручным и комбинированным способами.

Во втором использовался механизированный способ с производством бетонных работ, как это рекомендовано Правилами [1].

По затратам труда и времени предпочтение следует отдать механическому способу.

Трубные составные реперы целесообразно использовать в условиях, не позволяющих применять винтовые сваи.

СПИСОК ЛИТЕРАТУРЫ

1. Правила закладки центров и реперов на пунктах геодезической и нивелирной сетей. – М. : Картгеоцентр-Геодезиздат, 1993. – 104 с.

Азаров Борис Федотович – к.т.н., доцент, заместитель заведующего кафедрой «Основания, фундаменты, инженерная геология и геодезия» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stf-ofigig@mail.ru;

Свиридов Василий Лаврентьевич – д.т.н., профессор кафедры «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: unkcs2@mail.ru;

Кинжикалова Марина Максимовна – студент группы САД-02 УТК ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: fafedrats212n@yandex.ru.

СОЗДАНИЕ ИНФОРМАЦИОННОЙ МОДЕЛИ СЛАБОТОЧНЫХ СИСТЕМ В REVIT

А. В. Аксенов, И. А. Бахтина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Рассмотрен процесс создания семейств с индивидуальными параметрами при проектировании слаботочных систем в программном комплексе Revit.

Ключевые слова: семейства, кабельные лотки, спецификация, материал, Navisworks, Revit.

При проектировании любых инженерных систем в различных программных комплексах (Autocad, Revit и др.) необходимо использовать различные семейства слаботочных систем. В программном комплексе Revit нет типовых шаблонов семейств слаботочных систем, поэтому необходимо создавать их самому, далее вставлять в проект и совершать необходимые действия [1]. Рассмотрим этапы создания семейства слаботочных систем на примере семейства двойной розетки RJ-45 в программном комплексе Revit 2019.

Первым этапом является создание модели рамки и разъема подключения розетки. Оно включает следующие операции [2, 3].

1. Нужно открыть программный комплекс Revit, выбрать создание семейства на основе шаблона «Типовая модель на основе грани» (рисунок 1).

2. Далее необходимо на вкладке «Создание» выбрать пункт «Выдавливание». Инструментом «Линия» отрисовываем рамку с отверстием для подключения штекера. Задаем толщину рамки на панели свойств (рисунок 2). Выступ рамки задаем так, чтобы был на внешней стороне стены.

3. После этого создаем внутреннюю часть розетки (разъем для штекера). Используем такой же принцип, как и до этого. Вкладка «Создание» → пункт «Выдавливание» → инструмент «Линия». Задаем размер так, чтобы он был внутри стены.

После этого необходимо создать монтажную коробку розетки, располагаемую в стене. Принцип создания:

1) необходимо создать еще одно семейство на основе шаблона «Типовая модель на основе грани». Нажимаем вкладка «Создание» → пункт «Выдавливание» → инструмент «Круг», задаем необходимый диаметр коробки, далее на панели свойств задаем толщину углубления;

2) далее необходимо задать материал коробки. На панели свойств выбираем строч-

ку «Материал», переходим в диспетчер материалов (рисунок 3) и выбираем из библиотеки необходимый нам – пластик;

3) сохраняем данное семейство коробки и загружаем его в семейство розетки (рисунок 4). Вставляем данное семейство в нужное нам место. В семействе розетки, рамке и внутренней части задаем материал, таким же способом, как описывалось выше.

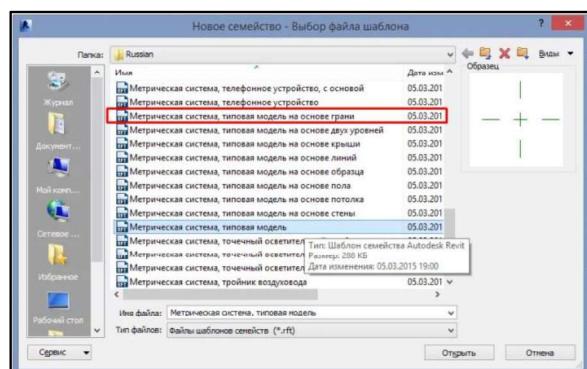


Рисунок 1 – Выбор шаблона для создания семейств

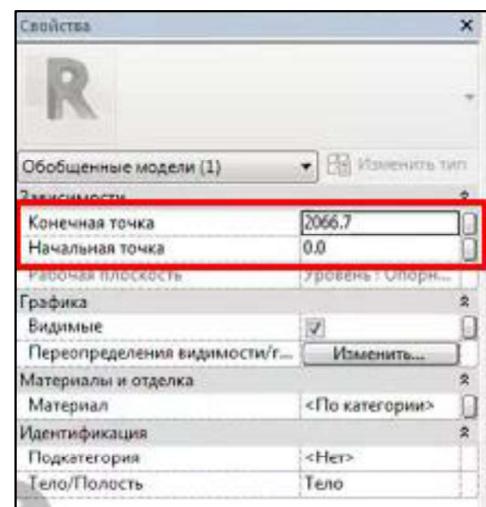


Рисунок 2 – Задание толщины рамки на панели свойств

СОЗДАНИЕ ИНФОРМАЦИОННОЙ МОДЕЛИ СЛАБОТОЧНЫХ СИСТЕМ В REVIT

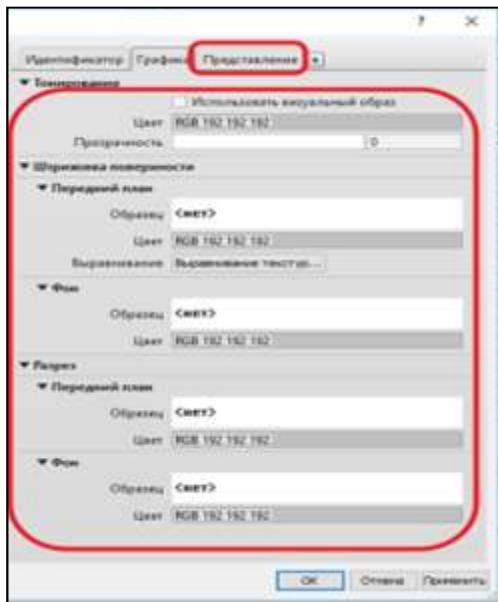


Рисунок 3 – Диспетчер материалов

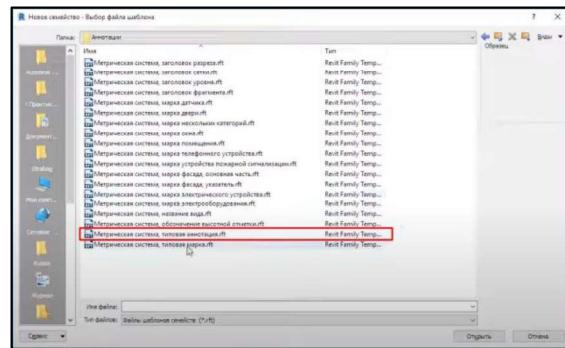


Рисунок 5 – Выбор шаблона для создания УГО

4. Для оформления планов создаем и добавляем условно-графическое отображение (УГО), что создается на основе шаблона «Метрическая система, типовая аннотация» (рисунок 5).

Далее, с помощью опции «Линейная» создаем необходимое отображение, при необходимости с помощью опции «Текст» добавляем текст. После создания загружаем в нужное семейство (рисунок 6).

5. После завершения процесса создания геометрии семейства, необходимо добавить ему параметры, для отображения в спецификации. В данном случае необходимы следующие параметры: наименование, марка, завод-изготовитель, единица измерения, секция, этаж.

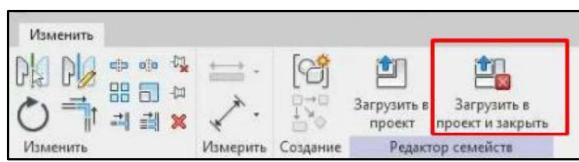


Рисунок 4 – Загрузка семейства коробки в семейство розетки

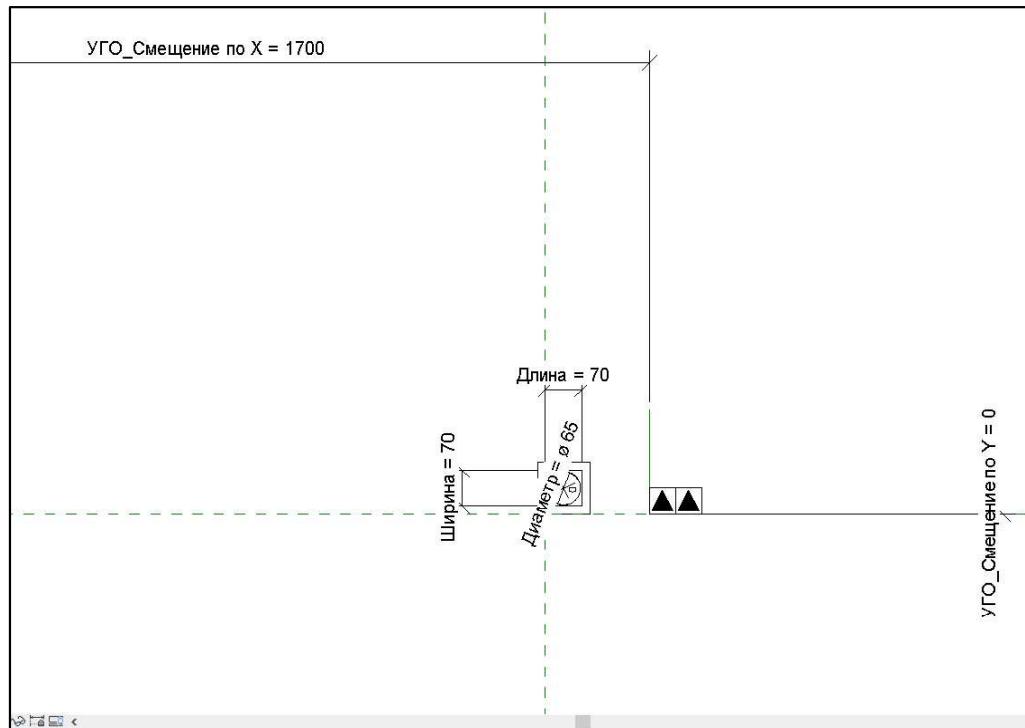


Рисунок 6 – Процесс создания семейства розетки

А. В. АКСЕНОВ, И. А. БАХТИНА

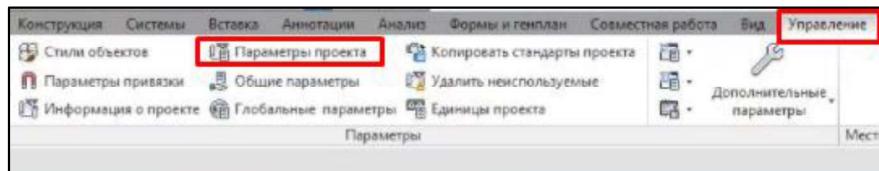


Рисунок 7 – Создание параметров

Рисунок 8 – Выбор инструмента «Кабельные лотки»

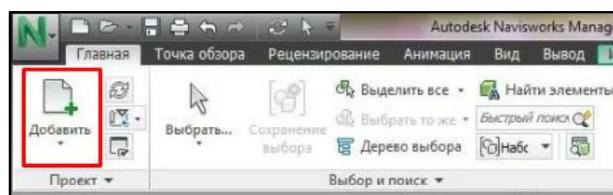


Рисунок 9 – Добавление файлов проекта

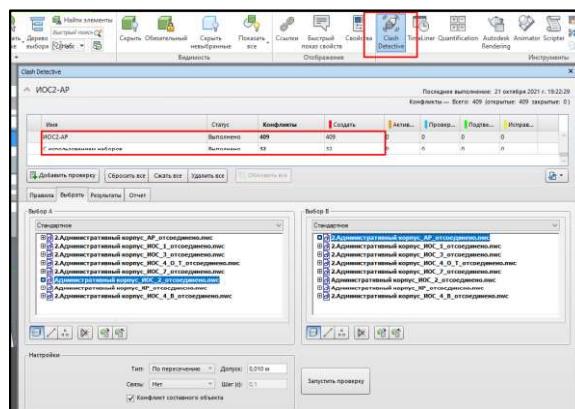


Рисунок 10 – Выполнение проверки конфликтов проекта

Рисунок 11 – Фрагмент отчета о конфликтах

СОЗДАНИЕ ИНФОРМАЦИОННОЙ МОДЕЛИ СЛАБОТОЧНЫХ СИСТЕМ В REVIT

Для добавления параметров необходимо на вкладке «Управление» выбрать раздел «Параметры проекта» (рисунок 7). В диалоговом окне «Параметры проекта» нажимаем кнопку «Добавить». В диалоговом окне «Общие параметры» выбираем необходимый параметр из соответствующей группы параметров и нажать «OK». После выполнения всех вышеперечисленных операций сохраняем наше семейство и вставляем его в наш проект. Для создания полноценной информационной модели слаботочных систем необходимо создать и добавить в наш проект семейства распределительный шкаф, точки доступа Wi-Fi, IP-телефонный аппарат, кнопки вызова, кнопки доступа и т.п.

6. После завершения всех семейств и добавления их в проект, необходимо создать кабельные лотки, для прокладки в них кабелей и соединения всех элементов в единую модель. Процесс создания:

1) Кабельные лотки являются системными. На вкладке «Системы» выбираем инструмент «Кабельный лоток» (рисунок 8).

2) Функционал Revit позволяет задать ширину и высоту кабельных лотков, а также высоту смещения от пола. Выполняем необходимые действия и прокладываем кабельную трассу в необходимых местах.

7. После завершения создания информационной модели средств связи добавляем данный файл в программный комплекс Navisworks Manage, для упрощения дальнейшей работы со связанными файлами модели. Функционал данной программы позволяет отображать сложные модели, разработанные в программном комплексе Autodesk Revit, без чрезмерного использования вычислительных мощностей компьютера. Использование Navisworks Manage позволило обнаружить возникшие коллизии между элементами созданной объединенной модели и устранить их, перед окончательной выгрузки готовой модели. Процесс выявления конфликтов следующий:

1) На вкладке «Главная» выбрать опцию «Добавить» (рисунок 9). Выбираем нужные нам разделы проекта и нажимаем «OK».

2) На вкладке «Главная» выбираем функцию «Clash Detective». Нажимаем опцию «Добавить проверку», выбираем разделы

проекта, между которыми необходимо выполнить проверку. Пишем наименование проверки и задаем допуск по пересечению. Нажимаем кнопку «Запустить проверку» (рисунок 10).

3) На данном диалоговом окне выбрать вкладку «Отчет», здесь мы можем просмотреть каждый конфликт, написать комментарии для проектировщика (рисунок 11). Нажимаем вкладку «Записать отчёт» и используем для устранения конфликтов.

В результате проделанной работы были разработаны информационные модели слаботочных систем, которые можно в дальнейшем использовать при моделировании как административных, так и жилых зданий. Модели слаботочных систем были разработаны с учётом требуемых параметров, размеров, материалов, обозначений УГО.

СПИСОК ЛИТЕРАТУРЫ

1. Аксенов, А. В. Оптимизация проверки сводной модели проекта в Navisworks на примере системы холодного водоснабжения / А. В. Аксенов, И. А. Бахтина, А. Н. Корнеев // Современная техника и технологии: проблемы, состояние и перспективы : материалы XI Всероссийской науч.-практ. конф. 26-27 ноября 2021. – Рубцовск, 2021. – С. 190-195.

2. BIM-Эксперт [Электронный ресурс]. – URL: <https://1-bim.ru/как-создать-простое-семейство-в-revit/> (дата обращения 09.02.2022).

3. Руководство по созданию семейств Autodesk Revit. [Электронный ресурс]. – URL: <https://knowledge.autodesk.com/ru/search-result/caas/simplecontent/content/-D1-80-D1-83-D0-BA-D0-BE-D0-B2-D0-BE-D0-B4-D1-81-D1-82-D0-B2-D0-BE-D0-BF-D0-BE--D1-81-D0-BE-D0-B7-D0-B4-D0-B0-D0-BD-D0-B8-D1-8E--D1-81-D0-B5-D0-BC-D0-B5-D0-B9-D1-81-D1-82-D0-B2-autodesk-revit.html> (дата обращения 09.02.2022).

Аксенов Андрей Валерьевич – студент группы 8С(3)-11 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: neo12051999@mail.ru;

Бахтина Ирина Алексеевна – к.т.н., доцент кафедры «Инженерные сети, теплотехника и гидравлика» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: bia-altai@mail.ru.

ИССЛЕДОВАНИЕ ВОЗМОЖНЫХ КОНСТРУКТИВНЫХ РЕШЕНИЙ УЗЛОВ ФЕРМ ИЗ ПРЯМОУГОЛЬНЫХ СВАРНЫХ ТРУБ

Н. В. Алпатов, И. В. Харламов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассмотрены основные виды стальных стропильных ферм их недостатки и преимущества. А также разработан и обоснован новый тип модификации бесфасоночных узлов трубчатой фермы.

Ключевые слова: Металлические конструкции, стропильные фермы, методики расчета ферм, конструктивные решения узловых соединений.

Фермой называют систему стержней, связанных между узлами и создающую геометрически неизменную структуру. Строительная отрасль сегодня требует использования легких, недорогих, надежных и эстетически привлекательных строительных конструкций. Стандартные фермы со стержнями из прямоугольных сварных труб давно прижились в строительстве, но желание сократить потребление металла привело к созданию новых ферм.

1. Парные уголки в устройстве фермы

Для ферм, у которых в качестве стержней применяются парные уголки, образующие тавр, узлы крепятся на фасонках (рисунок 1). Для совместной работы уголков их соединение снабжено прокладками, для сжатых используется шаг, не более 40i, а для элементов, работающих на растяжение - 80i, где i - радиус инерции уголка относительно оси, параллельной прокладке.

Площади швов зависят от толщины и длины этих швов. Для снижения скопления напряжений, концы фланговых швов выводят на торцы стержня. Крепление фасонок к поясу производится сплошными швами с дальнейшим выводом за обушок поясных уголков на 10-15. Одновременно в сжатые элементы вставляются не менее двух уплотнений.

Ряд преимуществ такого сечения заключается в большом диапазоне площадей, подходящем для проектирования узлов на фасонках и фиксации конструкций, примыкающих к фермам. Однако у них есть серьезные недостатки:

- В подобном сечении низкий радиус инерции, поэтому в сжатых стержнях металл используется нерационально, что приводит к увеличению расхода металла.

- Все стержни состоят из двух уголков, соединение которых производится с применением прокладок

- До 20% от общего значения расхода металла уходит на соединение узлов с применением фасонок на стержни и до 30% затрат труда непосредственно на их изготовление.

Создается зазор между уголками. Увеличивается сложность осмотра и отделки поверхностей, в зазорах активно скапливается загрязнения, что, как следствие, приводит к необратимому ускорению коррозийного разрушения.

Обращая внимание на вышеперечисленные отрицательные качество данного узла, можно с уверенностью заявить, что в современных реалиях данное проектное решение не является актуальным и рациональным.

2. Одиночные уголки в устройстве фермы

Одиночные уголки в фермах применяются в покрытиях зданий с агрессивной средой. Они менее затратны, чем её аналог с двумя спаренными уголками. В подобных фермах применяется конструкция из одиночных равнополочных уголков. Наиболее выгодным решением является ферма с параллельными поясами, стойками и нисходящими раскосами.

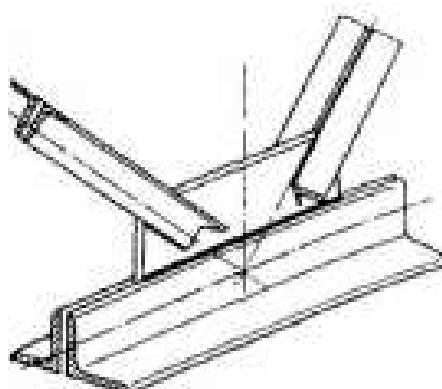


Рисунок 1 – Узел ферм с применением парных уголков образующих тавр

ИССЛЕДОВАНИЕ ВОЗМОЖНЫХ КОНСТРУКТИВНЫХ РЕШЕНИЙ УЗЛОВ ФЕРМ ИЗ ПРЯМОУГОЛЬНЫХ СВАРНЫХ ТРУБ

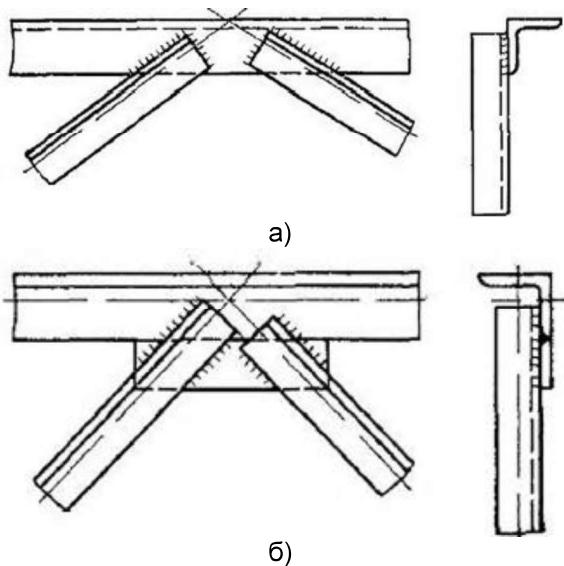


Рисунок 2 – Ферма с использованием одиночных уголков: а) бесфасоночных; б) с узловыми фасонками

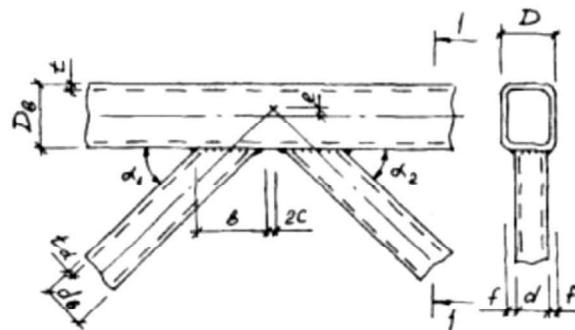


Рисунок 3 – Узел фермы из замкнутых гнутосварных профилей

Для фиксации элементов решетки к поясу, используют сварку угловых швов или болтовое соединение. Болтовые соединения являются наиболее рациональным решением для ферм, транспортировка которых требует перевозить их россыпью в отдалённые районы и производить сбор непосредственно на строительной площадке. Если сравнивать со сварными, то болтовые соединения формируют менее острые концентраторы напряжений.

Узлы ферм могут осуществляться как с фасонками (рисунок 2, б) так и без них (рисунок 2, а). Фасонки монтируются встык к перу уголка. В бесфасоночных узлах ферм центровка производится на грань обушка уголка.

Приваривание уголков решётки к поясу осуществляется по контуру или фланговым швом по обушку и фронтальным по торцу. Толщины полки самого толстого из примененных уголков должно быть больше, чем

пространство от опорного раскоса до центра тяжести уголков верхнего пояса.

Возникновение изгибающих моментов в узлах из-за несимметричности сечений является особенностью ферм из одиночных уголков. Несимметричность приводит к перемещению продольных сил от центральных осей в сторону полок от различных по жесткости стержней, объединенных в узле. Отсюда следует, что ферма из одиночных уголков обладает следующими недостатками:

- крутящий момент, который возникает в результате несимметричного сечения стержней;

- изгибающие моменты, выходящие из плоскости фермы, образовавшиеся в решётке;

- в результате того, что сжатые элементы фермы фиксируются по концам, образуется необходимость добавочной проверки устойчивости относительно оси наименьшей жёсткости и использовать минимальный радиус инерции, что приводит увеличению расходов металла.

К достоинствам можно отнести:

- минимальное число элементов,
- высокие противоэрзийные свойства,
- малая трудоемкость и металлоемкость.

Учитывая все вышеперечисленные недостатки, данный тип фермы обычно используют при условии действия на них малых нагрузок, и при небольшом расстоянии пролёта.

3. Фермы из прямоугольных труб

Главные преимущества ферм из прямоугольных труб напрямую связаны с замкнутой формой сечения стержней. Если сравнивать с незамкнутыми сечениями, у труб больше радиусы инерции, жёсткость на кручение и возможная тонкостенность.

Данные свойства разрешают эффективно и рационально расходовать металл в сжатых и внецентренно сжатых стержнях.

Хорошая обтекаемость делает легче процесс отделки фермы для поддержания эстетической составляющей облика здания, а малая площадь поверхности подвергающейся коррозии и доступность трубы для визуального осмотра, а также окраски способствуют предотвратить процесс коррозии и увеличивают сроки эксплуатации фермы.

У трубчатых ферм допустимо произвести крепление стержней без фасонок. Сопряжение такого типа помогает сократить расход металла, а также обеспечить наиболее эффективную устойчивость ферм при конструировании (рисунок 3).

К отрицательным свойствам данной фермы можно отнести:

- Обязательное расстояние не менее 20 мм между соседними носками для уменьшения остаточных сварных напряжений, а также для удобства монтажа сварных швов, как следствие возникает расцентровка. От эксцентрикитетов и жестких узлов в стержнях фермы образуются моменты, которые обязательно нужно учитывать при проектировании.

- На производство данной фермы устанавливаются только минусовые допуски, так как раскосы в данном типе ферм не владеют компенсационной способностью.

- Высокая деформативность узлов. Боковые стенки раскосов переносят наибольшую долю продольных усилий на пояс. У по-перечных стенок, которые расположены у «пяты» от раскосов нагрузка к поясу не проходит, в результате чего наблюдается сокращение равномерное распределение напряжений в зоне крепления раскосов к поясу. Повышение разности размеров труб раскосов и поясов приводит к увеличению деформа-

тивности. Это приводит к появлению ряда конструктивных ограничений при проектировании узлов.

- В прямоугольных трубах толщина стенок поясов растёт с повышением усилий.

4. Фермы из замкнутых прямоугольных или квадратных гнутосварных труб с поясами расположеными по диагонали к её плоскости

Разработка и исследование возможных модификаций узлов является острым вопросом, который обеспечит улучшение таких качеств, жесткость, деформативность и прочность без повышения объемов расходов металла. Для выполнения поставленной задачи рассмотрим два модифицированных узла:

1) Разворот сечения труб на 45° к плоскости фермы (рисунок 4).

2) Разворот сечения пояса на 45° к плоскости фермы (рисунок 5).

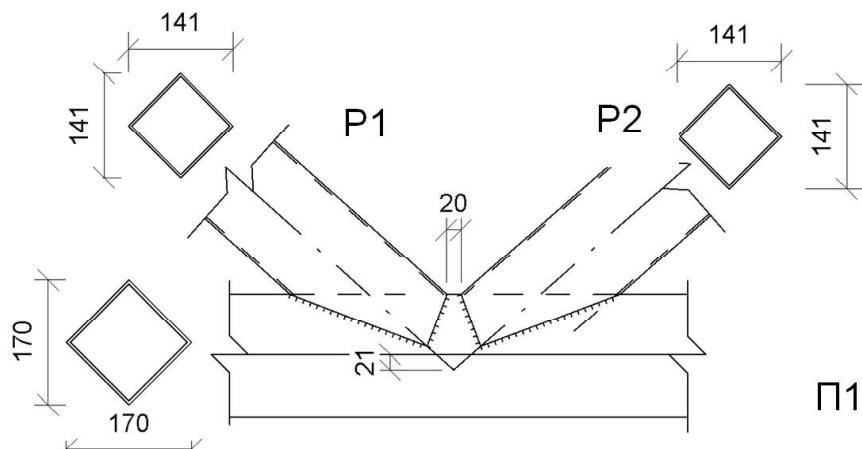


Рисунок 4 – Узел фермы из замкнутых квадратных гнутосварных труб

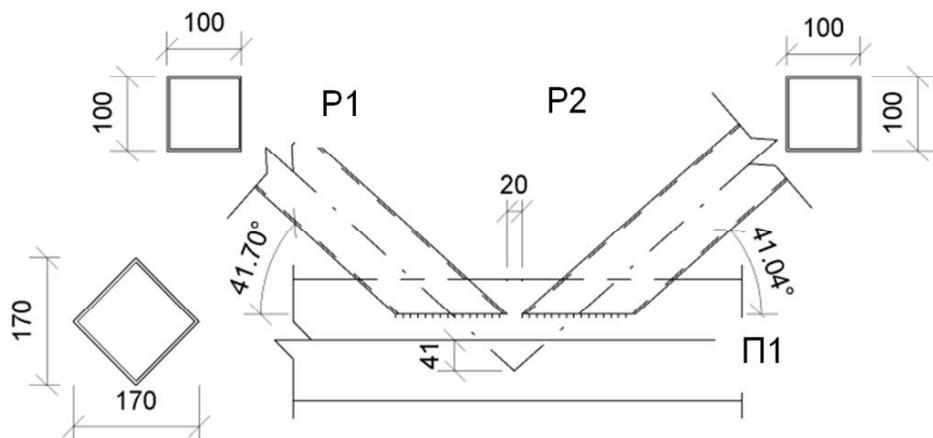


Рисунок 5 – Узел фермы из замкнутых квадратных гнутосварных труб с разворотом сечения на 45° к плоскости фермы

ИССЛЕДОВАНИЕ ВОЗМОЖНЫХ КОНСТРУКТИВНЫХ РЕШЕНИЙ УЗЛОВ ФЕРМ
ИЗ ПРЯМОУГОЛЬНЫХ СВАРНЫХ ТРУБ

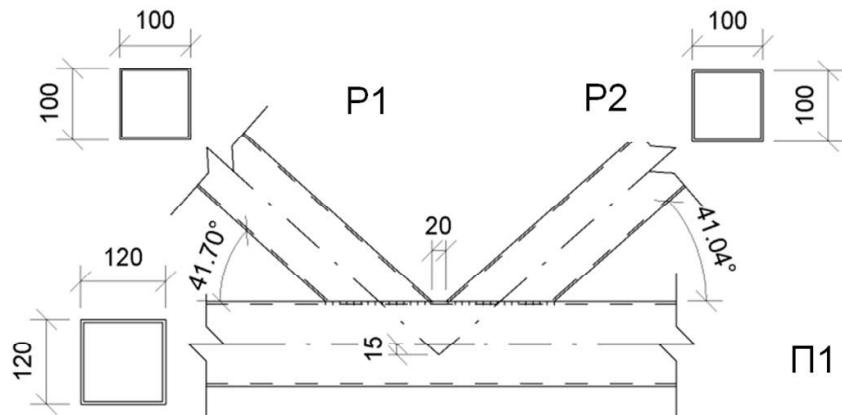


Рисунок 6 – Узел фермы из замкнутых квадратных гнутосварных труб с разворотом сечения пояса на 45° к плоскости ферм

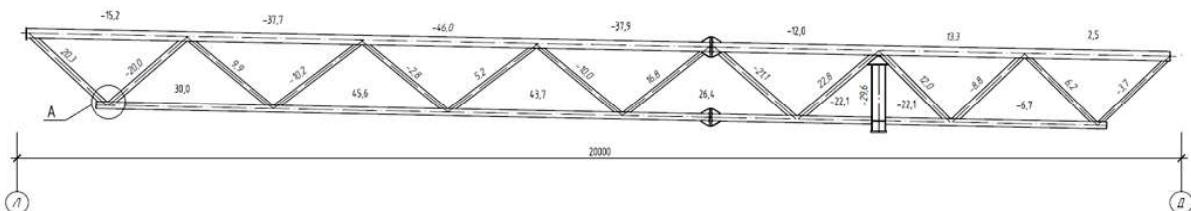


Рисунок 7 – Геометрическая схема фермы (усилия в тс)

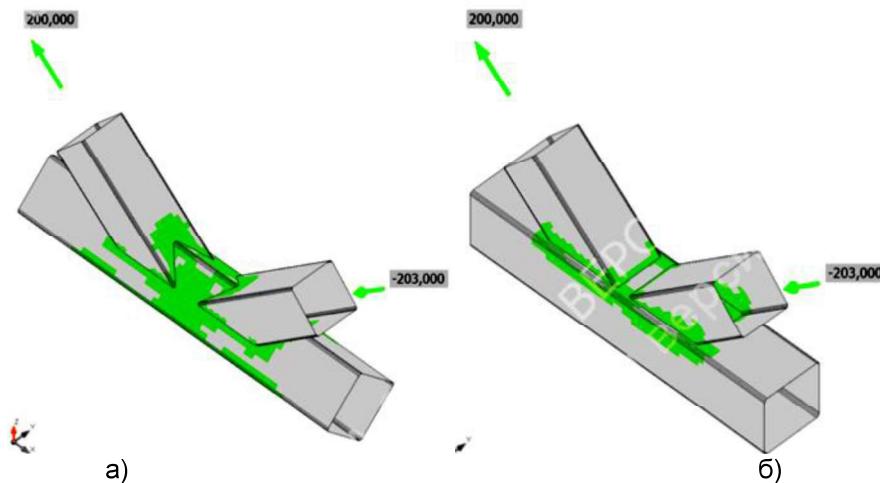


Рисунок 8 – Зоны концентрации деформаций: а) узла с разворотом пояса; б) стандартного узла фермы

Сравним их со стандартным узлом фермы из прямоугольных труб, с поясами, расположенными по диагонали к её плоскости (рисунок 6).

Для определения расчётной несущей способности узла используем реальную конструкцию стальной стропильной фермы с параллельными поясами выполненная из замкнутых прямоугольных и квадратных гнутосварных труб (рисунок 7). Используем узел «А».

Произведя расчёт в программном комплексе IDEA Statica, получаем значения деформации и напряжения в узле (таблица 1).

По результатам расчётов выгоднее всего себя показал узел с расположением поясов по диагонали к плоскости фермы. Из трёх рассматриваемых узлов у него самое низкое значение напряжения, а процент относительной деформации в 1,3 раза меньше, чем у стандартного узла.

Увеличение длины сварного шва является достоинством данного узла, которое приводит к уменьшению термических напряжений и деформации, что позволяет наиболее равномерно распределять напряжения по всей конструкции (рисунок 8).

Таблица 1 – Значения деформации и напряжения узлов

Тип узла	Относительная деформация (%)	Напряжение (МПа)
Стандартный узел	2,31	341,34
Узел с разворотом труб	2,78	342,30
Узел с разворотом пояса	1,78	340,14

Основным недостатком является увеличение эксцентризитета, а значит и увеличение моментов.

Данный узел фермы не исследован. Так как он владеет очевидным потенциалом, для нас он составляет интерес в дальнейшем изучении. Планируется разработка фермы с использованием данного типа узла.

СПИСОК ЛИТЕРАТУРЫ

1. Беленя, Е. И. Металлические конструкции. Общий курс: учебник для вузов / Е. И. Беленя [и др.], под общ. ред. Е. И. Беленя. – 6-е изд., перераб. и доп. – М. : Стройиздат, 1986. – 560 с.

2. Бирюлев, В. В. Проектирование металлических конструкций: специальный курс / В. В. Бирюлев [и др.]. – Л. : Ленинград-стройиздат, 1990. – 419 с.

3. Кузин, Н. Я. Проектирование и расчет стальных ферм покрытий промышленных зданий: учебное пособие / Н. Я. Кузин. – М. : Изд-во АСВ, 1998. – 184 с.

Харламов Иван Викентьевич – к.т.н., заведующий кафедрой «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kharlamov-1948@mail.ru;

Алпатов Николай Вячеславович – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: owlried@gmail.com.

УДК 553:553.4:553.045:551.041

ВОЗМОЖНОСТИ ЭФФЕКТИВНОГО ОСВОЕНИЯ МАЛЫХ КОМПЛЕКСНЫХ ПОЛИМЕТАЛЛИЧЕСКИХ МЕСТОРОЖДЕНИЙ КАК ОСНОВА ГЕОИНЖИНИРИНГА И ЦИФРОВОЙ ТРАНСФОРМАЦИИ ПРОИЗВОДСТВА ФОРМИРУЮЩЕГОСЯ ГОРНОДОБЫВАЮЩЕГО КЛАСТЕРА АЛТАЙСКОГО КРАЯ

Л. Н. Амосова¹, С. В. Краморенко²

¹ Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

² ООО «ЦИТ», г. Барнаул

Основной проблемой использования минерально-ресурсной базы региона является проблема вовлечения ресурсов нераспределенного фонда месторождений в основное производство. Для Алтайского края, как и для других старопромышленных горнодобывающих регионов, возникает потребность вовлечения в групповую разработку территориально сближенных средних и малых комплексных месторождений, для достижения объединенного эффекта, с целью снижения общих и технологических затрат. Главной проблемой создания малых горнодобывающих предприятий встает внедрение и использование инновационных технологий, уникальных для каждого конкретного региона.

Ключевые слова: геоинжиниринг, горнодобывающий кластер, цифровизация, геотехнология, комплексные месторождения, ресурсный потенциал.

В горнодобывающей промышленности уровень конкурентного преимущества предприятия определяется в первую очередь производительностью и эффективным функционированием организаций.

Цифровизация становится определяющим фактором, который позволит горнодобывающим компаниям в будущем оставаться конкурентоспособными [1, 2]. Из-за масштабов и сложности производства, а также

больших затрат на переоборудование, переход на новые, более совершенные методы работы происходит, как правило, медленно, поэтому в данном секторе цифровизация преимущественно не используется или используется недостаточно активно [3].

Общеисторически горнодобывающие работы были разбиты на отдельные эксплуатационные подразделения (автономные решения) с минимальной интеграцией между

ВОЗМОЖНОСТИ ЭФФЕКТИВНОГО ОСВОЕНИЯ МАЛЫХ КОМПЛЕКСНЫХ ПОЛИМЕТАЛЛИЧЕСКИХ МЕСТОРОЖДЕНИЙ КАК ОСНОВА ГЕОИНЖИНИРИНГА И ЦИФРОВОЙ ТРАНСФОРМАЦИИ ПРОИЗВОДСТВА ФОРМИРУЮЩЕГОСЯ ГОРНОДОБЫВАЮЩЕГО КЛАСТЕРА АЛТАЙСКОГО КРАЯ

добычей, переработкой и транспортом. Для поисковых эффективных решений и достижения результатов, для реализации экологических проектов, для предотвращения нанесения даже самого незначительного ущерба окружающей среде, развитие из отдельных элементов связанных производственно-сбытовых цепочек открывает новые шансы для изменений и предоставляет широкие возможности [4].

В настоящее время, основные проблемы, с которыми сталкиваются горнорудные предприятия, – это заниженные оценки продукции, волатильность цен, увеличение затрат, экологические вызовы, приостановка проектов, снижение глобального спроса и растущие риски безопасности и охраны труда.

На данный момент оцифровка позволяет получить полную картину производственно-сбытовой цепи от шахты до порта, обеспечивая целостное представление всей операции [5]. Собранные данные могут быть проанализированы для выявления производственных проблем, управления запасами и качеством, отслеживания производства и производительности активов, понимания и экономии ресурсов и затрат [6-8].

Исторически, горнодобывающие и металлургические компании стали технологическим инноваторами и лидерами в некоторых областях.

За последние годы темпы технологических инноваций определялись такими причинами, как наличие капитала, географическая разрозненность ключевых производственных операций, различия в базовом оборудовании и технологиях управления, управленческий консерватизм и сложность горных работ [4].

Экономическое состояние горнодобывающей промышленности в современных условиях характеризуется увеличением волатильности, стабилизацией и переориентацией предложения, ужесточением спроса и конкуренции за перспективные площади и рынки сбыта, в связи с чем промышленным предприятиям необходимо активизировать свою экономическую политику в сфере внедрения технологических инноваций [6-8].

Приоритетом стратегического развития является оптимизация производственных издержек и повышения эффективности внедрения современных инновационных технологий, изменение принципов и схем управления предприятием. Недостаточная изученность вопросов внедрения и управления инновационными технологиями, необходимость совершенствования технологических процессов

инициируют применение комплексного подхода при разработке структуры и модели управления современным горнодобывающим предприятием [3].

Ключевым направлением исследования является оценка современного состояния и перспектив развития горнодобывающей промышленности Алтайского края, в частности, анализ минерально-сырьевой базы (МСБ) и современных технологий, в контексте возможности внедрения и комплексной оценки инновационных технологий для целесообразности создания современного предприятия на территории Алтайского края [6-8].

Современное состояние золотодобывающей промышленности Алтайского края сложно назвать стабильным. На сегодняшний день единственным стабильно работающим добывающим производством в Алтайском крае является ООО «Сибирь-Полиметаллы», дочернее предприятие Уральской горнometаллургической компании (УГМК) (рисунки 1, 2).

Производительность обогатительной фабрики, которая перерабатывает полиметаллические руды Степного и Зареченских рудников, составляет 100 тыс. тонн руды в год.

Балансовые запасы минерально-сырьевой базы Зареченского рудника составляют порядка 1,5 млн. тонн руды, отличительной особенностью которой является высокое содержание барита, золота и серебра. Предположительно, без воспроизводства сырьевой базы, при существующем объеме производства, ресурсов месторождения хватит на 15-20 лет.

При переработке руды Зареченского месторождения используется традиционная схема обогащения полиметаллических руд [6, 7].

В среднесрочной перспективе, согласно программе развития, приоритетным вопросом для ОАО «Сибирь-Полиметаллы» представляется разработка Корбалихинского месторождения. А в пределах месторождения рудные тела располагаются на большой глубине – до 1300 м, поэтому проектирование и его разработка вызывает определенные сложности [8].

Кроме этого, не малый интерес представляет разработка мелких перспективных месторождений с глубиной залегания рудных тел до 250-300 м.

Сложность геологического строения перспективных площадей ведет к необходимости применения инновационных технологических решений: внедрения скважинного

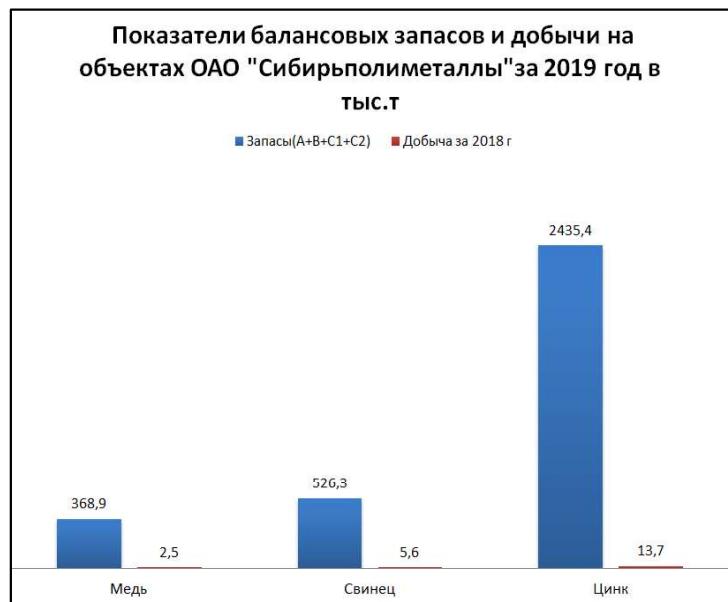


Рисунок 1 – Сравнительная характеристика величины запасов и показателей добычи полиметаллов на объектах ОАО «Сибирь-Полиметаллы»

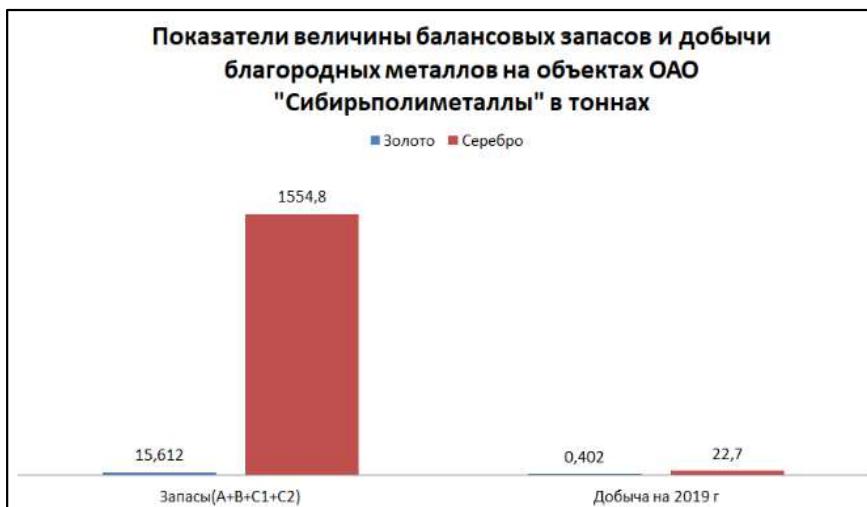


Рисунок 2 – Сравнительная характеристика величины запасов и показателей добычи благородных металлов на объектах ОАО «Сибирь-Полиметаллы»

подземного выщелачивания на полигонах нерентабельного кучного выщелачивания, вторичного использования гравитационных отвалов, применения биотехнологий, уменьшения доли цианирования, применения электровзрывных методов для деструктуризации глинистых кор выветривания и т.д. В этом ключе инжиниринг как производственный процесс представляет собой некую надстройку над технической и технологической деятельностью, которая позволяет получить необходимые результаты проектной деятельности, приблизить реализацию идей к их непосредственному воплощению [9-11].

Важной составной частью геоинжини-

ринга, является сам интеллектуальный процесс решения инженерных задач, связанных с проектированием и организацией процессов производства продукции. В этой связи трудно говорить о конкретной профессиональной деятельности в области инжиниринга ввиду того, что сфера производства деятельности включает в себя знание технических направлений, менеджмента, правовых и экономических дисциплин. Одним из примеров внедрения замкнутого цикла производства в РФ является создание современных предприятий, основным циклом производства которых является технология скважинного подземного выщелачивания [5].

ВОЗМОЖНОСТИ ЭФФЕКТИВНОГО ОСВОЕНИЯ МАЛЫХ КОМПЛЕКСНЫХ ПОЛИМЕТАЛЛИЧЕСКИХ МЕСТОРОЖДЕНИЙ КАК ОСНОВА ГЕОИНЖИНИРИНГА И ЦИФРОВОЙ ТРАНСФОРМАЦИИ ПРОИЗВОДСТВА ФОРМИРУЮЩЕГО ГОРНОДОБЫВАЮЩЕГО КЛАСТЕРА АЛТАЙСКОГО КРАЯ

Скважинное подземное выщелачивание (СПВ) является самым низко затратным, рентабельным и экологически чистым производством. Его появление инициировано большим количеством месторождений с низким содержанием золота в руде, но находящихся в районах с развитой транспортно-экономической инфраструктурой, постоянно живущим населением, зачастую с развитым сельскохозяйственным производством, поэтому неотъемлемым фактором в данных территориях для создания предприятия является экологический.

Среди всех достоинств технологии СПВ следует отметить высокую технологичность производства, сравнительно невысокие капитальные затраты на строительство рудника, круглогодичный режим работы, относительно дешевые и широко распространенные реагенты для технологического цикла производства; отсутствие отвалов и объектов переработки горных работ и вредных выбросов [9, 12, 13].

СПИСОК ЛИТЕРАТУРЫ

1. Егоров, Е. Г. Модернизация и инновационное развитие горнопромышленного комплекса России / Е. Г. Егоров // Горный журнал. – 2015. – № 3. – С. 3-6.
2. Лазарева, А. К. Эколого-экономические аспекты освоения природных ресурсов РФ / А. К. Лазарева // Проблемы современной экономики. – 2015. – № 2. – С. 265-268.
3. Leake, B. E. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names / B. E. Leake, A. R. Woolley, C. E. S. Arps [et. al.] // Mineralogical Magazine. – 1997. – V. 61. – P. 295-321.
4. Каплан, А. В. Методология управления развитием горнодобывающего предприятия с использованием цикличности внешней и внутренней среды / А. В. Каплан // Фундаментальные исследования. – 2015. – № 217. – С. 3791-3796.
5. Wiedenbeck, M. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses / M. Wiedenbeck, P. Alle, F. Corfu [et. al.] // Geostandards Newslett. – 1995. – V. 19. – № 1. – P. 1-23.
6. Федак, П. Ф. Отчет о результатах поисковых работ на золото-серебросодержащее полиметаллическое оруденение в пределах новокузнец
- цовской площади в змеиногорском рудном районе (Алтайский край) в 2016 г. / П. Ф. Федак. – Территориальный фонд геологической информации по Алтайскому краю, инв. № 4ф-15.
7. Бузоверов, Ю. Н. Отчет о результатах работ по объекту «Поиски полиметаллического оруденения рудно-алтайского типа на Краснореченской площади в Рубцовском рудном районе (Алтайский край) / Ю. Н. Бузоверов. – Государственный контракт № 2Ф-17 от 14.07.2017 г.
8. Амосова, Л. Н. Анализ ресурсной обеспеченности и предпосылки создания горнодобывающего кластера на территории Алтайского края / Л. Н. Амосова, С. В. Краморенко // Ползуновский альманах. – 2021. – №1. – С.14-16.
9. Руйга, И. Р. Золотодобывающая промышленность России: тенденции, проблемы и перспективы развития / И. Р. Руйга, Ю. А. Тетерин // Инновационная наука. – 2015. – № 12. – С. 247-252.
10. Родионов, Д. Г. Региональная кластерная политика в контексте управления развитием региональной экономики / Д. Г. Родионов, А. Ю. Афанасов, А. А. Горовой // Мир экономики и права. – 2016. – № 4-5. – С. 18-30.
11. Вызовы цифровой трансформации и бизнес высоких технологий / Н. А. Кравченко [и др.]. – Новосибирск: Институт экономики и организации промышленного производства СО РАН, 2019. – 352 с.
12. Нгуен, Н. М. Направление развития технологий добычи применительно к рудникам глубокого заложения / Н. М. Нгуен, Д. Т. Фам // Горные науки и технологии. – 2019. – Т. 4. – №1. – С.16-22.
13. Молдаши, Д. Н. Методы и технические решения повышения надежности удержания трассы геотехнологической скважины / Д. Н. Молдаши // Горные науки и технологии. – 2021. – Т. 6. – № 1. – С.42-51.
14. Унтура, Г. А. Феномен структурно-технологической близости и перетоки знаний в регионах России / Г. А. Унтура, М. А. Канева, О. Н. Морошкина // Экономика региона. – 2020. – Т. 16. – Вып. 4. – С. 1254-1271.

Амосова Лариса Николаевна – к.т.н., доцент кафедры «Основания, фундаменты, инженерная геология и геодезия» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: larisa1708@bkl.ru;

Краморенко Сергей Васильевич – заместитель начальника отдела геологии и геодезии ООО «ЦИТ», E-mail: selim-555@yandex.ru.

ОСОБЕННОСТИ ТЕХНОЛОГИИ СТРОИТЕЛЬСТВА ЗДАНИЙ ИЗ ЛЕГО-КИРПИЧА

О. С. Анненкова, А. В. Дорофеев

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассматриваются следующие аспекты: особенности технологии строительства зданий из лего-кирпича, а также преимущества их использования при строительстве жилых и общественных зданий.

Ключевые слова: лего-кирпич, быстрота возведения, преимущества, применение, особенности, технология, кладка кирпича, экономичность.

На сегодняшний день в строительной отрасли можно выделить множество проблем, над которыми нужно задуматься, но на мой взгляд наиболее важная проблема для строительства – это дефицит кадров и профессиональный недостаток их уровня подготовки. В стране и мире объем кирпичного строительства показывает рост, увеличивается возведение зданий из кирпича по частным индивидуальным заказам, при этом профессионального каменщика найти в наше время очень сложно. В статье мы рассмотрим современный материал, который способствует решению проблем в строительной отрасли выделенных мной ранее.

В начале прошлого века строителем Оле Кирк Кристиансеном была придумана инновационная технология закрепления кирпича, которая не сразу была оценена, но чуть позже датские инженеры и архитекторы начали активно использовать данную кладку и обозначали в своих проектах технологию как «автоматическая кладка кирпича», а в 1950-ом году уже переименовали в: «Лего-кирпич» из-за особой схожести с детским конструктором, который основывается на способе соединения кирпичей.

Лего-кирпич – размер данного изделия 250x125x65мм. Характерная особенность – наличие сопряжение элементов при кладке, а именно пазов и выступов. Отверстия в кирпиче могут иметь разные формы, но самый используемый вариант 65 мм. Сверху кирпича вокруг отверстий присутствуют бортики (рисунок 1).

Производитель лего-кирпичей использует гидравлический пресс, который образовывает нагрузку на отформованную смесь, обжиг не требуется, далее материал остывает в течении 72 часов и обретает идеально точную геометрию. Данная технология основывается на требованиях ГОСТ 6133-2019 «Камни бетонные стеновые».

Характеристики лего-кирпича:

1. водопоглощение – 4,5-5%, для сравнения у силикатного кирпича данная характеристика составляет от 10 % до 12%, а керамического до 14%;
2. прочность – соответствует марке М-150 (ГОСТ 379-2015);
3. морозостойкость – F-150 (ГОСТ 530-2015);
4. теплопроводность – 0,4-0,56 Вт/м*К, а, например, у древесины 0,2-0,5 Вт/м*К).

Практика показывает, что для изготовления данного кирпича лучше всего подходит известковые породы мелкого помола, чем меньше дисперсность, тем выше механические характеристики продукта. Также при желании можно добавлять различные красители, благодаря которым можно добиться желаемого цвета, что позволяет расширить клиенториентированность и улучшить внешний вид готовой постройки (рисунок 2).

Перейдем непосредственно к преимуществам лего-кирпичей. Первая преимущественная характеристика – это хорошая морозостойкость, так в соответствии с ГОСТ 530-2015, сейсмостойкость лего-кирпича выше в 1,7 раза, чем у керамического или силикатного материала. Вторая преимущественная характеристика, это то, что при стандартной поверхности лего-кирпич имеет различные цветовые решения на любой вкус. Третья, это незначительный вес, по сравнению с аналогами, который является меньше за счет двух отверстий, по которым проводятся коммуникации. Четвертое преимущество – это прочность лего-кирпича – 110-300 кг на 1 см² поверхности, что позволяет строить несущие стены и получать идеально ровные поверхности (рисунок 3). Также у данного материала менее 5% влагопоглощение [1].

ОСОБЕННОСТИ ТЕХНОЛОГИИ СТРОИТЕЛЬСТВА ЗДАНИЙ ИЗ ЛЕГО-КИРПИЧА

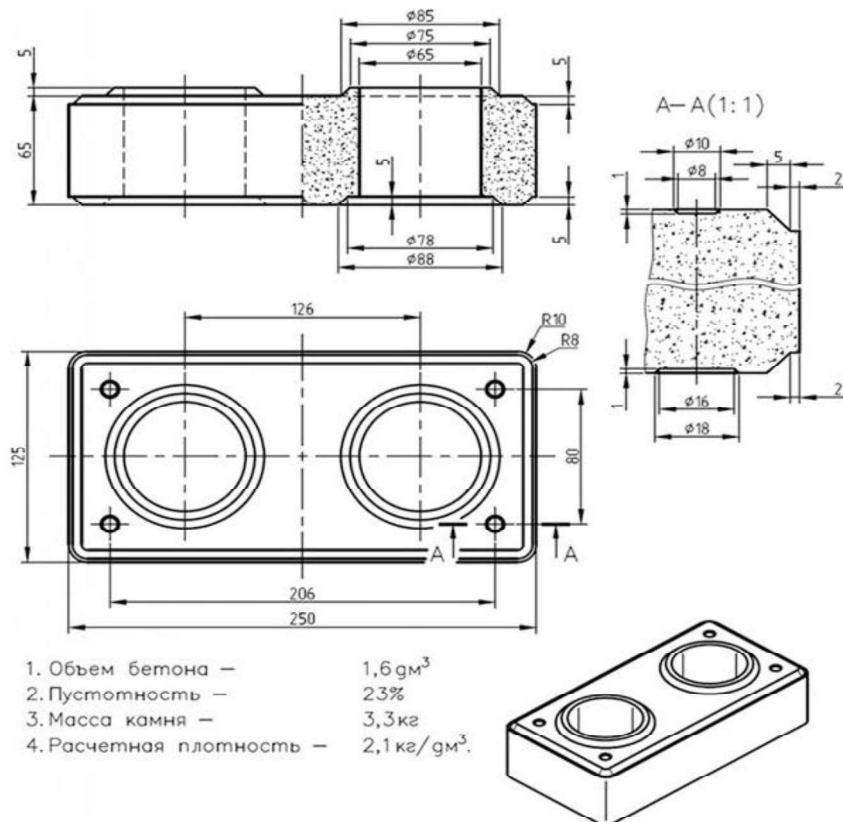


Рисунок 1 – Формы и размеры лего-кирпича

Рисунок 2 – Вид кирпича после применения различных красителей для улучшения внешнего вида сооружения

Рисунок 3 – Возведение стены из лего-кирпича, которое демонстрирует кладку

И пятое, на мой взгляд самое важное преимущество – это техника кладки и использование вместо обычного раствора специальный клей, что позволяет даже обычному человеку без образования каменщика, которых на современном конкурентном рынке сложно найти, строить из данного кирпича, что решает одну из основных проблем строительства.

Помимо этого, скорость кладки в сравнении с обычным кирпичом возрастает в несколько раз, за счет геометрии изделия, благодаря особой форме кирпича с направляющими отверстиями (рисунок 4).

Один из ключевых факторов при возведении конструкции из лего кирпича – это задать идеально ровный первый ряд и следить за единым дозированием клея, наносимого на кирпич (рисунок 5). Такая кладка кирпича не требует работы высококвалифицированных каменщиков, которых на конкурентном рынке довольно трудно найти, что решает одну из основных проблем строительства.

Как мы уже отмечали выше, стены из лего-кирпича получаются ровными, без излишков закрепительной смеси и заводской неровности обычных кирпичей, что избавляет от дополнительных работ по оштукатуриванию.

Рисунок 4 – Строительство здания с применением лего-кирпичей

Рисунок 5 – Кладка первого ряда, наиболее важного при строительстве из данного материала

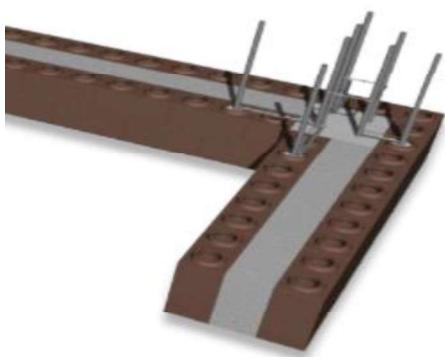


Рисунок 6 – Армирование при строительстве из лего-кирпича

Рисунок 7 – Заполненное теплоизолятором про-странство

ванию и, следовательно, удешевляет строительство.

Поскольку лего-кирпичи кладут на специальный клей необходимость сложного изготовления раствора для кладки обычных кирпичей пропадает. Расход клея примерно 25 кг на 500 кирпичей, что выйдет дешевле, чем при использовании обычной строительной смеси. Клей наносят при помощи строительного пистолета. Наносится параллельными рядами диаметром 3-6 мм. При этом важно чтобы клеевой раствор огибал выступы лего-кирпича. В итоге мы получаем двойную фиксацию из клея и соединения стыков верхних круглых выступов с нижними полостями. Клеевые составы имеют ряд преимуществ над обычным раствором, например – быстрее затвердевают, имеют минимальные швы, практически не проводят тепло. При этом клей для кладки кирпича должен обеспечивать прочное сцепление материалов, сохранять первоначальный вид [2].

Армирование стены из лего-кирпичей необходимо осуществлять как по вертикали, так и по горизонтали. Данная кладка даст уникальное по прочности сооружение, схожесть которого будет походить с каркасным литым монолитом. Конструкция лего-кирпичей устроена таким образом, что при кладке внутри стены в вертикальном направлении образуются тоннели диаметром 5 см. В них и прокладывается вертикальное армирование. При кладке углов во внутренние отверстия лего-кирпича рекомендуют заливать строительный раствор (рисунок 6).

Каждые 1-1,5 м стены также необходимо производить горизонтальное армирование. Для этого тоже используется арматура и бетон. Сверху каждого лего-кирпича болгаркой проделываются две параллельных борозды под размер арматуры. Потом подготовленные кирпичи укладываются в конструкцию и арматуру в борозды. Далее, согласно теплотехническому расчету, стены выкладываются в два слоя и пространство между ними заполняются теплоизолятором (рисунок 7). Потом подготовленные кирпичи укладываются в конструкцию и арматуру в борозды. Далее, согласно теплотехническому расчету, стены выкладываются в два слоя и пространство между ними заполняются теплоизолятором (рисунок 7).

Если требуется кладка кирпича над дверными, оконными проемами, то необходимо над проемом смонтировать съемную опалубку. Затем на опалубку выкладывается один ряд лего-кирпичей, после этого в углубления укладывается металлическая армату-

ОСОБЕННОСТИ ТЕХНОЛОГИИ СТРОИТЕЛЬСТВА ЗДАНИЙ ИЗ ЛЕГО-КИРПИЧА

ра. Далее монтируется еще четыре ряда, после этого заполняются пустоты над проемом раствором. Когда раствор набирает проектную прочность, опалубку нужно демонтировать (рисунок 8).

Рисунок 8 – Применение лего-кирпича над оконным проемом

При возведении некапитальной конструкции, возможно вместо клея использовать цементный раствор, либо армировать железной или стеклопластиковой арматурой по вертикали через определенное расстояние и по углам.

К минусами данной технологии относятся такие характеристики как: разница жесткости kleевого соединения по сравнению с цементной скрепкой; неравномерность нагрузки стен из-за цилиндрических выступов лего-кирпича, что при допущении небольшого отклонения приведет к образованию трещин [3].

На данный момент лего-кирпич является инновационным материалом, это значит, что возведенные конструкции из данного материала, еще не проверены в эксплуатации.

Следующий минус инновационного материала – это отсутствие ГОСТов на лего-кирпич, благодаря этому у покупателя появляются сомнения и трудности при выборе этого изделия. Но можно перед покупкой партии кирпича, отдать материал в лабораторию на экспертизу. После получения результатов экспертизы, в отчете которой должны быть показатели морозостойкости,

прочности, плотности, а далее сопоставляя с требованиями к данному строительному материалу в зависимости от региона и начинать строительство здания или сооружения.

Подводя итог статьи, отметим следующие преимущества применения инновационной технологии:

1. Уменьшение времени возведения сооружений за счет более совершенного процесса кладки.
2. Наличие ряда преимуществ в характеристиках лего-кирпича в сравнении с другими видами кирпича.
3. Применение строительного клея вместо раствора позволяет экономить на материале.
4. Использование отверстий в лего-кирпиче для проводки коммуникаций повышает эффективность строительства зданий.

СПИСОК ЛИТЕРАТУРЫ

1. ГОСТ 6133-2019. Камни бетонные стекловолокнистые. Технические условия. Общие требования и правила составления: дата введения 2020-03-01. – Москва, 2020. – 230 с.
2. ТПК NANO-SK : официальный сайт завода изготавителя / Преимущество лего кирпича. – URL: <https://nano-sk.ru/preimushhestva-lego-kirpicha> (дата обращения 22.02.2022).
3. GreenSector.ru : официальный сайт / Лего-кирпич: характеристики, кладка, оборудование и производство. – URL <https://greensector.ru/strojjmaterialy/lego-kirpich-kharakteristiki-kladka-oborudovanie-i-proizvodstvo.html> (дата обращения 22.02.2022).

Анненкова Ольга Семеновна – к.т.н., доцент кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: 222-ru@mail.ru;

Дорофеев Андрей Вячеславович – студент группы 8Спгс-11 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: dorofeev101@mail.ru.

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ СТРОИТЕЛЬСТВА ВЫСОТНЫХ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ ЗДАНИЙ С ВНЕДРЕНИЕМ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ

О. С. Анненкова, Е. С. Ромашкина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассматриваются пути своевременного ввода в эксплуатацию высотных монолитных железобетонных зданий, улучшения организации работ и повышения технологической эффективности для снижения себестоимости строительной продукции.

Ключевые слова: монолитное высотное здание, автоматизация бетонных работ, сроки строительства, трудозатраты, технологическая эффективность.

Применение инновационных методов и технологий в современном строительном производстве, наряду с сокращением ручного труда, также повышает его технические и экономические показатели. Строительное производство – одна из отраслей в стране, которая играет важнейшую роль и сама по себе отражает динамику развития экономики. В статье исследуются пути своевременного ввода в эксплуатацию высотных монолитных железобетонных зданий, улучшения организации работ и повышения технологической эффективности для снижения себестоимости строительной продукции.

Автоматизация строительного производства, наряду с организационными и технологическими вопросами, также повышает эффективность использования ресурсов. Это проявляется в строительстве многоэтажных зданий с монолитными железобетонными конструкциями. В России строительство монолитных железобетонных зданий началось, в основном, в 1920-е годы. Технологические процессы строительства монолитного железобетона очень сложны, как и множество факторов. А это, в свою очередь, требует решения ряда организационных и технологических проблем строительных работ, выполняемых при возведении монолитных железобетонных конструкций, как перед проектировщиками, так и перед строителями. Когда эти проблемы не решены, стоимость строительной продукции очень высока, а срок строительства превышает нормативный срок [1].

Снижение себестоимости строительной продукции за счет своевременного ввода объектов в эксплуатацию, улучшение организации работ с высоким качеством остаются актуальными для всех участников строительной отрасли и должны решаться путем применения инновационных методов и техноло-

гий в строительстве. Высокоразвитые строительные компании в строительной отрасли используют широкий спектр технологических решений для выбора эффективного метода строительства высотных монолитных железобетонных зданий. Все это зависит от конкретной строительной техники, механизмов и материалов, которыми располагает строительная компания, ведущая строительство.

Были изучены положительные и отрицательные аспекты строительства высотных монолитных железобетонных зданий. В качестве положительного аспекта можно отметить следующее:

- поскольку железобетон используется в полном объеме (без перерыва), расход бетона ниже нормы;
- конструкции не имеют пересечений, которые нуждаются в дополнительном армировании бетона;
- уменьшаются жесткие связи в объемно-планировочных решениях зданий, сооружений и отдельных сооружений;
- осуществляется единовременный расход на подготовку конструкции;
- одноразовое использование транспорта осуществляется для доставки материалов с целью изготовления конструкции;
- разнообразие объемно-планировочных решений зданий и сооружений для создания архитектурных форм с различными оптимальными параметрами;
- ускорение начала работ по сокращению производства производственной базы здания и материалов и компоновки базовой конструкции.

Кроме того, монолитные железобетонные конструкции обладают некоторыми из следующих недостатков:

- большой объем трудозатрат на строительной площадке при ее создании;

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ СТРОИТЕЛЬСТВА ВЫСОТНЫХ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ ЗДАНИЙ С ВНЕДРЕНИЕМ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ

- наличие технологического перерыва, затраченного на сушку для достижения заданной прочности конструкции;
- отсутствие стабильных производственных условий.

Технологическая эффективность монолитных железобетонных конструкций осуществляется по следующей системе показателей:

- трудозатраты, затраченные на создание конструкции;
- материалоемкость потребления металла и цемента;
- предполагаемая стоимость строительства;
- объем капитальных вложений;
- закупочная цена – сумма затрат на единицу готовой продукции [2].

В настоящее время для выбора формы и решений монолитных железобетонных конструкций в строительном производстве используется использование таких показателей, как материалоемкость, производительность труда, продолжительность строительства и сметная стоимость строительства. Конкретное условие для оценки технологии монолитных железобетонных конструкций выполняется путем сравнения одного или нескольких ключевых данных.

Минимальные или максимальные пределы для этих показателей, хотя и не являются общим критерием экономической эффективности проекта, помогают принимать рациональные решения в конкретных случаях. Наиболее оптимальным считается то условие конструктивных решений, которое отвечает технологии и экономической эффективности.

Таким образом, следует учитывать общие качественные характеристики конструкции и технологическую эффективность конструкций. Показатель минимальной стоимости считается наиболее эффективным.

Рассмотрим особенности технологий подземной части высотных монолитных железобетонных зданий.

Несмотря на то, что существует множество различных конструктивных, архитектурных и планировочных решений, методы ведения строительства подземной части высотных монолитных железобетонных конструкций схожи.

В большинстве случаев подземная часть высотных зданий построена с 100% использованием монолитного железобетона. Основным недостатком технологии возведения монолитных железобетонных подвалов являются высокие трудозатраты на строительной

площадке. С конструктивной точки зрения это зависит от таких факторов, как организация бетонных и арматурных работ, уровень механизации, уход за бетоном и так далее.

Инновационная технология **Up&Down** была применена при строительстве башни «Россия», которая имеет большое количество подземных этажей, достигающих глубину до 56 м. Эта технология предполагает возведение перекрытий в подземных ярусах за счёт постепенного изыскания грунта.

С помощью этой технологии возможно быстро построить как подземную, так и надземную часть здания, благодаря одновременному строительству верхней и нижней части здания относительно уровня земли. Для возведения здания не нужно ждать завершения нулевого этажа, что позволяет сократить сроки строительства всего здания [3].

Повышение эффективности технологии железобетонных конструкций, снижение затрат на рабочую силу, материалы, время строительства зависят от ряда факторов, таких как высококачественная бетономешалка, автоматизация подготовки каркаса арматуры, применение эффективных систем формования, качество транспортировки бетона, высокоскоростная перекачка бетона на строительные площадки, использование высококачественного прессового оборудования, правильное перемешивание бетона с целью получения прочности бетона монолитных железобетонных конструкций и так далее.

Если проследить за продолжительностью строительных работ на объекте монолитного строительства, то можно увидеть, что много времени тратиться на монтаж и демонтаж съемной опалубки. Для сокращения времени на эти операции была создана **новая система опалубки**, соединяемая «быстрыми замками». Такая опалубка уже применялась при возведении стадиона «Казань-Арена».

Сборка такой опалубки производится сразу на площадке и при переходе на другой этаж нет необходимости разбирать и собирать ее снова как обычную опалубку. Достаточно разъединить «быстрые замки», перенести элементы опалубки и соединить заново. Такая система является долговечной.

Во время строительства «Казань-Арены» использовалась **опалубка PSK-CUP** балочно-рамочного строения (рисунок 1). Она сочетает в себе достоинства как щитовых, так и балочно-ригельных опалубочных систем, одновременно выступая также в роли строительных лесов. Такая инновационная конструкция позволила сэкономить средства, не-

Рисунок 1 – Опалубка перекрытий балочно-рамная PSK-CUP

Рисунок 2 – Инструменты для вязания арматуры:
а) крючок для вязки арматуры вручную; б) пистолет для вязки арматуры

Рисунок 3 – Бетононасос Putzmeister BSA 1407 D

обходимые на аренду лесов, их монтаж и демонтаж [3].

Вязка арматуры – это один из основных этапов работы по созданию арматурного каркаса. Соединяя арматуру, создается армирующая конструкция, благодаря которой, бетон получает большую прочность, как на сжатие, так и на растяжение.

Производительность работ напрямую зависит от технологии вязки арматуры. Существует 3 способа:

- ручной, обеспечивающий надежную фиксацию при минимальных затратах. Для соединения прутков необходимо приложить значительные усилия при выполнении работ кусачками или с помощью вязального крючка (рисунок 2-а);

- полуавтоматический, позволяющий выполнять увеличенный объем работ за счет применения специального реверсивного устройства. Вращение крючка происходит в результате возвратно-поступательного перемещения корпуса;

- автоматический, предназначенный для ускоренной вязки арматуры на крупных промышленных объектах. Применение специального пистолета для вязания или шуруповерта с насадкой обеспечивает повышенную эффективность работ (рисунок 2-б).

При использовании монолитного железобетона автоматизация армирующих работ позволит снизить трудозатраты, расход материалов, себестоимость продукции и сроки строительства, а также повысит эффективность технологии. Большое внимание нужно уделить технике, используемой при подаче бетона при строительстве высотных монолитных зданий.

Подача бетона бетононасосом – составная часть процесса современного монолитного домостроения. Уже больше половины столетия бетононасосы, соединив в себе все самое лучшее от других способов транспортировки бетонной смеси, являются незаменимыми помощниками на строительной площадке.

Транспортировка бетона с помощью бетононасосов имеет много преимуществ по сравнению со старым методом доставки бетона, например, краном: быстрое поднятие смеси, непрерывная подача, фиксация бетоновода в нужное место заливки без дополнительных приспособлений. Способность транспортировать бетон в больших количествах на нужные дистанции и с минимальными затратами труда позволяет бетононасосам быть экономически востребованными в самых разнообразных строительных проектах.

Бетоноводы могут быть достаточно длинными, что позволяет бетононасосу находиться далеко от места заливки и осуществлять подачу смеси на десятки метров в высоту и в длину. Это делает бетононасос совершенным инструментом в работе по строительству зданий и высотных конструкций.

Использование бетононасосов выбирается в зависимости от цели использования. Они отличаются друг от друга своими техническими параметрами. Существуют бетононасосы с различными техническими параметрами, которые могут быть успешно применены при повышении эффективности строительства высотных монолитных железобетонных зданий.

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ СТРОИТЕЛЬСТВА ВЫСОТНЫХ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ ЗДАНИЙ С ВНЕДРЕНИЕМ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ

Исследования показали, что с внедрением бетононасосов Putzmeister BSA 1407 D (рисунок 3) в высотных монолитных железобетонных каркасных зданиях затраты на рабочую силу снижаются по сравнению с затратами на рабочую силу, указанными в нормах и правилах.

Без использования бетононасоса сроки работ бы значительно выросли, а время в таком строительстве играет определяющую роль.

Поводя итоги, можно сделать следующие выводы:

1. Существующие современные технологии позволяют не дожидаться завершения строительства нулевого этажа, а вести их одновременно с надземной частью здания, что сокращает срок строительства объекта.

2. Использование инновационных систем опалубки более эффективно и экономично.

3. Автоматизация ручных работ повышает технологическую эффективность.

4. Производительность труда за счет автоматизации армирования при монолитных железобетонных работах значительно увеличивается.

5. Современные мощные бетононасосы могут быть успешно применены при повышении эффективности строительства высотных монолитных железобетонных зданий.

Таким образом, автоматизация работ, применение современной техники и систем, используемые во время возведения монолитных железобетонных конструкций, позволяют снизить трудозатраты, расход материалов, себестоимость продукции и время строительства, и эффективность технологии возрастет.

СПИСОК ЛИТЕРАТУРЫ

1. Волков, Ю. А. Бетон – основа для современных небоскребов / Ю. А. Волков, А. И. Звездов // Строительство. – 2004. – № 5. – С. 56-59.

2. Данилкин, М. С. Технология строительного производства: Учебник для ВУЗов / М. С. Данилкин, А. А. Шубин. – Новосибирск : Изд-во Феникс, 2009. – 317 с.

3. Инновации и технологии в современном монолитном строительстве: [сайт]. – URL: <https://skladovoy.ru/innovacii-i-tekhnologii-v-sovremennom-monolitnom-stroitelstve.html> (дата обращения 25.02.22).

Анненкова Ольга Семеновна – к.т.н., доцент кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова E-mail: 222-ru@mail.ru;

Ромашкина Елизавета Сергеевна – студент группы 8Соим-11 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: romashkina-elizavetka@mail.ru.

УДК 628.55

УМЕНЬШЕНИЕ ВЫБРОСОВ СИСТЕМЫ ГАЗОСНАБЖЕНИЯ АЛТАЙСКОГО КРАЯ

И. Ю. Борзенко, В. В. Логвиненко

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Статья посвящена поглощению выбросов парниковообразующих газов от газоснабжающих организаций Алтайского края. Определены общие выбросы и количество леса для поглощения этих выбросов.

Ключевые слова: Парижское соглашение, характеристики системы газораспределения Алтайского края, выбросы парниковообразующих газов, характеристики лесного хозяйства.

Вопросы реализации Парижского соглашения являются в настоящее время чрезвычайно актуальными [1]. Участники соглашения обязуются разработать предварительные национально-определеные вклады, снижать выбросы CO₂ в атмосферу. Необходимо разработать национальные стратегии перехода на безуглеродную экономику. Парижское соглашение было открыто для подписания с 22 апреля 2016 года по 21 апреля 2017 года 4

ноября 2016 года оно вступило в силу. Россия подписала соглашение 22 апреля 2016 года соответственно с распоряжением Правительства от 14.04.2016 № 670-р. Целью Парижского соглашения является недопущение превышения глобальной среднегодовой температуры на планете к 2100 году более чем на 2°C от доиндустриального уровня. Необходимо сделать все возможное для удержания потепления в пределах 1,5°C [2].

По уровню выбросов парниковообразующих газов в мире Россия занимает четвертое место – около 4,6% от общего объема. В основном на два элемента: углекислый газ – 63,1%, и метан – 32,4%. Российские власти уже передают в международные организации данные о выбросах российских предприятий, а также постепенно ужесточают законодательство в сфере экологии. За пределами в края было закуплено более 8,6 млн. тонн у.т. угля, более 1 млн. тонн у.т. нефтепродуктов и более 0,7 млн. тонн у.т. природного газа [2]. В структуре потребления ТЭР увеличилась доля природного газа (с 2,9% до 6,9%). В котельных в последние годы увеличилось потребление природного газа с 9,8% до 27,7%, а мазута снизилось с 8,2% до 3,2%. Природный газ поставляется в регион по магистральным газопроводам «Новосибирск – Барнаул» и «Барнаул – Бийск – Горно-Алтайск, с отводом на Белокуриху». В стратегии объем газа, используемого в Алтайском крае, составляет 1820 тыс. тонн у.т. или 2090 тыс. м³/год.

Основное внимание привлекает сейчас экологические вопросы, вопросы декарбонизации выбросов. При этом общий объем выбросов вредных веществ в атмосферу от всех, в т.ч. и неэнергетических источников, сократится с 430 до 294 тыс. тонн ОАО «Алтайкрайгазсервис» входит в число лидеров газовой отрасли. Природным газом пользуются порядка 360 тысяч человек, уровень газификации края составляет более 16% [3]. Общая протяженность газопроводов более 5 тыс. км. Ежегодно по сетям поставляют около 692 млн. кубометров природного газа [4, 5].

1 ноября 2021 года правительство утвердило Стратегию социально-экономического развития России с низким уровнем выбросов парниковых газов до 2050 года. В рамках целевого сценария предполагается, что к 2050 г. парниковые выбросы будут сокращены на 60% от уровня 2019 года и на 80% от уровня 1990 года, такие показатели можно обеспечить одновременно с ростом экономики. С 1 января 2022 года начинает действовать новый закон об ограничении выбросов парниковых газов (ПГ) № 296-ФЗ от 02.07.2021. Согласно документу, юридические лица и ИП обязаны ежегодно, до 1 июля, сдавать в уполномоченный орган исполнительной власти отчеты ПГ.

Поглотительная способность лесов России рассчитывается с помощью «Системы Региональной оценки бюджета углерода лесов» (РОБУЛ). Эта методика основана на базе научных исследований 60-90-х годов про-

шлого века и ее использование приводит к тому, что поглощающая способность российских лесов оценивается в разы ниже, чем в развитых странах мира, и это при том, что в России сосредоточено 20% мировых лесов. Огромное значение имеет и методика определения того, что нужно считать лесом: в России, например, в 2,4 раза больше лесов, чем в США, но удельное поглощение ими углекислого газа в 2,5 раза меньше из-за особенностей методики учета [6].

Методика РОБУЛ, по которой составляется Национальный кадастр учета парниковых газов, базируется на подходах канадской научной школы. По данным аналитического центра при правительстве России, за год наша страна выделяет больше 1,5 млрд. тонн углекислого газа. Это количество CO₂ леса России, как подсчитали эксперты Рослесинфорга, должны поглотить леса России. Для того, чтобы поглотить 1 тонну углерода, нужны 2,5 га леса, – уточнили в Рослесинфорге. С учетом стоимости аренды участка и ухода за ним, себестоимость поглощения 1 тонны углерода составляет 207 рублей, или необходимо – 2,5 га Алтайского леса для поглощения 0,263 тонны CO₂. Величина выбросов CH₄ газоснабжения в Алтайском крае – 273 тонн в год. Эквивалентно величина выбросов CO₂ газоснабжения в Алтайском крае – 71,8 тыс. тонн в год. Так как 0,263 тонн CO₂ – 2,5 га леса, то нужно 54500 га леса для поглощения выбросов CO₂. Поглощение растительностью, лесами, является наиболее вероятным способом утилизации CO₂ и других вредных газов для Алтайского края. Алтайский край располагает для этого широкими возможностями.

Площади лесничеств и участковых лесничеств Алтайского края составляют 44702 тыс. га. Площадь земель лесного фонда увеличилась с 2008 года на 91,4 тыс. га за счет уточнения площадей при проведении государственного кадастрового учета земель. Площадь защитных лесов увеличилась в основном за счет перевода из эксплуатационных лесов (201,2 тыс. га), и за счет уточнения площадей при проведении кадастрового учета и лесоустройства – всего на 296,6 тыс. га. Земли лесного фонда увеличились еще на 9% [3]. В таблице приведены данные по лесному фонду Алтайского края, указаны лесничества с наибольшей площадью лесов. На рисунке 1 приведена карта экологического потенциала лесов Алтайского края. Высокий потенциал захватывает восточную часть Алтайского края, средний потенциал – центральную часть края. Западная часть содер-

УМЕНЬШЕНИЕ ВЫБРОСОВ СИСТЕМЫ ГАЗОСНАБЖЕНИЯ АЛТАЙСКОГО КРАЯ

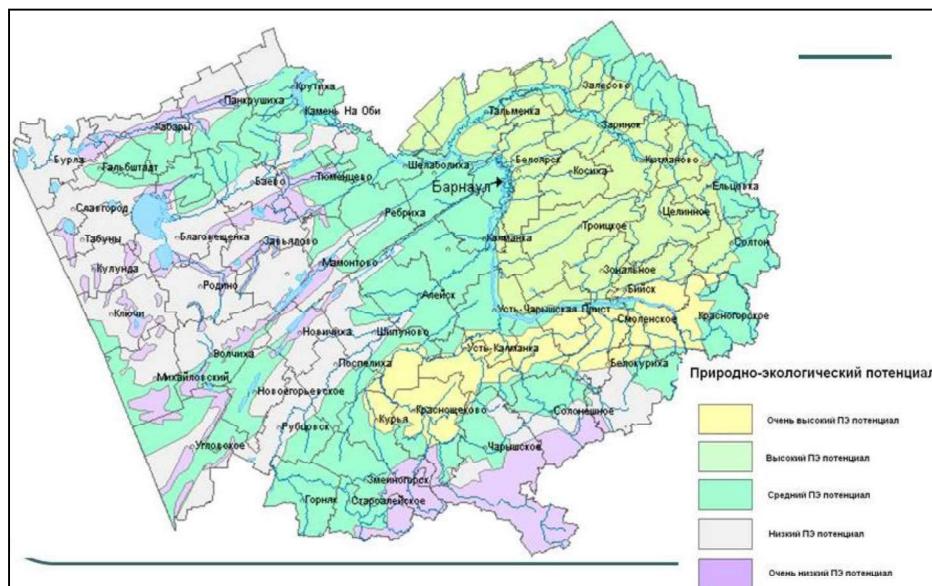


Рисунок 1 – Карта природно-экологического потенциала Алтайского края

Таблица – Крупные лесничества Алтайского края

№	Наименование лесничества	Площадь, га
1.	Барнаульское	15344
2.	Новичихинское	111950
3.	Панкрушихинское	115719
4.	Тягуновское	127122
5.	Степно-Михайловское	131818
6.	Петровское	141194
7.	Солтонское	157270
8.	Бобровское	162141
9.	Горно-Колыванское	196965
10.	Озеро-Кулундинское	199669
11.	Ларичихинское	210249
12.	Залесовское	212044
13.	Тогульское	304257
14.	Чарышское	553761
15.	Озерское	129851
16.	Всего по Алтайскому краю	4438073

жит участки с низким и очень низким природно-экологическим потенциалом. Так же на карте видно широкое распространение высокого потенциала против низкого и очень низкого.

Заключение

Площадь Алтайского края 168 тыс. км², площадь лесного хозяйства 4438073 га. Для того чтобы поглотить 5733 тонн СО₂, нужен лес площадью 54500 га (545 км²), что обеспечивается лесным фондом Алтайского края.

СПИСОК ЛИТЕРАТУРЫ

- Парижское соглашение по климату [Электронный ресурс]. – URL <https://tass.ru/info/6917170> (дата обращения 22.02.2022).

2. Администрация Алтайского края. Постановление от 10 ноября 2008 года № 474 «Об энергетической стратегии Алтайского края на период до 2020 года [Электронный ресурс]. – Режим доступа: <https://docs.cntd.ru/document/441735966> (дата обращения 22.02.2022).

3. О региональной концепции развития энергетики Алтайского края на период до 2010 года [Электронный ресурс]. – Режим доступа: <https://docs.cntd.ru/document/940704285> (дата обращения 22.02.2022).

4. Еще к 103 тысячам домов будет подведен природный газ в Алтайском крае по программе додегазификации [Электронный ресурс]. – Режим доступа: https://www.altairegion22.ru/region_news/lesch-103-tysyachi-domov-podklyuchat-k-prirodnomu-gazu-v-altaiskom-krae-po-programme-dogazifikatsii-realizuemoi-po-porucheniyu-prezidenta-rossii_932279.html (дата обращения 22.02.2022).

5. Четверть века с голубым топливом [Электронный ресурс]. – Режим доступа: <https://vesti22.tv/news/chetvert-veka-s-golubym-toplivom-gazifikatsii-altaiskogo-kraya-ispolnilos-25-let/> (дата обращения 22.02.2022).

6. Тихонова, Я. Чем российские леса хуже зарубежных / Я. Тихонова // Газета.ru [Электронный ресурс]. – Режим доступа: https://www.gazeta.ru/science/2017/08/07_a_10822279.shtml (дата обращения 22.02.2022).

Борзенко Илья Юрьевич – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: ilya_aragorn@mail.ru;

Логвиненко Владимир Васильевич – и. о. заведующего кафедрой «Инженерные сети, теплотехника и гидравлика» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: logvinvv@mail.ru.

ВЫЯВЛЕНИЕ ПРЕИМУЩЕСТВ ТЕХНОЛОГИИ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ ПУТЕМ АНАЛИЗА РАБОЧЕЙ ДОКУМЕНТАЦИИ ПРОЕКТА ПЕРЕПЛАНИРОВКИ ПОМЕЩЕНИЙ

В. В. Борисенко, Е. Р. Кирколуп, Д. А. Реутов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В данной статье показаны преимущества использования технологии информационного моделирования объектов строительства на примере проекта перепланировки помещений инженерно-бытового корпуса и проходной АО «Барнаульской ТЭЦ-3». Был проведен сравнительный анализ проектной документации, полученной путем использования системы автоматизированного проектирования и технологии информационного моделирования, при этом сравнивались чертежи планов этажей инженерно-бытового корпуса ТЭЦ и ведомости вычисленных площадей стен, пола, потолков, помещений. Анализ рабочей документации показал отличие результатов вычислений площадей двух методов проектирования, при этом в некоторых случаях отличие достигало 25%.

Ключевые слова: технология информационного моделирования (ТИМ), преимущества ТИМ, проект перепланировки, анализ рабочей документации.

На данный момент одним из главных развивающихся направлений в области строительства и проектирования является технология информационного моделирования объектов строительства. Переход на ТИМ по данным Минстроя может оказать следующий положительный эффект: уменьшение количества ошибок в проектной документации до 40%; сокращение сроков проектирования до 50%; снижение времени проверки проекта в 6 раз; оптимизация бюджета при планировании и т.д. [1].

Не смотря на то, что на проектирование приходится самая незначительная доля вложений – до 5%, но при этом ошибки, допущенные при проектировании, могут привести к огромным незапланированным затратам на более поздних этапах работы, а именно, при строительстве и эксплуатации. Так затраты на внесение изменений в проект увеличиваются с течением времени (самые низкие – на стадии предпроектной подготовки, самые высокие – на стадии эксплуатации), а возможность этих изменений уменьшается. Пик активности затрат ресурсов при традиционном проектировании приходится на стадию разработки рабочей документации, в то время как автоматическое обнаружение ошибок в процессе коллективного проектирования за счет применения ТИМ происходит на ранних стадиях (эскизное проектирование и стадия разработки проекта).

Применение ТИМ при реконструкции или капитальном ремонте объектов недвижимости также имеет ряд преимуществ. Текущее состояние здания или сооружения отображено в информационной модели, следовательно, производится непрерывное наблюдение за состоянием физического износа конструкций. Любые изменения в конструкциях и системах объекта могут быть оперативно воспроизведены в модели, что позволяет сократить расход временных ресурсов, а, следовательно, и финансовых. Внедрение данного подхода интеграции возможно при снабжении предприятия необходимым материальным и программным обеспечением, соответствующей подготовке персонала, наличии необходимых регламентирующих документов.

Переход на ТИМ несет с собой не только плюсы, но и минусы. К недостаткам перехода относятся: необходимость обучения большого количества кадров; обновление оборудования для выполнения работ; высокая стоимость лицензионного программного обеспечения от лидеров рынка [2]; различное ПО, используемое участниками процесса строительства; отсутствие единой базы данных для хранения информационных моделей. В данной статье показаны преимущества использования технологии информационного моделирования объектов строительства на примере проекта перепланировки помещений инженерно-

ВЫЯВЛЕНИЕ ПРЕИМУЩЕСТВ ТЕХНОЛОГИИ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ ПУТЕМ АНАЛИЗА РАБОЧЕЙ ДОКУМЕНТАЦИИ ПРОЕКТА ПЕРЕПЛАНИРОВКИ ПОМЕЩЕНИЙ

бытового корпуса (ИБК) и проходной АО «Барнаульской ТЭЦ-3». Для этого была воссоздана модель ИБК в программном комплексе Autodesk Revit по проекту перепланировки помещений, выполненного с использованием традиционного подхода в одной из САПР (AutoCAD). Затем был проведен сравнительный анализ проектной документации, полученной путем использования САПР и ТИМ, при этом сравнивались чертежи планов этажей ИБК и ведомости вычисленных площадей стен, пола, потолков, помещений.

В процессе создания модели по проекту перепланировки уже были замечены некоторые нестыковки размеров, при которых стены чаще всего на несколько сантиметров врезались в колонны или же друг в друга. Так, например, на лестничной площадке размеры в проекте перепланировки и в модели Revit получились разные, причем на рисунке 1-а осевая линия кирпичной перегородки идет по осевой линии колонны в отличие от плана перепланировки, хотя в ведомость демонтажа эти перегородки не были внесены. Кроме того на плане перепланировки кирпичная перегородка выходит за грани колонны на 40 мм с двух сторон (рисунок 1-б). В модели Revit это было исправлено. Также на плане перепланировки перегородки в 45 мм визуально такой же толщины, как и кирпичные в 120 мм.

Часто в чертежах проекта перепланировки созданного в AutoCAD встречаются ошибки связанные с нарушением ГОСТ 28984-2011 «Модульная координация размеров в строительстве. Основные положе-

ния». Так, например, встречается нарушение рекомендации применять наибольшие размеры мультимодулей и субмодулей. Кроме того, исходя из нанесенных размерных цепочек на чертежах, в некоторых помещениях перегородки либо врезались в колонны на 40 мм, либо в кирпичные перегородки на 10-20 мм. Также была замечена ошибка в расстоянии от края наружной стены до края колонны, где в одной цепочке размеров это расстояние составляло 65 мм. А в другой цепочке было показано расстояние от края стены до центральной оси колонны – 250 мм, хотя должно было быть 265 мм, т.к. сечение колонны равнялось 400×400 мм. Таким образом, выше перечисленные ошибки в измерениях повлияли на вычисление соответствующих площадей помещений, потолков, стен, полов, а также площадь отделки в помещениях при создании спецификаций и ведомостей.

Анализ спецификаций, созданных в AutoCAD и Revit, наглядно показал различие расчетных значений площадей перегородок, отделки, полов, потолков и самих помещений. К примеру, в таблице приведено сравнение площадей перегородок 2-го и 3-го этажа ИБК. Из таблицы видно различие площадей перегородок, причем для некоторых типов перегородок это различие достигает 25% (тип 4). Причиной столь большой разницы в площадях перегородок однозначно является ручной расчет площади в AutoCAD, а также ошибки, допущенные в графической части.

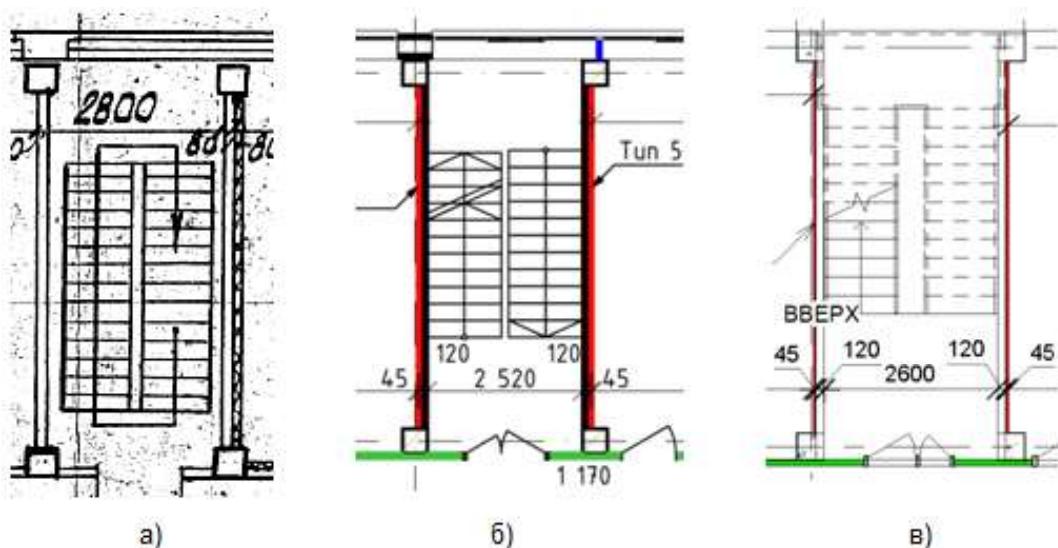


Рисунок 1 – Размеры на лестничной площадке: а) проектная документация при строительстве; б) перепланировка в AutoCAD; в) модель в Revit

Таблица – Сравнение площадей перегородок 2-го и 3-го этажа

Тип	Площадь, м ² Перепланировка AutoCAD	Площадь, м ² Модель Revit	Разница, м ²	Разница, %
2-й этаж				
Тип 1	230	249,15	19,15	8,3
Тип 1*	26,3	26,12	-0,18	-0,68
Тип 2	504,8	472,09	-32,8	-6,47
Тип 3	47	55,96	8,96	19,06
Тип 4	17,28	12,97	-4,31	-24,94
Тип 5	212	217,18	5,18	2,44
3-й этаж				
Тип 1	223	259,22	36,22	16,24
Тип 1*	9,1	9,64	0,54	5,93
Тип 2	537	505,57	-31,43	-5,85
Тип 3	48	56,07	8,07	16,81
Тип 4	21,28	16,04	-5,24	-24,62
Тип 5	231	234,59	3,59	1,55

При сравнении площадей отделки были выявлены те же ошибки, что и при расчете площади перегородок. Дополнительной причиной возникновения отклонений в расчете площадей отделки могло являться то, что в проекте были включения потолка, имеющие разную высоту. Практически в каждом помещении была заложена разница между подвесным модульным потолком и плитой перекрытия в 300 мм, скорее всего, этого могли не учесть в расчете площадей отделки, либо в одном месте учесть, а в другом нет. В результате чего разница площадей, рассчитанных в проекте AutoCAD, оказалась знакопеременной в сравнении с площадями, рассчитанными в проекте Revit.

В расчете площадей полов похожих ошибок как у перегородок быть не могло. При этом практически все площади, рассчитанные в Revit, получились меньше. Отличие в большую сторону наблюдалось только для пола типа 6.

Расчет площадей потолка был аналогичен расчету полов, т.к. все площади были видны непосредственно на плане в отличие от перегородок и отделки. Но, несмотря на то, что расчет полов и потолков должен был получиться точнее, разница в расчетах все равно присутствовала. Следует отметить, что разница площадей потолков на 2-м этаже оказалась больше, чем разница площадей потолков на 3-м этаже, кроме потолка типа 5, там разницы не наблюдалось. При этом максимальная разница площадей потолков на 3-м этаже была 3% (тип 3), тогда как на 2-м этаже для типа 2 была выявлена разница в 7%.

При сравнении документации созданной при помощи САПР и ТИМ было выяв-

лено, что при подсчете площадей и объема материала большое влияние на расчет в САПР оказывает человеческий фактор. Анализ рабочей документации показал отличие результатов вычислений площадей двух методов проектирования, при этом в некоторых случаях отличие достигало 25%. В свою очередь, неточности в вычислении площадей и объемов материалов могут сильно сказаться на сроках выполнения работ, а это может снизить производство на предприятиях и повлечь за собой еще и большие убытки, тем более на ТЭЦ.

СПИСОК ЛИТЕРАТУРЫ

1. Что такое BIM и зачем новые технологии нужны девелоперам и госструктурам [Электронный ресурс] // РБК : Жилье. – 2019. – 3 апреля. – Режим доступа: <https://realty.rbc.ru/news/5ca1ceff9a794758d0568b37>, свободный. – Загл. с экрана.

2. Козлов, Н. А. Проблемы внедрения технологий BIM проектирования в России / Н. А. Козлов, К. А. Попова // Техническое регулирование в транспортном строительстве. – 2016. – № 1(15). – С. 18-21.

Борисенко Виктор Владимирович – студент группы 8С(3)-91 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: borisenkovv@sibgenco.ru;

Кирколуп Евгений Романович – к.т.н., доцент кафедры «Строительных конструкций» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kirkolup@mail.ru;

Реутов Данил Андреевич – студент группы 8Соим-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: danreu@mail.ru.

АНАЛИЗ СУЩЕСТВУЮЩИХ МЕХАНИЧЕСКИХ МЕТОДОВ УПЛОТНЕНИЯ ГРУНТОВ НА ПРИМЕРЕ МНОГОЭТАЖНОГО ЖИЛОГО ДОМА В БАРНАУЛЕ

А. В. Бочкарёва, Б. М. Черепанов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассматриваются методы уплотнения слабых грунтов основания при строительстве многоэтажного жилого дома в г. Барнауле, дается краткое описание представленных методов и выбраны два наиболее подходящих метода уплотнения для застраиваемой местности.

Ключевые слова: уплотнение грунтов, слабые грунты, структурно-неустойчивые грунты, механические методы создания искусственных оснований, грунтовые сваи.

При проектировании зданий и сооружений особое внимание уделяется фундаментам, т.к. их стоимость иногда может достигать 40 и более процентов от всего здания. Особенno это актуально, когда в основании залегают структурно-неустойчивые, сильносжимаемые и, как следствие, ненадёжные грунты. Большая часть территории Алтайского края, а в частности г. Барнаула, располагается как раз на таких грунтах – лёссовых просадочных.

Слабые грунты характеризуются большой сжимаемостью, низкой прочностью. Раньше такие территории не использовались для застройки, но прогресс строительства не стоит на месте, город расширяется во всех направлениях, необходимо застраивать и территории, которые раньше обходили стороной. Со временем были найдены способы улучшения грунтов, которые позволяли строить на таких площадках. При слабых грунтах существуют различные методы искусственно улучшить их работу и свойства. Подробнее остановимся на одном из методов механического улучшения свойств грунта – уплотнение.

Целью механического уплотнения является уменьшение объёма пор в грунте за счёт максимально возможного сближения твёрдых минеральных частиц грунта. В результате формируется прочное, малодеформируемое основание, позволяющее вести строительство фундаментов мелкого заложения вместо свайных. Кроме того, уменьшается фильтрационная способность, грунты становятся практически водонепроницаемыми.

В настоящее время существует большое многообразие методов уплотнения грунтов, но какой же способ является более выгодным

ПОЛЗУНОВСКИЙ АЛЬМАНАХ № 1 2022

и более действенным? Рассмотрим каждый из методов более детально при строительстве жилого дома по адресу г. Барнаул, ул. 65 лет Победы, д. 12.

Шестнадцатиэтажное кирпичное здание имеет размеры в плане $17,2 \times 91,59$ метров. Согласно инженерно-геологическим изысканиям, грунты сложены следующим образом:

Слой 1 – почвенно-растительный слой. Залегает с поверхности по всему участку проектируемого строительства.

Инженерно-геологический элемент № 2 (ИГЭ № 2) – супесь просадочная пылеватая твердая, толщина слоя от 3,5 до 12,5 метров, плотность сухого грунта – $1514 \text{ кг}/\text{м}^3$, плотность грунта – $1742 \text{ кг}/\text{м}^3$, плотность частиц грунта – $2700 \text{ кг}/\text{м}^3$, природная влажность – 0,15, влажность на границе текучести – 0,25, влажность на границе раскатывания – 0,19, коэффициент пористости – 0,783, коэффициент водонасыщения – 0,52, удельное сцепление – 0,01 МПа, угол внутреннего трения – 25 градусов, относительная просадочность – 0,0165.

ИГЭ № 3 – суглинок пылеватый просадочный твердый, толщина слоя от 3,0 до 6,0 метров, плотность сухого грунта – $1506 \text{ кг}/\text{м}^3$, плотность грунта – $1760 \text{ кг}/\text{м}^3$, плотность частиц грунта $2710 \text{ кг}/\text{м}^3$, природная влажность – 0,169, влажность на границе текучести – 0,28, влажность на границе раскатывания – 0,19, коэффициент пористости – 0,799, коэффициент водонасыщения – 0,57, удельное сцепление – 0,014 МПа, угол внутреннего трения – 24 градуса, относительная просадочность – 0,013.

ИГЭ № 4 – суглинок пылеватый непропадочный, толщина слоя от 1,0 до 4,0 метров, плотность сухого грунта – $1622 \text{ кг}/\text{м}^3$, плотность грунта – $1953 \text{ кг}/\text{м}^3$, плотность частиц

грунта 2700 кг/м³, природная влажность – 0,2, влажность на границе текучести – 0,25, влажность на границе раскатывания – 0,17, коэффициент пористости – 0,665, коэффициент водонасыщения – 0,81, удельное сцепление – 0,015 МПа, угол внутреннего трения – 26°.

ИГЭ №5 – супесь непросадочная песчанистая, толщина слоя от 4,5 до 8,2 метров, плотность сухого грунта – 1721 кг/м³, плотность грунта – 2046 кг/м³, плотность частиц грунта 2707 кг/м³, природная влажность – 0,189, влажность на границе текучести – 0,22, влажность на границе раскатывания – 0,16, коэффициент пористости – 0,573, коэффициент водонасыщения – 0,893, удельное сцепление – 0,013 МПа, угол внутреннего трения – 23°.

Первый рассматриваемый метод – уплотнение грунтов трамбовками. Он заключается в осуществлении ударов трамбовкой по дну котлована. Данный метод используют для ненасыщенных водой грунтов и независимых от степени водонасыщения крупнообломочных и песчаных грунтов. Уплотнение производят многократными ударами трамбовкой с высоты от 5 до 10 метров, диаметром от 1,4 до 3,5 метров и весом от 40 кН до 150 кН. Грунт при уплотнении данным способом должен обладать необходимой влажностью, которая близка к значению влажности на границе раскатывания. Удары по одному месту производятся до получения условного «отказа». В результате уплотнения, в массиве грунта образуется уплотненная зона из-за сближения частиц грунта. Метод является эффективным – одной трамбовкой за смену можно уплотнить порядка 150 м², но существенный недостаток этого метода – быстрое изнашивание оборудования и возникновение значительных динамических колебаний.

Глубинное виброуплотнение грунтов применяют для водонасыщенных грунтов. Вибропогружатель состоит из удлинительных труб, которые необходимы для достижения заданной глубины укрепления и вибратора, который в свою очередь представляет собой груз с электроприводом, вызывающий колебания. Метод заключается в погружении глубинного вибратора в грунт, в результате колебания от погруженного устройства передаются грунту, который постепенно уплотняется. Если грунт находится в ненасыщенном водой состоянии, то к месту виброрования подается вода, т.к. при недостаточной влажности необходимо приложить больше усилий для уплотнения грунта, сухой грунт недостаточно пластичен и труднее поддается воздействию внешних сил. Значительным плю-

сом данного метода является производительность – уплотнение до 600 м³ объема грунта. Недостатком данного метода является неравномерная плотность грунта вследствие длительного действия вибрационной установки в верхних слоях грунта по сравнению с нижними, обусловленная извлечением установки.

Устройство грунтовых и песчаных свай применяется для заторфованных, лесовых грунтов и песков, содержащих органические остатки. В процессе погружения в грунт трубы, грунт вокруг уплотняется, после чего в трубу подается песок или грунт, который в последующем будет являться песчаной или грунтовой сваей, которая обладает дренирующей способностью. Данный метод хорош тем, что уплотнение происходит достаточно равномерно по всей толще грунта. Недостаток – быстрая кольматация стенок скважин и ухудшение условий работы этих свай. Кольматация – уменьшение проницаемости горных пород вследствие попадания мелких частиц и микроорганизмов в поры. Также носителем кольматажного материала могут служить жидкости и газы.

Метод уплотнения грунтов предварительным замачиванием. Процесс замачивания происходит в котлованах, где уровень воды постоянно поддерживается на определенных отметках, чтобы уходящие вглубь грунты были достаточно водонасыщенными, уплотнение происходит за счет снижения прочности грунтов при увлажнении. При предварительном замачивании, верхние слои грунтовой толщи остаются недоуплотненными, но стоит отдать должное, что метод является одним из простых в реализации и менее затратным в экономическом плане.

Метод уплотнения подводными взрывами эффективно можно применять только в грунтах с коэффициентом водонасыщения более 0,6. В противном случае, следует предварительно замачивать грунтовые основания. Энергия взрыва, производимого в водной среде, приводит к разрушению структуры и, как результат, к уплотнению грунтов. После взрывов, практически неизбежно переувлажнение грунтов, что снижает эффективность данного метода. Также при взрывах возможно образование опасных зон. В целом, недостаточный учет всех оказывающих влияние факторов, может привести к неравномерным осадкам фундаментов.

Уплотнение грунта статической нагрузкой в виде насыпи эффективно применять в водонасыщенных грунтах, слабо «отдающих» воду. Давление под насыпью должно быть

АНАЛИЗ СУЩЕСТВУЮЩИХ МЕХАНИЧЕСКИХ МЕТОДОВ УПЛОТНЕНИЯ ГРУНТОВ НА ПРИМЕРЕ МНОГОЭТАЖНОГО ЖИЛОГО ДОМА В БАРНАУЛЕ

больше давления от проектируемого сооружения. Насыпь отсыпают послойно, чтобы слабые грунты не потеряли свою устойчивость.

Слабые пылевато-глинистые грунты можно уплотнить методом понижения уровня подземных вод, путем откачки воды из скважин. При понижении уровня подземных вод происходит снятие взвешивающего действия воды на скелет грунта, что приводит к его уплотнению. Однако полностью избавиться от грунтовых вод не получится, с прекращением откачки воды, уровень будет восстановлен.

Метод устройства грунтовой подушки основан на формировании отсыпаемых в котлован грунтов с последующим их уплотнением слоями. В результате рассматриваемого метода, частицы грунта перемещаются, расстояние между ними сокращается, создается уплотненный массив. Одним из преимуществ метода является то, что грунтовая подушка устраивается на основании расчетов и подбора необходимой толщины уплотненного массива грунта. Но недостатком метода может быть то, что подушка под действием больших нагрузок может просесть и не обеспечить задаваемой прочности.

Изучив вышепредставленные методы уплотнения грунтов, можем проанализировать, какие из методов мы использовать не можем при строительстве данного нам объекта. Метод уплотнения подводными взрывами в данном случае не подходит, так как вокруг площадки строительства имеются уже построенные здания, а взрывы могут повлиять на целостность оснований и самих зданий. Также можем отбросить метод глубинного уплотнения грунтов с помощью виброустановок, т.к. при недостаточной влажности, грунты нужно замачивать, что мы сделать не сможем из-за имеющихся рядом зданий. По этому же принципу нам не подходит метод уплотнения грунтов предварительным замачиванием. Грунтовые и песчаные сваи очень быстро приходят в непригодность из-за проникновения воды и газов, снижающие дренажные свойства свай.

Поэтому для рассматриваемого нами объекта, рациональными в использовании будет метод уплотнения трамбовками и метод устройства грунтовых подушек, и метод понижения уровня грунтовых вод. Подземные воды в период изысканий (февраль 2019 го-

да) вскрыты на глубине 14,9-16,1 метра. Источником питания грунтовых вод являются атмосферные осадки, талые воды и потери из водонесущих коммуникаций. Изыскания прошедших годов указывает, если скорость подъема уровня грунтовых вод будет сохраняться до 20 см в год и критический подтопляющий уровень так же останется в пределах 5-6 метров, то застраиваемая площадка в течение 15-25 лет будет являться неподтопляемой, но уже для расчетного периода 50 лет будет потенциально подтопляемой, следовательно, стоит задача понижать уровень грунтовых вод.

Сравнение технико-экономических показателей устройства двух вариантов искусственного основания (уплотнение тяжелыми трамбовками и грунтовые подушки) показывает, что наиболее выгодный способ устройства фундаментов для рассматриваемого здания – уплотнение тяжелыми трамбовками. Этот способ создания искусственного основания более чем на 20 процентов экономичнее устройства грунтовых подушек.

СПИСОК ЛИТЕРАТУРЫ

1. Захарова, Т. М. Методы созданий искусственных оснований при строительстве многоквартирного дома со встроенными объектами общественного назначения по адресу г. Барнаул, ул. 65 лет Победы, 12 / Т. М. Захарова, Б. М. Черепанов // Наука и молодежь: материалы XVIII Всероссийской науч.-техн. конф. студентов, аспирантов и молодых учёных (19-23 апреля 2021 года, г. Барнаул: в 2 т. / АлтГТУ им. И. И. Ползунова. – Барнаул : Изд-во АлтГТУ, 2021. – Т. 1, Ч. 2. – С. 157-159.

2. Далматов, Б. И. Механика грунтов, основания и фундаменты (включая специальный курс инженерной геологии): учебник для вузов / Б. И. Далматов. – 6-е изд., стер. – Санкт-Петербург : Лань, 2021. – 416 с. – ISBN 978-5-8114-7041-9. – Текст : электронный // Лань : электронно-библиотечная система. – URL: <https://e.lanbook.com/book/154379>.

Бочкарева Анастасия Владимировна – студент ФГБОУ ВО АлтГТУ им. И. И. Ползунова, Email: an_tonks25@mail.ru;

Черепанов Борис Михайлович – к.т.н., доцент кафедры «Основания, фундаменты, инженерная геология и геодезия», ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: bmcher@mail.ru.

БОЙ ТАРНОГО СТЕКЛА КАК АЛЬТЕРНАТИВА ГРАНУЛИРОВАННОМУ МИКРОКРЕМНЕЗЕМУ

О. В. Буйко, В. А. Плюснин, А. В. Попцова

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Невозможно добиться прогресса в строительной индустрии без создания новых высококачественных строительных материалов с оптимальными технологиями использования эффективных модификаторов к портландцементу и бетонам на его основе. Эта проблема на современном этапе может быть решена за счет широкого вовлечения в сферу производства цементных материалов ценного вторичного ресурса, возможности которого раскрыты еще не полностью, – твердых бытовых отходов, в частности боя тарного стекла, накопления которого растет по всей территории России и стран СНГ. В работе были проведены исследования по определению эффективности влияния на прочность получаемого портландцементного материала таких содержащих реакционноспособный оксид кремния веществ, как гранулированный микрокремнезем и бой тарного стекла. Проведен сравнительный анализ способов введения гранулированного микрокремнезема в исследуемые составы. А также показана возможность получения быстротвердеющих, не требующих тепловой обработки портландцементных бетонов при использовании модифицирующих комплексов на основе альтернативной кремнеземсодержащей добавки.

Ключевые слова: портландцемент, бетон, бой тарного стекла, реакционноспособный кремнезем, гранулированный микрокремнезем, прочность.

На сегодняшний день, ввиду роста цен на цемент и уменьшения объема ресурсов высококачественного сырья, повышается актуальность применения различных дисперсных минеральных добавок, позволяющих изменять функциональные свойства портландцементных материалов. Конденсированный микрокремнезем (МК) является широко известной и эффективной минеральной добавкой, применение которой в портландцементных системах зарегламентировано ГОСТ Р 56178-2014 «Модификаторы органоминеральные типа МБ для бетонов, строительных растворов и сухих смесей. Технические условия». В этом документе микрокремнезем обозначен как «ультрадисперсный материал, состоящий из сферических частиц размером менее 1 мкм (10^{-6} м) с удельной поверхностью не менее 12000 м²/кг, содержащий аморфный оксид кремний. Однако, по ряду причин, в первую очередь для облегчения транспортировки, пыль микрокремнезема гранулируют, и, те данные, которые относятся к применению в портландцементных материалах пылеобразного вещества, не во всем соответствуют результатам использования размолотого гранулированного микрокремнезема [1].

Цена гранулированного микрокремнезема на российском рынке колеблется от 13000 до 20000 руб/т. Поэтому в данной работе проведен сравнительный анализ применения

альтернативного кремнеземистого компонента (АК) и уплотненного микрокремнезема в качестве активной минеральной добавки для цементных систем. Как и гранулированный микрокремнезем АК требует помола, но являясь бытовым отходом – боем тарного стекла, он выгодно отличается от микрокремнезема своей стоимостью, которая в разы ниже, чем цена микрокремнезема.

Примерный химический состав данного вещества представлен в таблице 1. Материал добавки АК, также как и гранулированный микрокремнезем, содержит оксид кремния в аморфном состоянии. Основным отличием альтернативной добавки является содержание в ней щелочных металлов, в том числе натрия и калия.

Таблица 1 – Примерный химический состав альтернативной кремнеземсодержащей добавки АК

Содержание, масс. %						
SiO ₂	CaO+MgO	Na ₂ O+K ₂ O	Al ₂ O ₃	Fe ₂ O ₃	MnO	другое
70-73,5	11±1	14±1	2,5-5,5	0-2,5	2-3	≈0,5

Лабораторные исследования проводились с использованием портландцемента СЕМ I 42,5N производства ОАО «Искитимцемент» и микрокремнезема конденсированного марки МКУ-85 АО «Кузнецкие ферросплавы». Помол добавки АК и совместный домол с не-

большим количеством портландцемента гранулированного микрокремнезема, производился в течение примерно 15 минут в керамической шаровой мельнице, до максимальной крупности частиц не более 0,16 мм. Активные минеральные добавки (АМД) вводились в цементные композиции в дозировке 3-7% от массы вяжущего.

С целью предотвращения повышения водопотребности портландцементных составов была применена добавка суперпластификатора С-3 в дозировке 1% от массы вяжущего. Эффективность добавок АК и МК оценивалась, в первую очередь, по изменению прочностных характеристик образцов, поэтому помимо указанных веществ, в исследовании были использованы добавки - регуляторы схватывания и твердения: Na_2SO_4 и CaCl_2 . Их дозировка также составляла 1 % от массы цемента.

Изменение технологических приемов введения в портландцементное вяжущее гранулированного микрокремнезема не особенно сказалось на общей величине удельной поверхности исследуемых составов, что и отразилось на их водопотребности (таблица 2). Водоцементное отношение модифицированных цементных составов при получении тест нормальной густоты оказалось очень близким к аналогичному показателю контрольного состава, содержащего суперпластификатор. Результаты измерения прочности при сжатии также позволяют говорить о том, что на величину ранней прочности цементных образцов большее влияние оказало наличие в них добавки С-3.

Изменение в портландцементных композициях дозировки МК с 3 до 7% принесло положительный эффект только в случае смешивания компонентов при помощи совместного домола. При ручном смешивании повы-

шение доли МК в исследуемых составах, снижая общую удельную поверхность композиционного материала, приводит, соответственно, к снижению его активности.

Только совместный домол, который не только измельчает частицы МК до приемлемого состояния, но и, пусть и в небольшой мере, повышает тонкость помола самого портландцемента, позволяет говорить об эффективности применения данной добавки.

Величина прочности при сжатии модифицированных образцов, содержащих добавку АК на ранних сроках твердения (таблица 2), зависит как от наличия в составе суперпластификатора, так и от количества самой добавки. Анализ представленных данных показывает наличие оптимальной дозировки АК в составе композита. Таким оптимумом является количество добавки АК равное 3-4% от массы портландцемента.

В литературных источниках встречаются данные, что при наличии в портландцементных материалах стеклянного наполнителя с размером частиц менее 50 мкм происходит аномальный рост прочности композиций [2]. Хотя в проведенном исследовании частицы АК имели размер менее 0,16 мм, однако полученные данные по величине ранней прочности модифицированных составов, позволяют говорить об эффекте ускорения твердения портландцементного материала в ее присутствии.

Комплексные добавки, содержащие добавку АК и суперпластификатор С-3 позволили ускорить темп набора ранней прочности модифицированных составов (таблица 3). Для определения максимально возможного ускорения твердения портландцементных составов в модифицирующий комплекс были введены ускорители твердения: Na_2SO_4 и CaCl_2 в дозировке 1% от массы вяжущего.

Таблица 2 – Влияние состава и способа получения цементных композиций на прочность при сжатии портландцементных образцов размером $2 \times 2 \times 2$ см из теста нормальной густоты, твердевших в нормальных условиях ($t \approx 20 \pm 2^\circ\text{C}$, $W \approx 100\%$)

Состав	Способ получения композиции	ТНГ, %	Прочность при сжатии, МПа	
			1 сут.	7 сут.
ПЦ без добавок	Контрольные составы	28,1	31,4	70,6
ПЦ + 1 % С-3		18,5	51,4	80,1
Модифицированные составы				
ПЦ + МК 3 % + С-3 1%	Ручное смешивание	18,8	52,8	62,2
ПЦ + МК 7 % + С-3 1%		21,3	45,1	66,3
ПЦ + МК 3 % + С-3 1%	Совместный помол в керамической мельнице	15,5	47,7	82,6
ПЦ + МК 7 % + С-3 1%		18,0	38,5	76,8
ПЦ + АК 3 % + С-3 1%	Совместный помол в керамической мельнице	16,05	59,4	77,6
ПЦ + АК 7 % + С-3 1%		15,05	58,3	76,0

Таблица 3 – Влияние ускорителей твердения и кремнеземсодержащей добавкой АК на прочность при сжатии портландцементных образцов с размером $2 \times 2 \times 2$ см из теста нормальной густоты, твердевших в нормальных условиях ($t \approx 20 \pm 2^\circ\text{C}$, $W \approx 100\%$)

Состав	Состав добавки				ТНГ, %	R _{сж} , МПа (н.у.)	
	АК, %	С-3, %	CaCl ₂ , %	Na ₂ SO ₄ , %		1 сут.	7 сут.
АК1 – 3	3	1	-	1	15,50	60,3	74,0
АК1 – 7	7	1	-	1	16,25	54,4	65,3
АК2 – 3	3	1	1	-	16,25	76,6	71,0
АК2 – 7	7	1	1	-	13,70	62,1	74,1

Таблица 4 – Влияние состава модифицирующих добавок на прочность при сжатии портландцементных образцов размером $10 \times 10 \times 10$ см из тяжелого бетона В25, П2, твердевших в нормальных условиях и условиях ТВО

Прочность при сжатии, МПа				ТВО (режим 3ч (предварительная выдержка) + 3 ч. + 6 ч. + 3 ч., температура изотермии 60°C)	Состав добавок, вводимых в бетонную смесь, % от массы цемента
1 сут	3 сут	7 сут	28 сут		
23,8	28,3	29,2	30,4	26,3	Без добавок
17,6	41,4	39,6	32,8	27,9	С-3 1 %
22,5	32,8	34,5	34,4	24,8	АК 3% +С-3 1%
27,4	30,7	40,6	37,6	26,7	АК 7% +С-3 1%
22,3	32,7	29,4	40,3	28,0	АК 3% +С-3 1%+ Na ₂ SO ₄ 1%
34,0	31,4	31,1	40,0	31,3	АК 7% +С-3 1%+ Na ₂ SO ₄ 1%
17,4	24,9	26,0	39,9	25,1	АК 3% +С-3 1%+ CaCl ₂ 1%
32,0	42,4	26,6	39,6	32,4	АК 7% +С-3 1%+ CaCl ₂ 1%
22,6	30,5	33,6	38,3	23,0	МК 3 % + С-3 1%
25,1	26,2	32,9	43,4	29,9	МК 7 % + С-3 1%

Данные ускорители были выбраны вследствие их различного механизма действия на портландцементные минералы. Сульфат натрия не содержит одноименных с вяжущим веществом ионов, изменяет растворимость исходных и устойчивость конечных фаз, вступает с вяжущим веществом в обменные реакции, образует с ионами кальция труднорастворимые соединения. Хлорид кальция содержит одноименные с вяжущим ионы, резко увеличивает вероятность возникновения зародышей новой фазы, вступает с вяжущим веществом в реакции присоединения с образованием двойных солей-гидратов [3].

Дополнительное использование добавок – ускорителей позволило получить результаты, представленные в таблице 3. Большой прирост ранней прочности был получен в портландцементных композициях, содержащих в качестве ускорителя CaCl₂. Добавка сульфата натрия дала меньший прирост прочности. Однако и то и другое соединение позволили получить суюточную прочность образцов превышающую прочность контрольных составов.

При исследовании эффективности влияния кремнеземсодержащих добавок, в том числе комплексных, были получены результаты, представленные в таблице 4. Эти данные оказались несколько отличными от полученных на образцах из цементных паст.

Эксперимент проводился на образцах из тяжелого бетона М350 (В25) с подвижностью бетонной смеси П2. Кроме нормального режима твердения был применен ускоренный в условиях ТВО (режим 3 ч. (предварительная выдержка) + 3 ч. + 6 ч. + 3ч., температура изотермии 60°C).

В суперпластифицированных бетонных составах, твердевших в нормальных условиях, добавка АК приводит к получению суточной прочности, составляющей 74-90% от 28-мисуточной прочности контрольного состава без добавок (таблица 4). Это превышает темп набора прочности составов, содержащих размолотый гранулированный микрокремнезем, которые через сутки нормального твердения набрали от 57 до 63% конечной прочности контрольного бетона (в зависимости от дозировки).

Дальнейшее твердение модифицированных составов в нормальных условиях показало, что тенденция получения высоких прочностных характеристик у составов с альтернативной кремнеземсодержащей добавкой сохраняется, и, эти значения превышают аналогичные показатели составов с МК.

Влияние ускорителей твердения на модифицированные комплексом АК + С-3 бетонные составы проявляется в дополнительном приросте прочностей как в ранние, так и поздние сроки нормального твердения образцов, что особенно заметно при повышенной (7% от массы цемента) дозировке АК. Однако эффективность применявшихся в модифицированных бетонных составах добавок – ускорителей меняется на противоположную той, что была получена при исследовании цементного камня: на первое место выходит сульфат натрия.

Тепловлажностная обработка модифицированных бетонных образцов также позволила получить достаточно высокие показатели прочности при сжатии как в составах с МК, так и в составах с АК (с более высокими значениями последних). Однако полученные значения прочностей вполне сравнимые со значениями суточной прочности аналогичных, но нормальнотвердевших образцов.

Заключение

На основе проведенных исследований по сравнительному анализу эффективности кремнеземсодержащих активных минеральных добавок в портландцементных материалах, можно сделать следующие выводы.

1. Об эффективности гранулированного микрокремнезема, как активной минеральной добавки к портландцементу и бетону, можно говорить только в случае увеличения его удельной поверхности при помоле.

2. Добавка АК, содержащая около 70% реакционноспособного оксида кремния, при

использовании ее в портландцементных материалах, может являться альтернативой гранулированному микрокремнезему. Применение добавки АК, являющейся отходом – боем тарного стекла, размолотого до крупности частиц не более 0,16 мм, привела к получению быстротвердеющего композита с высокой прочностью.

3. Применение добавок – ускорителей (сульфата натрия или хлорида кальция) в качестве дополнительного компонента модифицирующего комплекса на основе АК, повышает его эффективность, особенно в бетонных составах. Полученные бетоны можно отнести к быстротвердеющим, не требующим тепловой обработки.

СПИСОК ЛИТЕРАТУРЫ

1. Буйко, О. В. Применение гранулированного микрокремнезема в качестве модификатора портландцемента / О. В. Буйко, В. А. Бирицевский, В. С. Тимошкин // Ползуновский альманах. –2018. – № 1. – С. 38-40.
2. Кетов, П. А. Использование вяжущих свойств дисперсных силикатных стекол при утилизации стеклобоя / П. А. Кетов, В. С. Корзанов, С. И. Пузанов // Строительные материалы. – 2007. – № 5. – С. 2-3.
3. Ратинов, В. Б. Добавки в бетон. – 2-е изд., перераб. и доп. В. Б. Ратинов, Т. И. Розенберг. – М. : Стройиздат, 1989. – 188 с.

Буйко Ольга Валентиновна – к.т.н., доцент кафедры «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: olparis@mail.ru;

Плюснин Владислав Артемович – студент группы Спр-81 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: olparis@mail.ru;

Попцова Арина Владимировна – студент группы 8Спгс-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: olparis@mail.ru.

ВИДЫ РИСКОВ И ПРИМЕНЕНИЕ ВИМ-МОДЕЛИРОВАНИЯ ДЛЯ СНИЖЕНИЯ РИСКОВ ИНВЕСТИЦИОННОГО ПРОЕКТА

Н. С. Бунин, И. А. Бахтина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Рассмотрены виды рисков инвестиционно-строительного объекта и применение ВИМ-моделирования для снижения инвестиционных рисков строительных объектов в программном комплексе Revit.

Ключевые слова: инвестиции, риск, строительный объект, классификация рисков, снижение рисков, ВИМ-моделирование.

Случай того, что строительство представляется одной из сфер деятельности, подвластной гигантскому количеству рисков, неоспорим. Некоторые опасности представляются неповторимыми, оттого необходимо собрать и проанализировать статистику по ним. Целесообразно разделить и классифицировать риски, какие приводят к ожидаемым и известным последствиям [1].

В настоящее время пока не представлено отлаженной, структурированной налаженности после раскрытию и уменьшению рисков в области строительства. Основные направления рисков в строительной сфере связаны с инвестициями в объекты труда (сырье, энергоресурсы, материалы, оборудование и т.п.), в генеральные производственные фонды, труд.

Причины риски связаны с рядом случайных факторов:

- браки и несоответствие свойств строительных материалов и продукции, приводящие к штрафам, рекламациям, нарушению сроков и т.п.;
- неисправности и поломки оборудования, машин, механизмов, приводящие к нарушению сроков и дополнительных затрат на ремонт;
- неисправности и некорректность работы различных элементов систем, позволяющих автоматизировать и механизировать производственные процессы.

Также необходимо учитывать форс-мажорные обстоятельства, которые встречаются редко, однако могут характеризоваться последствиями значительных масштабов. К ним относятся:

- природные бедствия (землетрясения, сели и т.п.);
- перебои в энергетических сетях (отключения, скачки напряжений и т.п.);
- пожары и взрывы;

– травмы и смерть управляющих и ведущих специалистов;

– непредвиденное происхождение сильных и компетентных конкурентов, которые были не учтены на этапе запуска проекта.

К остальным внезапным причинам риска относятся реакционное поведение, забастовки, мошенничество, бесчестная конкуренция и т.п.

По происхождению риски можно разделить на две больших группы: внешние и внутренние. Более детальная классификация приведена в таблице.

Весь процесс проектирования инвестиционно-строительных объектов можно разделить на следующие стадии:

- возникновение и проработка самой идеи объекта;
- сбор и анализ информации о подобных объектах;
- анализ конкурентов и проработка отличительных особенностей задуманного объекта, которые приадут ему конкурентоспособность;
- выполнение самого проекта с соблюдением всех основных нормативов и условий (строительных, объемно-планировочных, архитектурных, инженерных, экологических, санитарно-эпидемиологических).

На предпроектной и проектных стадиях создания инвестиционно-строительного объекта можно выделить следующие группы рисков:

- природно-естественные;
- форс-мажорные риски;
- политические риски;
- конъюнктурные риски;
- проектные риски.

После того, как уже создан проект начинается этапы согласования с различными организациями (экспертными, органами власти и др.) с получением требуемых разрешений на строительство и монтаж объекта.

ВИДЫ РИСКОВ И ПРИМЕНЕНИЕ ВИМ-МОДЕЛИРОВАНИЯ ДЛЯ СНИЖЕНИЯ РИСКОВ ИНВЕСТИЦИОННОГО ПРОЕКТА

Таблица – Классификация рисков по происхождению

Внешние	Внутренние
1. Природно-естественные	1. Имущественные
2. Транспортные	2. Производственные
3. Экологические	3. Финансовые
4. Политические	4. Риски рентабельности
5. Риски, связанные с покупательной способностью денег и дефляционные:	5. Инвестиционные
5.1) инфляционные и дефляционные	5.1) риски упущеной выгоды
5.2) валютные риски	5.2) риски сниженной доходности
5.3) риски ликвидности	5.2.1) процентные риски
6. Форс-мажорные	5.2.2) кредитные риски
	5.3) риски прямых финансовых потерь
	5.3.1) биржевые риски
	5.3.2) риски банкротства
	5.3.3) селективные риски
	6. Торговые
	7. Коммерческие
	8. Проектные

Для обеспечения дальнейшей безопасной и надежной эксплуатации необходимо заключить договора со строительными, монтажными и логистическими организациями.

Для данной стадии характерными являются следующие виды рисков:

- политические риски;
- риски, связанные с инфляцией и покупательной способностью денег;
- форс-мажорные риски;
- риск неправильного выбора контрагента;
- инвестиционные риски;
- риски упущеной выгоды;
- селективные риски.

После проектирование начинается стадия строительства инвестиционно-строительного объекта. На данной стадии важным является соблюдение организационного и календарного планов строительства, что позволяет сдать законченный объект в согласованные сроки.

Основными видами рисков данной стадии являются:

- экологические риски;
- политические риски;
- риски, связанные с покупательной способностью денег;
- природно-естественные риски;
- форс-мажорные риски;
- селективные риски;
- производственные риски;
- имущественные риски.

Четвертой стадией создания инвестиционно-строительного объекта является закрытие всех договоров между заказчиками, подрядчиками, инвесторами с расчетом по всем договорным документам.

Основными рисками на данной стадии являются:

- форс-мажорные риски;
- риски, связанные с покупательной способностью денег и дефляционные;
- экологические риски;
- политические риски;
- имущественные риски;
- финансовые риски;
- риски прямых финансовых потерь;
- коммерческие риски;
- торговые риски.

После строительства объекта и монтажа необходимых систем и оборудования начинается стадия сдачи объекта в эксплуатацию. На этой стадии важным является заключение договоров с собственниками, обслуживающими и управляющими организациями. На данной стадии виды и количество рисков уменьшается и основными категориями рисков данной стадии являются:

- форс-мажорные риски;
- производственные риски;
- имущественные риски;
- проектные риски.

Уменьшить количество рисков можно с помощью риск-менеджмент. Данное направление является сравнительно новым, но активно развивается. К инструментам управления рисками относятся SWIFT-анализ, использование VaR-метода, матрица МакКинзи, дерево событий, дерево ошибок, сценарный разбор и другие [2, 3].

В настоящее время все большее применение находит информативная модель ВИМ (Building Information Modeling) – ВИМ-моделирование.

BIM-моделирование позволяет создать для объекта информационную модель, которая доступна всем проектировщикам и эксплуатационным организациям. При этом информация по данной модели постоянно обновляется и поэтому является актуальной в течение всего жизненного цикла объекта строительства. BIM-моделирование позволяет охватить всех участников процесса по созданию и эксплуатации инвестиционно-строительного объекта: заказчика, застройщика, генерального подрядчика, генерального проектировщика, а также субподрядчиков, поставщиков и эксплуатационных организаций. Это позволяет достичь лучшего взаимодействие и сотрудничества между участниками проекта, что приводит к созданию оптимальной модели объекта и минимизации рисков на всех стадиях его жизненного цикла.

Отличительной особенностью BIM-моделирования является создание наиболее оптимальной и рациональной модели инвестиционно-строительного объекта. Это достигается за счет создания нескольких альтернативных вариантов, их сравнения и устранения различных технико-технологических и организационно-экономических коллизий на стадии проектирования модели. За счет визуализации модели объекта и автоматизации выявления технико-технологических недоработок с помощью BIM-технологий существенно снижаются как временные затраты, так и трудовые. Это позволяет уровень точности и детализации создаваемого проекта, уменьшить стоимость строительно-монтажных работ. Ввиду доступности модели всем участникам проекта все принятые проектные, строительные и монтажные решения носят согласованный характер и снижают различные категории рисков на различных стадиях, например, проектные, производственные, имущественные и т.п.

Несмотря на то, что BIM-технологии позволяют повысить качество проектируемого инвестиционно-строительного объекта, уменьшить временные и денежные затраты, социальный и экономический эффект от их применения можно получить только через несколько лет. Однако, не смотря на отсроченный эффект именно за счет согласования проекта на различных стадиях и всеми основными участниками проекта внедрение BIM-технологий позволяет снизить уровень рисков.

Основными сложностями и недостатками внедрения и распространения BIM технологий создание инвестиционно-строительных объектов являются:

- один инструмент (программа) информационного моделирования не позволяет полностью создать модель проектируемого объекта, при этом необходимо учитывать возможность их несовместимости друг с другом;
- в настоящее время отсутствует правовая основа приема и согласования органами власти цифровых данных, связанных со сферой строительства;
- для согласования информационной модели инвестиционно-строительного объекта требует компетентности и возможности работы с BIM-технологиями не только работников строительной сферы, но и различных согласующих сфер (строительной экспертизы, администрации, эксплуатационных организаций и т.д.);

– иностранное программное обеспечение не имеет согласованности с российскими нормативными документами (СП, ГОСТ и др.), а российское программное обеспечение пока имеет недостаточную функциональность и эффективность.

Все эти недостатки BIM-технологий необходимо учитывать при их применении при создании информационной модели инвестиционно-строительного проекта и снижении различных видов рисков на всех этапах его жизненного цикла.

СПИСОК ЛИТЕРАТУРЫ

1. Шапкин, А. Экономические и финансовые риски. Оценка, управление, портфель инвестиций / А. Шапкин. – М. : Дашков и К, 2010. – 400 с.
2. Дамодаран, А. Стратегический рискменеджмент. Принципы и методики / А. Дамодаран. – М. : Вильямс, 2010. – 496 с.
3. Минимизация рисков формирования эффективных интеграционных образований в инвестиционно-строительной сфере / В. В. Асаул [и др.]. – СПб : АНО «ИПЭВ», 2011. – 364 с.

Бунин Никита Сергеевич – студент группы 8Соим-11 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: bunin_n@mail.ru;

Бахтина Ирина Алексеевна – к.т.н., доцент кафедры «Инженерные сети, теплотехника и гидравлика» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: bia-altai@mail.ru.

О ВОЗМОЖНОСТЯХ РАСЧЕТА ДОЩАТОКЛЕЕНЫХ АРОК В ЛИРЕ 10.12

Г. М. Бусыгина, Ю. В. Халтурин, П. А. Гончаров

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Рассматриваются: неблагоприятные сочетания нагрузок при расчете дощатоклееных арок кругового очертания, оценивается целесообразность и необходимость учета действия ветровой нагрузки при расчете дощатоклееных пологих арок, оценивается возможность подбора и проверки сечения дощатоклееных конструкций в ПК Лира 10.12.

Ключевые слова: дощатоклееные арки, расчетные сочетания нагрузок и усилий, расчет арок на прочность, программный комплекс ЛИРА, длительная прочность древесины, анализа результатов расчета, усиление опорных частей перемычек.

В последние десятилетия в России рас- тут объемы строительства зданий из kleеных деревянных конструкций. Это обусловлено архитектурной выразительностью таких конструкций, разнообразием их конструктивных форм, небольшим весом, большим диапазоном размеров, высокой огнестойкостью, экологичностью, обширной сырьевой базой. Клееные арки кругового и стрельчатого очертания со сплошным прямоугольным сечением являются одной из наиболее рациональных форм плоских kleеных конструкций. Примеры зданий с покрытиями из дощатоклееных арок сплошного сечения приведены на рисунках 1-4.

Однако в отечественной практике kleеные деревянные конструкции, возможно, применялись бы чаще, если бы не было неудачного опыта возведения зданий, в том числе из-за недостаточной обоснованности расчетно-проектных решений и нормативных требований. И сегодня две-три крупные аварии могут значительно снизить спрос и объемы строительства с применением деревянных kleеных конструкций. Одним из условий проектирования надежных строительных объектов является научно обоснованный инженерный расчет с анализом напряженно-деформированного состояния конструкций.

В пункте 6.1 СП 20.13330.2016 [1] сказано: «Расчет конструкций и оснований по предельным состояниям 1-й и 2-й групп следует выполнять с учетом неблагоприятных сочетаний нагрузок или соответствующих им усилий». Неблагоприятные сочетания нагрузок, которые следует принимать при расчете дощатоклееных арок, приведены только в пункте 6.41 пособия к СНиП II-25-80 [2]: «Расчет арок на прочность производится при следующих сочетаниях нагрузок:

в пологих арках ($f < 1/3l$);

расчетная постоянная и временная (снеговая) нагрузки на всем пролете и временная нагрузка от подвесного оборудования;

расчетная постоянная нагрузка на всем пролете, односторонняя временная (снеговая) нагрузка на половине пролета и временная нагрузка от подвесного оборудования;

расчетная постоянная нагрузка на всем пролете, односторонняя временная (снеговая) нагрузка, распределенная по треугольнику на половине пролета...».

В Пособии [2] не рассматривается вариант загружения таких арок ветровой нагрузкой. Тем не менее, в ряде источников говорится о необходимости учета действия ветровой нагрузки. Например, в [3] сказано: «В арках с отношением $f/l > 1/7$ и рамках, независимо от их подъема или уклона кровли, необходимо учитывать действие ветровой нагрузки». В то же время в [4] утверждается, что для пологих арок «ветровую нагрузку можно не учитывать». По усилиям в арке, установленным от отдельных нагрузок, определяют их наиболее неблагоприятные сочетания, устанавливая их расчётные значения. Закономерно возникает вопрос о необходимости и целесообразности учета действия ветровой нагрузки при расчете дощатоклееных пологих арок. Для ответа на него были выполнены расчеты пологих арок с разными пролетами и разными отношениями стрелы подъема к пролету. Далее в качестве примера приводятся результаты расчета пологой дощатоклееной арки пролетом 30 м со стрелой подъема 6 м. Рассматривались варианты 1 и 2 загружения арки снеговыми нагрузками в соответствии с приложением Б.2 СП 20.13330.2016 [1] на всем пролете и половине пролета, а также ветровой нагрузкой согласно приложению В.1.3 [1].

Рисунок 1 – Трехшарнирные арки пролетом 42 м.
Теннисные корты «Спартак» в г. Новокузнецке

Рисунок 2 – Трехшарнирные арки пролетом 36 м.
Теннисные корты в г. Альметьевске

Рисунок 3 – Трехшарнирные арки. Спорткомплекс пансионата «Буран» в Сергиево-Посадском районе Московской области

Рисунок 4 – Пересекающиеся арки пролетом 42 м.
Спортивный манеж «Подмосковье» в г. Щелково
Московской области

В процессе совершенствования программных комплексов семейства ЛИРА кроме расчета модели объекта из деревянных конструкций на статические силовые нагрузки и динамические воздействия (ветер с учетом пульсационной составляющей) и определения расчетных сочетаний нагрузок и усилий, в Лире 10.12 появилась возможность подбирать и проверять сечения конструкций. Как и в аналитическом методе расчеты арок на прочность и устойчивость плоской формы деформирования производятся на одновременное действие изгибающего момента и продольной силы, в сечении с максимальным изгибающим моментом. В данной работе сделана попытка оценить возможность таких расчетов, оценить возможные трудности и корректность получаемых результатов.

Процесс расчета арки производится в несколько этапов, рассмотрим их по порядку. Первый этап включает в себя создание расчетной схемы арки (рисунок 5). Данная операция осуществляется в плоской системе координат. В ПК Лира 10.12 это второй тип конструкции – плоская рама. Далее создается расчетная схема арки кругового очертания, размеры которой задаются ранее. Вся арка разбивается на 20 элементов для более точного определения усилий в стержнях. Разбиение арки на большее количество элементов возможно, но нецелесообразно. При пролетах арок более 24 м как правило применяют трехшарнирные арки (из условий транспортировки). Поэтому арку принимаем трехшарнирной, в её коньке устанавливаем шарнир. Задаем граничные условия. Обе опоры арки принимаем шарнирно-неподвижными.

Арку принимаем постоянного прямоугольного сечения (рисунок 6). Сечение арки высотой 891 мм проектируем из 27 слоев досок толщиной 33 мм (после усушки и острожки досок толщиной 42 мм). Задаемся шириной досок – принимаем 175 мм, при этом ширина сечения арки (многослойной конструкции длиной более 12 м) после фрезерования её боковых поверхностей составит 155 мм. Данные размеры сечения задаем всем элементам схемы. Исходя из заданного материала исполнения – сосна, ель, лиственница европейская второго сорта, получаем прочностные характеристики элементов.

Следующим этапом задаемся нагрузками: собственный вес конструкции; снеговая нагрузка, распределенная по косинусоиде, на всем пролете (вариант 1 рисунка Б.2 [1]); снеговая нагрузка, распределенная по двум треугольникам (вариант 2 рисунка Б.2 [1]); снего-

О ВОЗМОЖНОСТЯХ РАСЧЕТА ДОЩАТОКЛЕЕНЫХ АРОК В ЛИРЕ 10.12

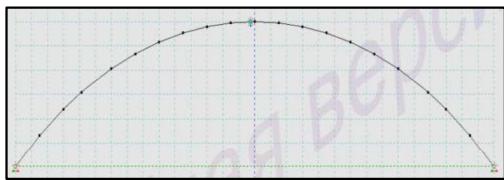


Рисунок 5 – Расчетная схема арки в ПК Лира 10.12

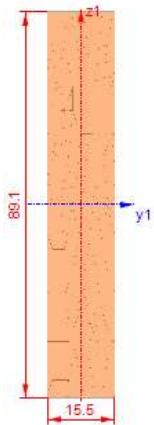


Рисунок 6 – Поперечное сечение элементов арки

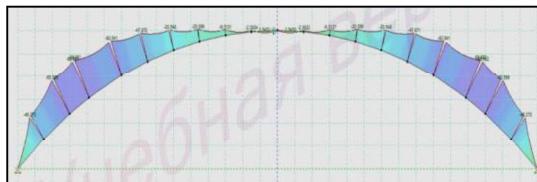


Рисунок 7 – Первое сочетание нагрузок

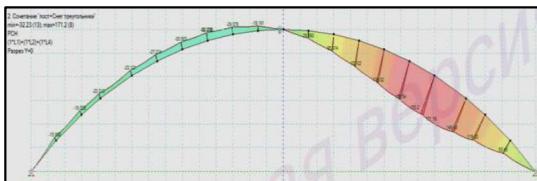


Рисунок 8 – Второе сочетание нагрузок

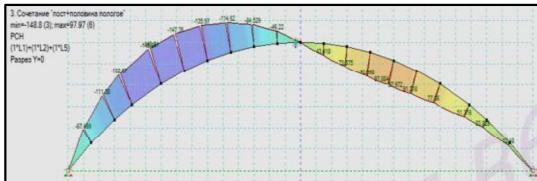


Рисунок 9 – Третье сочетание нагрузок

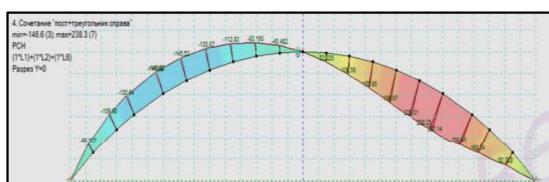


Рисунок 10 – Четвертое сочетание нагрузок

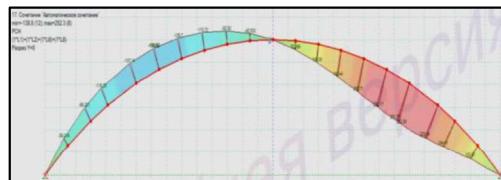


Рисунок 11 – Пятое сочетание нагрузок

вая нагрузка, распределенная по косинусоиде, на половине пролета; сугородная нагрузка, распределенная по треугольнику на половине пролета; ветровая нагрузка по рисунку В.5 [1].

В нагрузке от собственного веса конструкции учитываем также вес панелей покрытия. Сугородную и ветровую нагрузки задаем для г. Барнаула согласно СП 20.13330.2016 [1]: нормативное значение веса сугородового покрова на 1 м² горизонтальной поверхности земли 1,55 кПа (согласно изменению 2 к [1]), а нормативное значение ветрового давления для 3 ветрового района – 0,38 кПа.

Для выполнения расчета необходимо составить расчетные сочетания заданных нагрузок. Первое сочетание состоит из собственного веса конструкций и сугородовой нагрузки, распределенной по косинусоиде, на всем пролете. Второе – из собственного веса и сугородовой нагрузки, распределенной по двум треугольникам. Третье – из собственного веса и сугородовой нагрузки, распределенной по косинусоиде, на половине пролета. Четвертое – из собственного веса и сугородовой нагрузки, распределенной по треугольнику на половине пролета. Пятое – из собственного веса, сугородовой нагрузки, распределенной по треугольнику на половине пролета и ветровой нагрузки.

Следующий этап – это выполнение расчета. На данном этапе задача решалась в линейной постановке на статические воздействие. В дальнейшем предполагается выполнить расчеты в нелинейной постановке.

После выполнения расчета необходимо оценить полученные результаты и правильно их интерпретировать. Эпюры изгибающих моментов, полученные в результате расчетов, представлены на рисунках 7-11.

Определяем местоположение расчетного сечения. Для каждого сочетания нагрузок расчетным сечением для арок при расчете их на прочность является сечение с максимальным изгибающим моментом. Для рассматриваемой арки расчетное сечение находится на расстоянии 6 м от опоры, т.е. в 1/5 пролета арки. Значения наибольших изгибающих моментов в сечении и соответствующих им значений продольных и поперечных сил от раз-

Таблица 1 – Усилия в расчетном сечении трехшарнирной арки

№ сочетания	N, кН	M _y , кН·м	Q _z , кН
1	-275,04	-59,172	-3,9215
2	-228,17	169,3	-8,5372
3	-185,46	77,36	-12,421
4	-184,1	238,25	-12,719
5	-140,98	250,05	7,3887

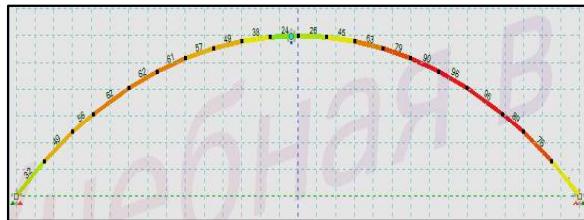


Рисунок 12 – Проценты использования сечения арки

личных сочетаний нагрузок приведены в таблице 1. Расчетом установлено, что наиболее опасным является пятое загружение, при котором процент использования сечения арки достигает 96%, что является высоким показателем и указывает на то, что практически вся несущая способность сечения используется при данном загружении. Распределение процентов использования сечения арки по элементам представлено на рисунке 12.

Результаты расчетов также показывают, что ветровая нагрузка может вызывать некоторое увеличение расчетных изгибающих моментов в пологих арках. При этом надо помнить, что пологие дощатоклеенные арки, как и другие конструкции, могут находиться одновременно под действием постоянных (от собственного веса), временных длительных (от веса снега) и кратковременных (например, ветровых нагрузок). Прочностные характеристики древесины в каждом конкретном случае зависят от соотношения этих нагрузок. При кратковременном воздействии ветра прочность древесины выше, чем при действии только постоянных и временных длительных нагрузок. Согласно указаниям [1], при расчете на совместное действие постоянной и кратковременной снеговой нагрузок коэффициент длительной прочности $m_{дл}$ равен 0,66, а при совместном действии постоянной и кратковременной ветровой $m_{дл} = 0,8$. Таким образом, в случае учета кратковре-

менной ветровой нагрузки расчетное сопротивление древесины повышается в 1,2 раза, а увеличение напряжений в рассмотренных вариантах пологих дощатоклеенных арок менее значительно. Расчеты показывают, что для рассмотренных арок следует учитывать ветровую нагрузку.

Проверка прочности сечений рассматриваемых дощатоклеенных арок в ПК Лира 10.12 показала, что для пользователя подбор и проверка сечения не вызывают особых сложностей. Результаты расчетов аналогичны результатам расчетов прочности, выполненным «вручную» по формулам действующего нормативного документа, СП 64.13330.2017.

Выводы:

1. При расчете пологих дощатоклеенных арок следует учитывать ветровую нагрузку.
2. Подбор и проверка прочности сечений дощатоклеенных арок в ПК Лира 10.12 не вызывают особых сложностей.

СПИСОК ЛИТЕРАТУРЫ

1. СП 20.13330.2016. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. – Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/456044318> (дата обращения 25.02.2022).
2. Пособие по проектированию деревянных конструкций (к СНиП II-25-80) / ЦНИИСК им. Кучеренко. – М. : Стройиздат, 1986. – 216 с.
3. Гринь, И. М. Строительные конструкции из дерева и синтетических материалов. Проектирование и расчет: учебное пособие / И. М Гринь, К. Е. Джан-Темиров, В. И. Гринь. – 3-е изд., перераб. и доп. – К. : Выща шк., 1990. – 221 с.
4. Конструкции из дерева и пластмасс: учебник для техн. вузов / Д. К. Арленинов [и др.]. – М. : Изд-во АСВ, 2002. – 280 стр.

Бусыгина Галина Михайловна – к.т.н., доцент кафедры «Строительные конструкции», ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: galinab14@yandex.ru;

Халтурин Юрий Васильевич – к.т.н., доцент кафедры «Строительные конструкции», ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: khalt.yuriy@mail.ru;

Гончаров Павел Алексеевич – студент группы СУЗ-71 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: pavelgon4arov@mail.ru.

ПОЛУЧЕНИЕ УЛЬТРАВЫСОКОПРОЧНЫХ БЕТОНОВ НА ОСНОВЕ МЕСТНЫХ СЫРЬЕВЫХ МАТЕРАЛОВ

К. Е. Воронина, Л. Г. Плотникова

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассмотрены примеры получения ультравысокопрочного бетона - материала с очень высокими техническими характеристиками за счет низких и очень низких В/Ц отношений (менее 0,25) за счет применения гиперпластификаторов. Однако, кроме использования гиперпластификаторов, такие бетоны требуют высокого содержания порошка в виде цемента, молотых горных пород, зол ТЭЦ. Целью данного исследования является производство ультравысокопрочного бетона на основе местных сырьевых материалов. Для этого был проведен эксперимент, в котором в качестве мелкозернистой добавки использовалась высококальциевая зола. При этом прочность бетона на 28 сутки нормального твердения достигала 50-60 МПа, а на третью сутки более 40 МПа. По полученным результатам построены статистические математические модели и графики.

Ключевые слова: ультравысокопрочный бетон, повышенная прочность, нормальное твердение, составы, оптимальное содержание, высококальциевая зола ТЭЦ, гиперпластификатор, низкое водоцементное отношение.

Бетон является наиболее широко используемым материалом в строительстве зданий и сооружений. В течение последних нескольких десятилетий проводились исследования нового вида бетона, известного как ультравысокопрочный бетон (UHPC).

Ультравысокопрочный бетон – Ultra-high performance concrete – современный много-компонентный строительный материал, который соответствует и даже превышает наиболее высокие качественные показатели обычного тяжёлого бетона, такие как прочность на сжатие, коррозионная стойкость, долговечность [1].

По показаниям испытаний и технологическим особенностям этот тяжёлый бетон совмещает в себе также свойства мелкозернистого и самоуплотняющегося бетонов.

Высокие качественные свойства бетона обуславливаются использованием высококачественного вяжущего с большой активностью и удельной поверхностью (ПЦ СЕМ 1 42,5), применением крупного заполнителя с повышенной прочностью и максимальным размером частиц 5 мм (отсев от дробления гранитного, базальтового щебня) [2, 3], введением в мелкозернистую систему нано частиц кремнезёмистой добавки (микрокремнезём, высококальциевые золы уноса), снижением водовяжущего отношения до 0,2, вводя гиперпластификатор.

Для получения ультравысокопрочного бетона требуется современное оборудование для точного взвешивания и тщательного перемешивания его компонентов [3].

Благодаря текучести и свойству самоуплотняться ультравысокопрочный бетон класса от В40 и выше можно использовать для производства железобетонных изделий любой формы и армирования.

Высокая прочность на сжатие позволяет уменьшить площадь сечения ЖБИ, а прочность на растяжение и изгиб повышает несущую способность конструкций, работающих на изгиб [3].

Экономическая обоснованность использования ультравысокопрочного бетона заключается в сокращении расхода самого железобетона в конструкции за счет его высокой прочности, тем самым происходит экономия всех сырьевых материалов. А также, благодаря быстрому набору прочности в ранние сроки, использование ультравысокопрочного бетона в монолитном строительстве позволит увеличить скорость строительства.

Рациональной областью использования этого искусственного материала является высотное строительство, строительство мостов, промышленные напольные покрытия, водоочистные сооружения.

Производство ультравысокопрочного бетона выполняется из дорогостоящих материалов, поэтому целью данной работы является разработка наиболее эффективного состава UHPC на основе местных сырьевых материалов. Для достижения цели необходимо выполнение следующих задач:

- изучить физико-технические характеристики местных сырьевых материалов;

Таблица 1 – Сырьевые материалы и их характеристики

Материал	Характеристика	Значение
ПЦ СЕМ I 42,5 автодорожный	Проход через сите № 008, %	79,1
	Тесто нормальной густоты	27,5
	Предел прочности на сжатие	39,2
	Удельная поверхность, м ² /кг	284
	Сроки схватывания, мин: - начало	95
	- конец	311
	Равномерность изменения объема	без изм.
ВК3 от сжигания бурого угля КАТЭКа на ТЭЦ-3 г. Барнаула	Проход через сите № 008, %	83
	Тесто нормальной густоты	25,3
	Удельная поверхность, м ² /кг	222
	Сроки схватывания, мин: - начало	23
	- конец	197
	Равномерность изменения объема	без изм.
	Потери при прокаливании, %	7,83
Отсев от дробления щебня фракции 5-0,16	Активность, °С	5,5
	Содержание свободного CaO	4,35
	Насыпная плотность, кг/м ³	1,48
	Истинная плотность, кг/м ³	2,62
Гиперпластификатор Полихид	Содержание пылевидных и глинистых частиц, %	14,5
	Наличие органических примесей	Без изм- нений
	Модуль крупности	3,13
	Цвет	белый
Вода	Водородный показатель pH (при 20°C)	6,56
	Плотность (при 20°C), кг/м ³	1052
Вода	ГОСТ 23732 – 2011 «Вода для бетонов и строительных растворов. Технические условия»	

- разработать составы смесей с максимально возможной прочностью бетона;
- оценить физико-технические характеристики полученного высокопрочного бетона на основе математических моделей.

В настоящей работе использовались сырьевые компоненты, характеристики которых представлены в таблице 1.

Испытания проводились на образцах-балочках с размерами 4 × 4 × 16 см. Образцы изготавливались из бетонных смесей, состоящих по объему на 35% из заполнителя (отсев дробления фракции 5-0,16 мм), 65% – «вязущая паста» – тщательно перемешанная смесь цемента и высококальциевой золы (ВК3) с водо-вязущим отношением В/Ц = 0,21 и гиперпластификатора Полихид MasterPolyheed 3553. Составы этих смесей представлены в таблице 2.

Заформованные образцы хранились в камере нормального твердения при температуре 25°C и влажности 100%. Для каждого состава определялась прочность при сжатии в возрасте 3, 7, 28 суток. Эти данные представлены в таблице 3.

Для оценки влияния на прочность бетона каждого компонента и определения оптимального их расхода, построены математические модели зависимости прочности от содержания гиперпластификатора и высококальциевой золы. Результаты представлены на рисунках 1-3.

Таблица 2 – Составы бетонных смесей

№ состава	Расход компонентов, %		
	ПЦ	ВК3	Полихид
1	100	0	2
2	80	20	
3	70	30	
4	60	40	
5	100	0	3,5
6	80	20	
7	70	30	
8	60	40	
9	100	0	5
10	80	20	
11	70	30	
12	60	40	

ПОЛУЧЕНИЕ УЛЬТРАВЫСОКОПРОЧНЫХ БЕТОНОВ НА ОСНОВЕ МЕСТНЫХ СЫРЬЕВЫХ МАТЕРАЛОВ

Таблица 3 – Прочность на сжатие бетонных образцов, испытанных в разные сроки, МПа

№ состава	Сроки испытаний, сут		
	3	7	28
1	48,9	55,5	68,3
2	39,5	46,4	54,6
3	44,6	45,5	56,2
4	42,6	44,4	53,6
5	51,5	58,9	68,9
6	47,9	53,8	56,1
7	41,0	42,1	59,4
8	41,3	43,5	51,2
9	44,9	49,1	63,5
10	40,3	54,8	67,6
11	40,5	53,5	57,3
12	40,0	42,8	49,0

На трети сутки нормального твердения испытания образцов на прочность при сжатии показали, что оптимальное содержание гиперпластификатора составляет 3,5%, а прямая замена цемента золой в пределах 20% не снижает прочность, которая обеспечивает марку М 400 уже в этом возрасте.

С увеличением времени твердения, количество вводимого пластификатора практически не влияет на прочность бетона при замене цемента золой до 20%, но сохраняет влияние при большем содержании ВК3.

С увеличением дозировки высококальциевой золы до 40% в составе вяжущего, прочность снижается, так как увеличивается риск позднего гашения СаО и появления дефектов структуры бетона.

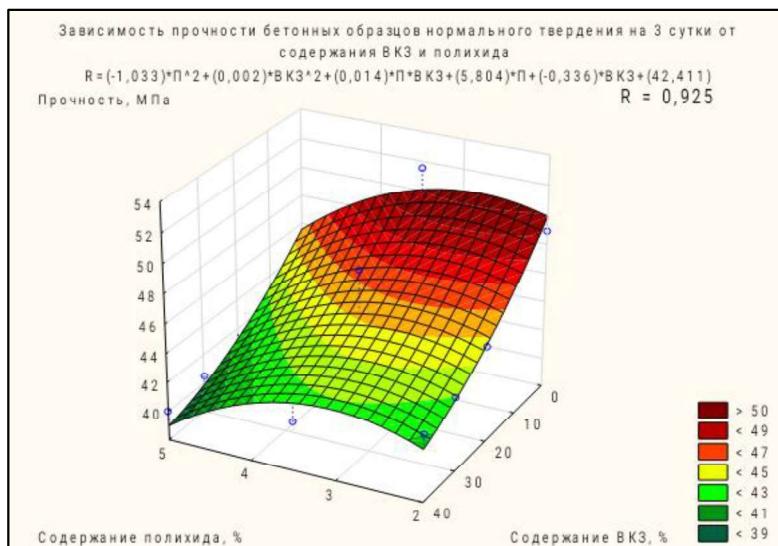


Рисунок 1 – Зависимость прочности бетона от содержания ВК3 и гиперпластификатора на 3 сутки нормального твердения

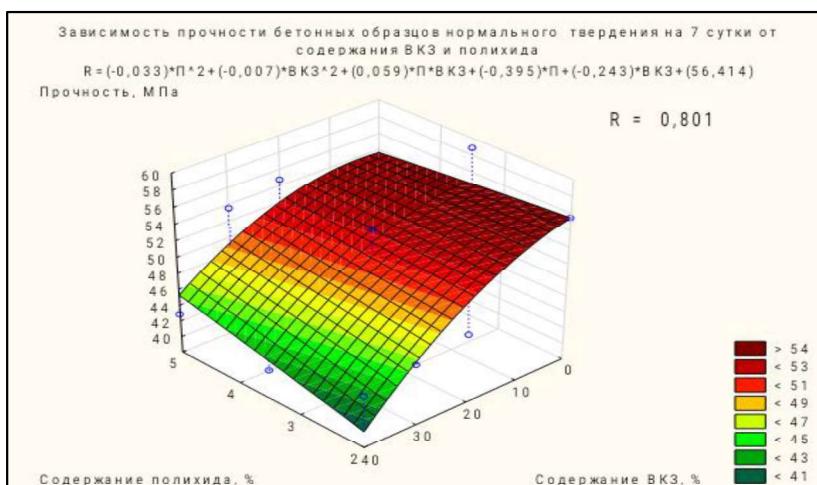


Рисунок 2 – Зависимость прочности бетона от содержания ВК3 и гиперпластификатора на 7 сутки нормального твердения

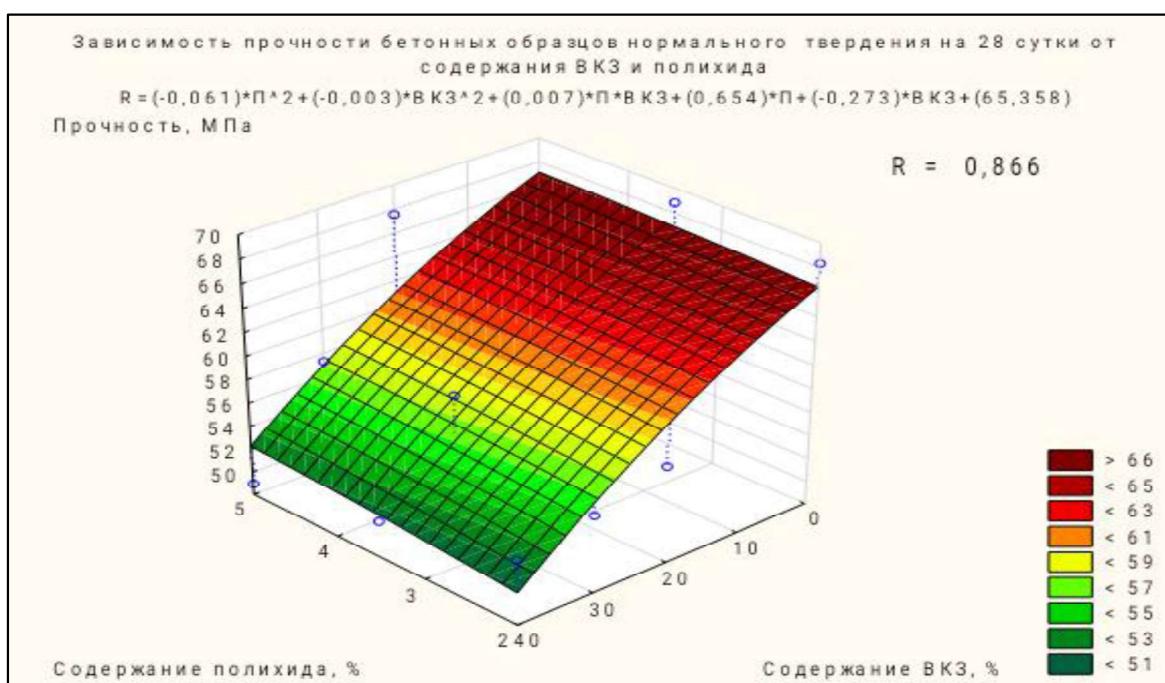


Рисунок 3 – Зависимость прочности бетона от содержания ВКЗ и гиперпластификатора на 28 сутки нормального твердения.

Как показал эксперимент, на основе местных материалов можно получить высокопрочный бетон. Но, для практического применения необходимо продолжить работу по подбору оптимального гранулометрического состава не только заполнителя, но и «вяжущей пасты».

СПИСОК ЛИТЕРАТУРЫ

1. Петроневич, Д. А. Сверхэффективный бетон / Д. А. Петроневич; науч. рук. В. В. Бабицкий // Актуальные проблемы технологии бетона и строительных материалов: материалы 70-й студенческой научно-технической конференции 7-12 мая 2014 г. / Белорусский национальный технический

университет, Строительный факультет. – БНТУ : Минск, 2015. – С. 38-42.

2. Мещерин, В. Высокопрочные и сверхпрочные бетоны: технологии производства и сферы применения // Стройпрофиль. – № 8-08. – 2008.

3. Perry, V. H. «Q&A: What is Reactive Powder Concrete?», Bridge Views, No. 16, July/August 2001.

Воронина Кристина Евгеньевна – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail:ms.kristina.voronina.1999@mail.ru;

Плотникова Людмила Георгиевна – к.т.н., доцент, заместитель заведующего кафедрой «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail:lupl47@yandex.ru.

СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ КАК ОСНОВА ОЦЕНКИ НАДЕЖНОСТИ ТЕРРИТОРИЙ ДЛЯ СТРОИТЕЛЬСТВА

Е. И. Вяткина, В. В. Костев

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Статья посвящена обзору принципов и методов сейсмического микрорайонирования (СМР) территорий; описаны исходные данные для проведения СМР; рассмотрены методы отображения результатов сейсмического микрорайонирования и их использование при проектировании сооружений и зонировании территорий. Проанализирована сейсмогенная обстановка Алтайского края и влияние повышения балльности сейсмической активности на характеристики грунтов.

Ключевые слова: сейсмическое воздействие, сейсмическое микрорайонирование, изменение физико-механических свойств грунтов, инженерно-геологический метод, итоги микрорайонирования.

Сейсмическое микрорайонирование (СМР) – вид сейсмического районирования, уточняющий максимально возможную интенсивность сотрясения (балльность), которая принимается по карте общего сейсмического районирования (ОСР) где учитывается для территорий и отдельных участков влияние местных условий, исходя из того, что к средним грунтовым условиям относятся начальные параметры сейсмичности при детальном сейсмическом районировании (ДСР) и ОСР.

Местными считаются такие условия как строение и состав верхней части геологического разреза; геоморфологические особенности (крутизна откосов, расчлененность рельефа, наличие и строение речных и морских террас и т.д.); гидрогеологическая и инженерно-геологическая уникальность участков (физико-механические свойства и состав грунтов, их обводненность, мощность, а также глубину залегания в них подземных вод и т.д.), связь сейсмоактивных разломов и иные факторы, которые действуют на параметры сейсмических воздействий.

Методика СМР состоит в исследовании особенностей данных местных условий, которые отличаются от средних грунтовых, для уточнения характеристик сейсмических воздействий в пределах картируемой местности, при помощи расчетных методов, совокупности инженерно-геологических и геофизических исследований, к тому же (при случае) сейсмологической регистрации слабых микросейсм и землетрясений.

Особая карта инженерно-геологического районирования применяется в роли инженерно-геологической базы, которая может допустить по комплексу инженерно-геологических данных деление территории

сейсмического микрорайонирования на однородные в сейсмическом отношении таксометрические единицы, соответствующие требованиям РСН 60-86.

Итоги микрорайонирования показываются на картах масштабов 1:25000-1:5000. Балльность некоторых участков по карте СМР может различаться на ± 1 и даже ± 2 балла от балльности территории по карте ОСР.

При проектировании сейсмостойких сооружений и зданий, зонировании местности по этажности застройки и месторасположению зон озеленения с учетом сейсмической угрозы, составлении и корректировке генпланов городов либо других территорий, которые подлежат застройке, используют карты СМР, которые были утверждены, в качестве нормативных документов.

Полученная при СМР инженерно-геологическая информация даёт возможность сократить сроки, объем и стоимость изысканий и строительства некоторых объектов. Эта информация оценивает действительную сейсмостойкость зданий, возведённых с учетом уточненных величин расчетной балльности.

Средне- и крупномасштабные карты, которые применяются в качестве первоначальных данных осуществляющих СМР, показывают закономерности пространственного распределения и изменения инженерно-геологических факторов, оказывающих воздействие на сейсмические местности.

По большому счёту в комплекс вспомогательных карт могут входить: инженерно-геологические, геоморфологические, гидрогеологические, тектонические, глубин залегания уровня грунтовых вод с элементами про-

гноза гидрогеологических условий, геологолитологические четвертичных отложений и коренных пород, стратоизогипс по кровле коренных пород, мощностей четвертичных отложений (или толщи дисперсных грунтов), экзогенных геологических процессов, а в случае надобности – специальные (трещиноватости просадочности лёссовых грунтов, скальных пород и др.).

К картам прилагаются таблицы физикомеханических и сейсмических параметров грунтов, корреляционные зависимости между данными свойствами, если они заданы. Естественно, что при СМР применяются материалы, которые были получены в результате ОСР и ДСР, но только если их проводили на картируемой территории.

В основе СМР заложены скорость распространения упругих волн, зависимость разрушительного эффекта мощных землетрясений от грунтовых условий, уровень на котором залегают грунтовые воды, состав и мощности толщи дисперсных грунтов, которые подстилаются наиболее плотными породами, близость сейсмоактивных разломов и отчёреды других факторов.

Цели, задачи, а также набор аппаратурно-методических средств для каждого вида работ по оценке сейсмической опасности территорий достаточно чётко регламентированы в литературе по этому вопросу, в том числе и в нормативных документах, и, казалось бы, здесь нет нужды повторять известные вещи. Однако, поскольку СМР площадок включает в себя основные методические приёмы СМР под объекты гражданского и промышленного строительства, представляется не лишним перечислить методы и способы сейсмического микрорайонирования: инженерно-геологический, сейсмологический, сейсмических жёсткостей, которые основаны на регистрации и обработке данных о слабых землетрясениях.

Поскольку геофизики, как правило, плохо знакомы с инженерно-геологической терминологией, представляется уместным привести некоторые определения характеристик грунтов, используемые в таблице.

В первую очередь это касается коэффициента пористости e , это отношение объема пор к объему твёрдых частиц грунта

$$e = n/(1 - n),$$

где n – пористость грунта.

Другой инженерно-геологический термин, используемый в таблице, показатель текучести (консистенции) w_p , с его помощью

можно охарактеризовать свойства глинистых грунтов, меняющиеся от влаги.

Глинистый грунт, который был сильно увлажнён, имеет способность растекаться, в случае подсушивания он переходит в пластичное состояние, а при последующем понижении влажности – в твердое.

Глинистые грунты по консистенции различают на 3 состояния: твёрдое, текучее и пластичное. Между этими состояниями есть границы, ими являются характерные значения влажности, которые называются границей раскатывания (нижний предел пластичности) w_p и границей текучести (верхний предел пластичности) w_L .

Разность между границами текучести и раскатывания называется числом пластичности грунта

$$I_p = w_L - w_p.$$

С повышением в грунте относительного содержание глинистых частиц возрастает и число пластичности I_p . Сопоставление естественной влажности глинистых грунтов с диапазоном пластичности даёт возможность определить его состояние по консистенции. Для этой цели пользуются показателем текучести

$$I_L = (w - w_p)/(w_L - w_p).$$

Согласно таблицы значение $I_L = 0,5$ является границей между категориями II и III глинистых грунтов. При $I_L < 0,5$ и коэффициенте пористости $e < 0,9$ грунт относится к категории II, а при $I_L > 0,5$ грунт попадает в категорию III. Показатель текучести не полностью определяет возможность отнесения грунта в ту или иную категорию.

Столь же важной характеристикой является величина коэффициента пористости e : даже при $I_L < 0,5$ грунт, вроде бы, «хороший», но при большой пористости $e > 0,9$ грунт относится к «худшей» категории III. Тем более величина коэффициента пористости имеет значение для супесей (для которых пластичность не имеет значения): при $e < 0,7$ супеси попадают в категорию II.

Рыхлые и несвязные грунты могут также достаточно существенно уплотниться при сейсмическом воздействии. Структуры несвязных грунтов имеют возможность разрушаться, т.е. возникнут взаимные смещения частиц и нарушится их устойчивость, в основном это определяется: плотностью сложения грунта, интенсивностью динамического воздействия и начальным статическим напряжённым состоянием.

СЕЙСМИЧЕСКОЕ МИКРОРАЙОНИРОВАНИЕ КАК ОСНОВА ОЦЕНКИ НАДЕЖНОСТИ ТЕРРИТОРИЙ ДЛЯ СТРОИТЕЛЬСТВА

Рисунок 1 – Геологическая карта г. Барнаула

Действующая на грунт статическая нагрузка, снижает вероятность возникновения разрушения структуры грунта, а также уменьшает, при динамических воздействиях, уплотняемость несвязанных грунтов.

Не мало важно обращать внимание на влажность грунтов, т.к. под действием динамических нагрузок она оказывает существенное влияние на их уплотняемость. Проведённые исследования показывают, что уплотняются сухие и особенно водонасыщенные пески значительно лучше.

Итогом выделим возникновение необходимости изучения изменения физико-механических характеристик различных видов грунтов (в т.ч. сыпучих при разной пористости и влажности) при динамических воздействиях в соответствии с принятой расчетной моделью грунта, в т.ч. при больших ускорениях колебаний [3].

При помощи этих исследований, геологической карты (рисунок 1) и анализа сейсмогенной обстановки Алтайского края выполняется магистерская работа, в которой плани-

руется построить карту сейсмического микрорайонирования с указанием районов, где происходит переход грунтов в опасное состояние при сейсмической активности на территории г. Барнаула.

Для написания данной работы были поставлены следующие задачи:

1. Выделить районы с залеганием различных грунтов

2. Присвоить выделенным районам категорию сложности (от минимального отклика на сейсмiku до максимального)

3. Выявить изменение – какие характеристики грунтов приводят к ухудшению свойств при повышении балльности сейсмической активности для возможности оценки устойчивости существующих зданий и сооружений в этих районах.

4. Отразить на карте, в каких из выделенных районов понизится степень пригодности территории при строительстве в случае возвращения территории к 7-ми балльной по сейсмике.

Так же выделены районы, где будут проводиться исследования:

1) район старого базара (от р. Оби до ул. Пушкина и от проспекта Комсомольского до проспекта Красноармейского) относится к 3 категории по сложности инженерно-геологических условий.

2) район горы (от ВДНХ до Ленточного бора), тут пески неводонасыщенные, 2 категория по сложности инженерно-геологических условий.

3) пос. Южного (от начала пос. Южного до ул. Белинского), наличие просадочных

грунтов по инженерно-геологическим условиям.

4) район от ул. Белинского до села Лебяжье. Замоченные лессовые грунты, приблизительно 3 категория по сложности ИГУ.

5) район от ул. Пушкина до площади Советов. Сверху 5-6 м просадочных грунтов 1-го типа по просадочности.

6) территория от площади Советов до новостроек. Сверху 10-15 м просадочных грунтов, а подстилаются они до глубины 30 м непросадочными грунтами.

СПИСОК ЛИТЕРАТУРЫ

1. СП 14.13330.2018. Строительство в сейсмических районах : дата введения 2018-11-25. – Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/550565571> (дата обращения 12.02.2022).

2. Торов, В. В. Изменение физико-механических свойств грунтов при сейсмическом воздействии / В. В. Торов, Н. Я. Цимбельман. // Вологодские чтения. – Владивосток, 2008. – С. 7-8.

3. Механика грунтов, основания и фундаменты / С. Б. Ухов [и др.]. – М. : Изд-во АСВ, 1994. – 524 с.

Вяткина Елена Ивановна – к.г.-м.н, доцент кафедры «Основания, фундаменты, инженерная геология и геодезия» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: el240943@mail.ru;

Костев Вячеслав Витальевич – студент группы 8Спгс-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: slawakostew@mail.ru.

ЯЧЕИСТЫЕ БЕТОНЫ НА ОСНОВЕ ОТХОДОВ ТЭЦ

Ю. В. Гильмиярова, К. Э. Алиева, К. В. Максимова

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье представлена технология производства неавтоклавного газобетона на основе цемента, кислой золы ТЭЦ и доменного гранулированного шлака. Технология обеспечивает оптимальные характеристики материала по соотношению плотность – прочность с характеристиками, близкими к автоклавному материалу. В результате выполненной работы установлено изменение прочностных характеристик неавтоклавного газобетона в зависимости от состава сырьевой смеси.

Ключевые слова: газобетон, цемент, кислая зола ТЭЦ, доменный гранулированный шлак.

В настоящее время одним из приоритетных направлений в области исследования строительных материалов является совершенствование составов и технологии ячеистых бетонов с целью дальнейшего повышения их качества. С использованием бетона в «классическом» виде, т.е. без минеральных и химических добавок, достижение поставленной задачи практически недоступно. Поэтому в технологии современного бетона применяют модификаторы различного действия: структурирующие, пластифицирующие, регулирующие скорость твердения, а также комплексные модификаторы полифункционального действия [1]. В целом рациональное применение минеральных добавок способствует повышению плотности, прочности и стойкости бетона в агрессивных средах.

Среди минеральных добавок – доменный гранулированный шлак и каменноугольная зола – наиболее изученные, общепризнанные в мире минеральные добавки, широко применяемые в практике производства цементов и бетонов. Как микронаполнитель доменный гранулированный шлак и каменноугольная зола участвуют в улучшении структуры бетонов, улучшают качество поверхности изделий.

В данной работе будут проведены исследования на выявление оптимальных составов с использованием доменного гранулированного шлака и каменноугольной золы в цементных композициях. В исследованиях были использованы следующие сырьевые материалы: каменноугольная зола, гранулированный шлак, портландцемент, алюминиевая пудра, хлорид кальция и сульфат натрия. В качестве интенсификатора газовыделения использовали NaOH технический. Для получения ячеистобетонных изделий готовилась сырьевая смесь, состоящая из: цемента, зо-

лы, и песка, а также к указанным компонентам дополнительно вводился шлак. Соотношение между компонентами представлены в таблице 1. Водотвердое отношение сырьевой смеси составило 0,4. Образцы изготавливали размером $10 \times 10 \times 10$ см.

Твердение образцов в первые сутки осуществлялось при температуре $20 \pm 2^\circ\text{C}$, относительная влажность воздуха $65 \pm 5\%$), затем образцы подвергались тепло-влажностной обработке при температуре 95°C по режиму: 3 ч. подъем температуры + 8 ч. изотермическая выдержка при 60°C + 3 ч. снижение температуры; 6 ч. подъем + 48 ч. изотермическая выдержка + 6 ч. снижение. Определение прочности при сжатии образцов осуществлялось после завершения требуемого цикла твердения на следующий день.

Для получения ячеистобетонных изделий готовилась сырьевая смесь, состоящая из: цемента, золы, и песка, а также к указанным компонентам дополнительно вводился шлак. Соотношение между компонентами представлены в таблицах 1 и 2. Водотвердое отношение сырьевой смеси составило 0,4. Образцы изготавливали размером $10 \times 10 \times 10$ см. Определение прочности при сжатии образцов осуществлялось после завершения требуемого цикла твердения на следующий день.

Для изготовления образцов из неавтоклавного газобетона были использованы составы, представленные в таблице 1. Для ускорения набора прочности использовали тепло-влажностную обработку образцов по режиму: 3 часа подъем температуры + 8 часов изотермическая выдержка при 60°C + 3 часа снижение температуры. Испытания образцов проводили на следующий день. В данном эксперименте использовали цемент № 1.

Таблица 1 – Состав сырьевой смеси для неавтоклавного газобетона плотностью 750-800 кг/м³ при расходе цемента 300 кг/м³

№ состава	Цемент, кг/м ³	Зола, кг/м ³	Песок, кг/м ³	Вода, л	Алюминиевая пудра, кг/м ³	NaOH, кг/м ³
1	300	460	0	295	0,6	3
2	300	230	230	280	0,6	3
3	300	460	0	300	0,6	3
4	300	355	105	290	0,6	3
5	300	105	355	260	0,6	3
6	300	0	460	250	0,6	3

Таблица 2 – Состав сырьевой смеси для неавтоклавного газобетона плотностью 750-800 кг/м³ на основе золы, шлака при расходе цемента 350 кг/м³

№ состава	ПЦ, кг/м ³	Зола, кг/м ³	Шлак, кг/м ³	Песок, кг/м ³	Вода, л	Алюминиевая пудра, кг/м ³	NaOH, кг/м ³
1	350	0	410	0	310	0,6	3
2	350	100	310	0	310	0,6	3
3	350	205	205	0	305	0,6	3
4	350	310	100	0	305	0,6	3
5	350	410	0	0	305	0,6	3
6	350	0	310	100	305	0,6	3
7	350	0	205	205	295	0,6	3
8	350	0	100	310	285	0,6	3
9	350	0	0	410	280	0,6	3

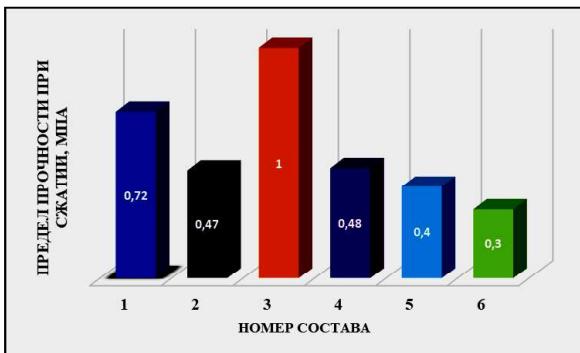


Рисунок 1 – Прочности при сжатии образцов из неавтоклавного газобетона в зависимости от состава сырьевой смеси по таблице 1

Полученные результаты представлены на рисунке 1.

В результате проведенного эксперимента установлено, что использование песка в качестве компонента сырьевой смеси не эффективно. Поэтому в дальнейших экспериментах вместо него использовали шлак. Кроме этого, было решено увеличить температуру и время ТВО. Тем самым будет полностью раскрыт потенциал сырьевой смеси для производства неавтоклавного газобетона в короткие сроки для применения в качестве конструкционного материала.

Введение в состав сырьевой смеси даже части песка ведет к снижению прочности по

сравнению с составами на основе шлака и золы.

Из представленных результатов (рисунок 1, таблица 1) можно выделить 3 основных **состава № 2, 3 и 4**.

По результатам проведенного эксперимента сделали корректировку по расходу цемента и его активности.

Его массу увеличили до 350 кг/м³ (таблица 2). Так же был скорректирован режим тепло-влажностной обработки: подъем температуры 6 часов + 48 часов изотермическая выдержка при температуре 95°C + 6 часов снижение температуры.

Состав 9 – это состав, состоящий из цемента и песка. Как видно из таблицы 2, увеличение расхода цемента до 350 кг/м³ и времени тепло-влажностной обработке не позволили получить высоких прочностных характеристик у газобетона, несмотря на то, что в абсолютном значении его прочность увеличилась в 4 раза. Введение в состав сырьевой смеси даже части песка ведет к снижению прочности по сравнению с составами на основе шлака и золы.

Из представленных результатов (рисунок 2) можно выделить 3 основных **состава № 2, 3 и 4**.

Во всех составах расход цемента составил 350 кг/м³, изменяется только соотношение между компонентами заполнителя (зола и шлак):

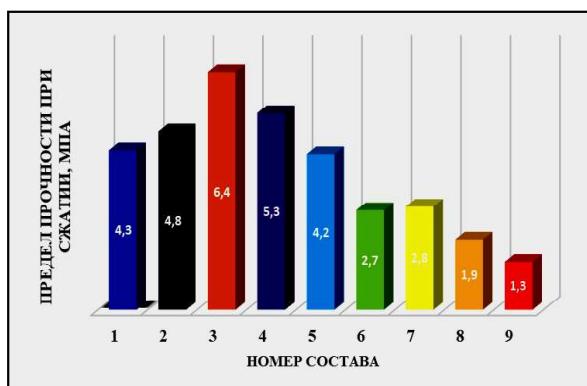


Рисунок 2 – Прочности при сжатии образцов из неавтоклавного газобетона в зависимости от состава сырьевой смеси (по таблице 2) при расходе цемента 350 кг/м³

- **состав № 2** соотношение в процентах зола / шлак – 25/75;
- **состав № 3** соотношение в процентах зола / шлак – 50/50;
- **состав № 4** соотношение в процентах зола / шлак – 75/25.

При этом, можно отметить, что использование в качестве кремнеземистого компонента только золы (состав № 5) или шлака (**состав № 1**) также позволяет добиться высоких прочностных показателей у образцов из газобетона.

Для снижения времени тепло-влажностной обработки в сырьевую смесь дополнительно вводили добавки CaCl₂ (2%, 2,5% и 3% от массы цемента) и Na₂SO₄ (1%, 1,5% и 2% от массы цемента). Так же следует учитывать, что применение химических добавок позволяет сократить расход интенсификатора газовыделения в виде NaOH в 2 раза, т.е. до 1,5 кг/м³.

В результате проведенного эксперимента установлено, что введение добавки хлорида кальция позволяет сократить время тепло-влажностной обработке в 2 раза без существенных снижений показателей прочности при сжатии. Введение добавки сульфата натрия

не приводит к сохранению прочностных показателей, а наоборот – к их снижению почти в 2 раза. Таким образом, применение данной добавки в предложенных составах и по установленному режиму является не эффективным.

Таким образом, в результате проделанной работы установлено, что:

- использование в составе сырьевой смеси золы и шлака, как индивидуально, так и совместно в различных комбинациях позволяет получить высокие результаты по прочности при сжатии, которые колеблются в диапазоне 4,2-6,4 МПа при высоких параметрах тепловлажностной обработки и цементе ЦЕМ I 42,5;

- изменение условий твердение показывает, что прочность газобетона зависит не только от тепло-влажностной обработке, но и от используемых химических добавок. Так использование добавки в виде CaCl₂ позволяет сократить в два раза режим ТВО без снижения прочностных характеристик материала. Добавка Na₂SO₄ не приводит к сохранению прочностных показателей, а наоборот к их снижению почти в 2 раза.

СПИСОК ЛИТЕРАТУРЫ

1. Волженский, А. В. Минеральные вяжущие вещества: учебник для вузов / А. В. Волженский. – М. : Стройиздат, 1986. – 464 с.

Гильмиярова Юлия Васильевна – к.т.н., доцент кафедры «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: yuliaschukina@mail.ru;

Алиева Катрин Эльсеваровна – студент группы Спр-81 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: katiaaliева@mail.ru;

Максимова Кристина Вадимовна – студент группы Спр-81 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail:m09k10v@yandex.ru.

ТЕПЛОИЗОЛЯЦИОННЫЕ ШТУКАТУРНЫЕ РАСТВОРЫ

Ю. В. Гильмиярова, А. Ю. Фролов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В данной статье было рассмотрено влияние модифицирующих добавок: суперпластификатора С-3, порообразователя *Ufapore TCO* и дисперсионного полимерного порошка *Vinnapas 4042H* на свойства цементного вяжущего. Данные добавки позволяют получить продуктивное вяжущее с пониженной плотностью и нужной прочностью. В результате проведенной работы было установлено, что добавки придают модифицированным вяжущим определенные свойства, необходимые для штукатурных работ, такие как уменьшение плотности с сохранением необходимой прочности, пластичность, удобоукладываемость и надежное сцепление с поверхностью.

Ключевые слова: штукатурный раствор, модифицирующие добавки, прочность.

В настоящее время строительный рынок предлагает множество разнотипных материалов для отделки фасада. Выбирая, чем отделывать фасад дома, покупатели чаще всего останавливаются на таких как: штукатурка, керамогранит, фасадные кассеты, сайдинг.

Анализ рынка на 2020 год в Российской Федерации показывает, что объемы штукатурных систем на 2018 г. составлял 41%, а НВФ 59%, уже на 2020 г. эти объемы составляют 57% штукатурки, в то время как сегмент навесных вентилируемых систем уменьшился до 43%. Это связано с тем, что за последний год резко возросла стоимость металла. На 2021 г. цена на металл выросла с 45000 рублей за тонну до 120000 рублей за тонну. Весь навесной вентилируемый фасад крепится на стальные крепежи, кронштейны, которые в свою очередь повышают стоимость вентилируемого фасада в три раза. Из таблицы мы можем наблюдать, как заметно отличается стоимость 1 м² НВФ в сравнении с мокрым фасадом. В свою очередь, теплоизоляционные штукатурные растворы позволяют снизить теплопотери, обеспечивают долговечность стен, не несут дополнительной нагрузки на стены и фундаменты, а так же придают эстетичный внешний вид. Из-за своих адгезионных свойств хорошо ложится практически на все виды поверхностей.

Целью данного эксперимента является получение сухих смесей для штукатурных фасадных поризованных растворов. Получение штукатурного раствора производится путем введения в модифицированные вяжущие вспученного перлитового песка в различном соотношении. Модифицированное вяжущее получают путем введения к портландцементу различных добавок, таких как суперпласти-

фикатор С-3, порообразователь *Ufapore TCO* и дисперсионный полимерный порошок *Vinnapas 4042H*. В работе применялись следующие сырьевые материалы, которые представлены на слайде (листе):

- ✓ Портландцемент ЦЕМI 42,5Б производства ООО «Искитимцемент»
- ✓ Перлитовый песок производства ООО «Терра Мастер» г. Новосибирск
- Добавки:
 - ✓ Пластификатор С-3 предприятия ООО «Компонент» г. Владимир
 - ✓ Дисперсионный полимерный порошок *Vinnapas 4042H* производитель WackerChemie AG (Германия)
 - ✓ Порообразователь типа *UfaporeTCO* (Венгрия)
 - ✓ Полипропиленовая Фибра размером 12 мм.

Испытание сырьевых материалов и изучение физико-механических характеристик полученного вяжущего и штукатурного раствора проводились в соответствии с требованиями ГОСТ.

На первом этапе исследования было изучено модифицированное вяжущее с добавками. Для этих целей изготавливали образцы-кубики с ребром 2 см, состоящие из ПЦ и добавок с различными дозировками. Заформованные образцы хранились в камере нормального твердения. Каждый состав был испытан на среднюю плотность и прочность на сжатие в возрасте 1, 3, 7, 28 суток.

В результате проведенного эксперимента установлено, что по мере увеличения дозировки С-3 прочность закономерно возрастает. *Ufapore* на прочность заметного влияния не оказывает. При этом плотность образцов увеличивается от повышения дозировки С-3, а при увеличении дозировки *UfaporeTCO*

ТЕПЛОИЗОЛЯЦИОННЫЕ ШТУКАТУРНЫЕ РАСТВОРЫ

плотность уменьшается до 15%, добавки оказывают противоположное влияние. Так же С-3 снижает потребление воды до 20%.

Полимерный порошок Vinnapas 4042Н при различной дозировке на прочность особого влияния не оказывает, но при изготовлении раствора упростилось его перемешивание – он стал более пластичный, вязкий. Этому способствует создание полимерной конструкции и эффекту «памяти формы» – это способность раствора после деформации сохранять приданную ему форму. Исходя из проведенных исследований было установлено оптимальное соотношение добавок с-3 (0,75%)+Vinnapas (1%)+ Ufapore (0,03%). Этот состав показал одни из лучших показаний на прочность и плотность.

Следующим этапом работы являлось определение оптимального состава штукатурного раствора. Для этой цели использовали следующие соотношения по массе модифицированного вяжущего и вспученного перлитового песка: 80:20, 75:25, 70:30, 65:35, 60:40, 55:45. Из предложенных составов были изготовлены балочки размером 4 × 4 × 16 см. Заформованные образцы хранились в камере нормального твердения, часть образцов сушились при температуре 60°C до постоянной массы. Каждый состав был испытан на плотность в естественном, сухом состоянии, прочность на сжатие, на изгиб, адгезию. Так же исследовали водонасыщение и морозо-

стойкость. Приготовление штукатурного раствора производили механизированным способом. На графиках (рисунки 1, 2) видно, что прочность на сжатие и изгиб закономерно снижается по мере увеличения перлита, составы 60:40 и 55:45 не соответствуют требованиям в 2,5 МПа – на сжатие и 1 МПа – на изгиб. Аналогичны результаты по плотности образцов в естественном и сухом состоянии – с увеличением перлита снижается. Составы 65:35, 60:40, 55:45 удовлетворяют требованиям по плотности в естественном состоянии в 700 кг/м³. Но при этом если рассматривать соотношение плотность/ прочность, то удовлетворяет состав только с соотношением компонентов 65:35. Плотность штукатурного раствора в абсолютно сухом состоянии составляет от 800 до 540 кг/м³. На этих образцах в возрасте 28 суток были проведены испытания на отрыв.

На графике (рисунок 3) видим, что все составы показали прочность больше требуемой как и в нормальных условиях так и после испытания на морозостойкость (не менее 0,4МПа), а для составов 80:20 и 55:45% не целесообразно дальнейшее испытание, так как они не соответствуют требованиям по прочности и плотности.

Испытания на морозостойкость проводились прямым методом, т.е. попаренное замораживание и оттаивание в течение 35 циклов.

Рисунок 1 – Влияние перлита на прочность при сжатии

Рисунок 2 – Влияние перлита на прочность при изгибе

Рисунок 3 – Влияние состава теплоизоляционного штукатурного раствора на плотность в естественном состоянии

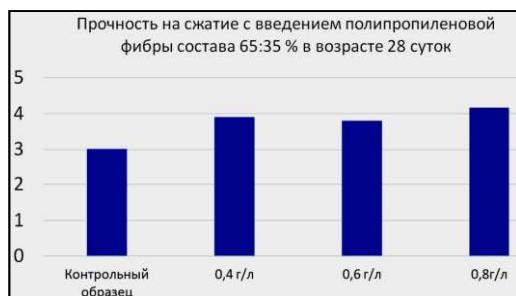


Рисунок 4 – Влияние полипропиленовой фибры на прочность при сжатии раствора

При определении сцепления раствора образцы оттаивали над водой. Исходя из полученных данных было установлено, что в образцах после 35 циклов испытания на морозостойкость наблюдается снижение прочности как на сжатие, так и на изгиб в пределах от 10 % до 22%. Что соответствует требованиям ГОСТ. Таким образом, полученные составы имеют морозостойкость 35 циклов.

Водопоглощение по объему находится в пределах 19-24% и принципиально не увеличивается с увеличением количества перлита. Водопоглощение по массе изменяется от 22 до 39%, что вполне объяснимо – перлита очень гигроскопичный материал, который впитывает большое количество воды, что в свою очередь позволит штукатурному раствору дольше оставаться влажным, что будет способствовать более полной гидратации цемента в реальных условиях.

Одним из основных показателей качества штукатурного раствора является его усадка при высыхании. По результатам можно сделать вывод, что усадка при высыхании штукатурного раствора через 100 дней находится в пределах 0,3-0,6 мм/м. В то время как чистый цементный камень может давать усадку при высыхании до 3 мм/м.

В строительстве существуют различные способы нанесения штукатурного раствора. Самые распространенные – это нанесение на стеклотканевую подложку или без ее использования, т.е. оштукатуривание идет сразу по минераловатным плитам. Для штукатурных растворов, которые используются без использования подложки, было предложено вводить полипропиленовую фибру, которая позволит увеличить жесткость и прочности при изгибе. Для этих целей вводили полипропиленовую фибру в дозировках 0,4; 0,6; 0,8 г/л в состав 65:35%.

На графиках (рисунок 4) наблюдается незначительное увеличение прочности на сжатие и на изгиб при увеличении дозировки полипропиленовой фибры, а при испытании на отрыв образцы стали показывать уменьшение прочности при увеличении дозировки. Это объясняется тем, что уменьшается пятно контакта раствора с основанием.

Исходя из полученных результатов, установлен состав штукатурного раствора с оптимальным соотношением модифицированных вяжущих к вспученному перлитовому песку 65:35 со следующими физико-механическими характеристиками:

- плотность 700 кг/м³ (в сухом состоянии 550 кг/м³),
- прочность при сжатии 3,01 МПа,
- водопоглощение составляет по массе 39%, по объему 24%,
- морозостойкость 35 циклов.

Гильмиярова Юлия Васильевна – к.т.н., доцент кафедры «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: yuliaschukina@mail.ru;

Фролов Антон Юрьевич – студент группы 8С(з)-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: toshafrollow@mail.ru.

ПРОИЗВОДСТВО РАБОТ ПО УСТРОЙСТВУ МОНОЛИТНОГО ЖЕЛЕЗОБЕТОННОГО ДНИЩА КОНУСНОГО ТИПА, ИМЕЮЩЕГО УКЛОН К ЦЕНТРУ ИЛОУПЛОТНИТЕЛЯ

И. К. Калько¹, С. И. Калько², В. К. Козлова¹, Д. И. Остапова¹

¹ Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

² НПО «Стройгипс», г. Барнаул

В статье приведены результаты производства работ по устройству монолитного железобетонного днища конусного типа, имеющего уклон к центру илоуплотнителя (1 и 2) в г. Барнауле. По результатам выполненных работ можно переходить к устройству монолитной железобетонной центральной полой конусного типа опоры илоуплотнителя (1 и 2).

Ключевые слова: илоуплотнитель, арматура, полосы, стык арматуры и бетона, маячные рамы, опалубка, напряжение, приборы, захватка, стержень, подмости, бетонирование, вибратор, теплопак, зимнее бетонирование, температура твердения, лотки.

Материалы данной работы являются продолжением статьи «Производство работ по устройству защитного слоя напрягаемой арматуры стены илоуплотнителей 1 и 2».

Днище илоуплотнителя представляет собою конструкцию усеченного конуса типа с уклоном к центру $i = 0,022$. Толщина существующего днища до реконструкции 250 мм. Днище было заармировано стержнями периодического профиля Ø22 мм (A111-A1V) с шагом 450 мм и двумя сетками из арматуры Ø5 мм с шагом 150 × 150 мм (рисунок 1). Указанная арматура была расположена по средине толщины днища. В соответствии с проектным решением часть днища Ø10040 и центральный стакан вместе с фундаментом были демонтированы. При бетонировании днища илоуплотнителя № 2 были использованы рабочие чертежи, разработанные ОАО «Сибгипрокоммунводоканал» г. Новосибирска.

До начала бетонных работ устанавливается схема бетонирования: способ подачи, направления бетонирования, укладки и уплотнения, заглаживания бетонной смеси, продолжительность бетонирования. В связи с большим объемом бетонных работ (площадь днища илоуплотнителя составляет 424 м²; объем бетона 165 м³) бетонируемую площадь можно разбить на 28 усеченных конусных полос размером в плане: у наружной стены – 2,67 м у кольцевого лотка 0,67 м. Длина полос 10,0 м (рисунок 2). Толщина набетонки днища составляет у приямка 270 мм, у наружной стены – 500 мм. В среднем толщину бетонного покрытия можно принять равную 390 мм.

Ввиду значительного колебания отметок маячные полосы необходимо готовить из проката (труб, швеллеров и т.д.) разных поперечных размеров по месту. Маячные продольные полосы между собой соединяются поперечными прожилками через 2,5 м. Поперечные прожилки должны быть утоплены по отношению к продольным на 2 см для удобства бетонирования и пользования виброрейкой. Продольные и поперечные полосы лучше соединять между собой на болтах.

Бетонирование полос ведется через одну, вначале – нечетные полосы, а затем, после того как бетон затвердеет, разбирают

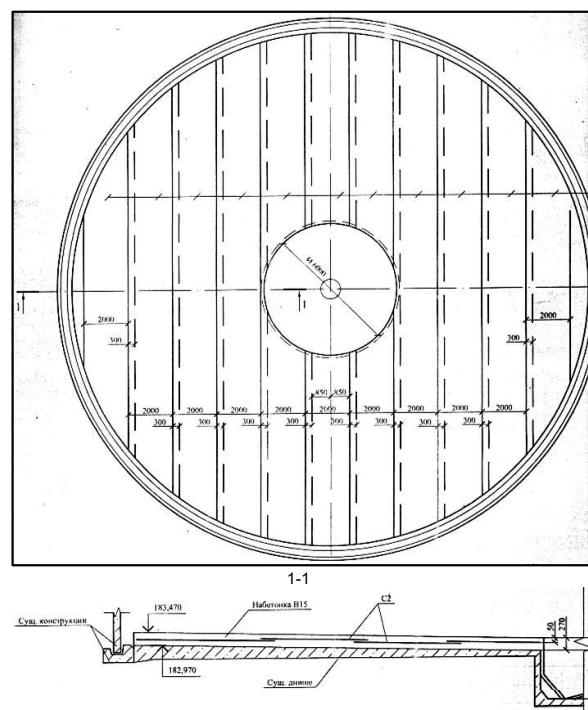
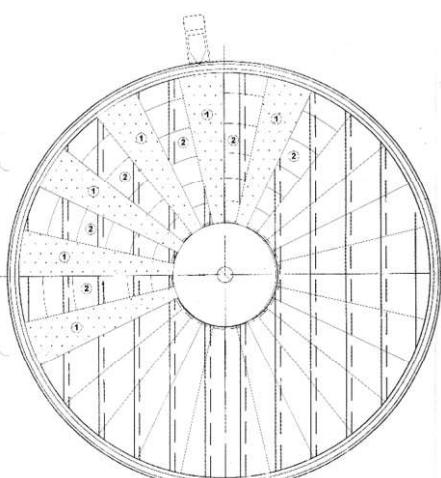
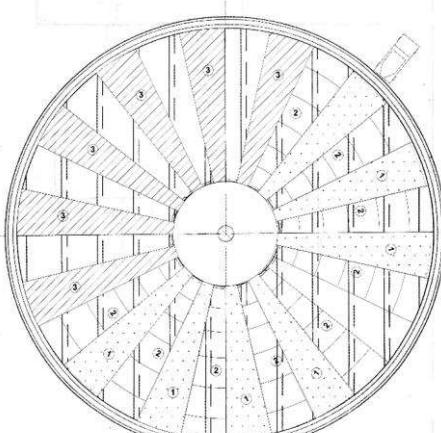




Рисунок 1 – Схема расположения сеток

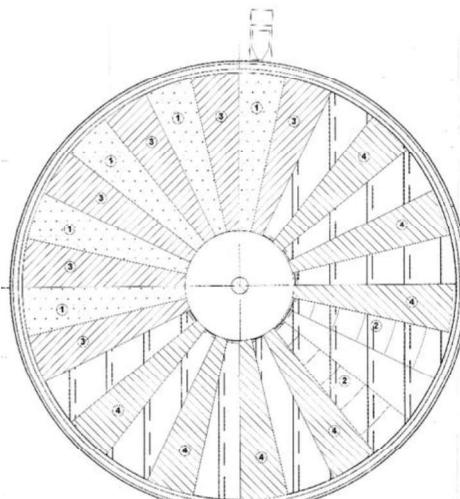

1 – полосы для бетонирования; 2 – маячные рамы

Рисунок 2 – Первый день бетонирования

1 – полосы для бетонирования; 2 – маячные рамы; 3 - забетонированные полосы

Рисунок 3 – Второй день бетонирования

1 – полосы для бетонирования; 2 – маячные рамы; 3,4 – забетонированные полосы

Рисунок 4 – Третий день бетонирования

маячные рамы и бетонируют четные полосы. Схема последовательности бетонирования набетонки приведена на рисунке 3.

Бетонирование днища илоуплотнителя выполняется в следующей последовательности: транспортировка готовой бетонной смеси на объект → подача бетонной смеси к месту укладки → технология и организация строительного процесса → уход за бетоном → контроль качества бетонных работ. При бетонировании днищ резервуаров применяют портландцемент марки не менее 400 и составляющие бетона должны соответствовать ГОСТу. Марка бетона может соответствовать проектной, но не менее М200, подвижность бетона 2-5 см. Проектный класс бетона В15. При бетонировании высота свободного сбрасывания бетонной смеси нормами устанавливается не более 3 м. При большей высоте бетонная смесь спускается по наклонным лоткам. С учетом высоты автобетоносмесителя общая высота спуска бетонной смеси до днища илоуплотнителя составляет более 3-х метров. Для спуска бетонной смеси к месту укладки подготовлены лотки, с небольшой площадкой из листового металла на бетонируемой полосе. Перед приемом бетонной смеси выполняются следующие работы:

- устанавливаются арматурные сетки (рисунок 1);

- устанавливаются в проектное положение маячные рамы в количестве 7-8 шт., которые позволяют забетонировать 6-7 полос. На каждую полосу расходуется до $6,5 \text{ м}^3$ бетонной смеси;

- производится устройство ходов шириной 40-50 см из досок толщиной 50 мм, которые укладываются на поперечные полосы маячной рамы. Необходимые для транспортирования и укладки бетонной смеси, для заглаживания и железнения бетонного покрытия в поперечном направлении устраивается настил шириной 50-60 см из досок толщиной 50 мм и длиной 3,5 м;

- перед укладкой бетонного покрытия поверхность основания должна быть очищена, увлажнена и загрунтована цементным молоком. Устройство набетонки допускается при температуре воздуха на уровне пола не ниже $+5^\circ\text{C}$.

Бетонную смесь укладывают на подготовленное основание между маячными рамами полосами через одну, разравнивая ее скребками или лотатами. На отдельные участки бетонная смесь доставляется тачками по деревянным ходам или путем перелопачивания. Поверхность выровненного бетонного слоя с учетом последующей его осадки в

ПРОИЗВОДСТВО РАБОТ ПО УСТРОЙСТВУ МОНОЛИТНОГО ЖЕЛЕЗОБЕТОННОГО ДНИЩА КОНУСНОГО ТИПА, ИМЕЮЩЕГО УКЛОН К ЦЕНТРУ ИЛОУПЛОТНИТЕЛЯ

процессе виброобработки должна быть на 3-5 мм выше маячных полос.

Бетонную смесь уплотняют виброрейками, после чего поверхность набетонки выравнивается правилом. В связи с криволинейностью днища (конусный тип) при уплотнении и выравнивании при укладке бетонной смеси рабочие должны иметь в наличии 2-3 типа виброреек и правил. Вслед за бетонщиком с интервалом 20-30 минут идут двое рабочих, заглаживающих поверхность резиновой лентой, длина которой примерно на 1 м больше ширины бетонируемой полосы. Заглаживание лентой выполняется за два прохода. Окончательная отделка покрытия выполняется вручную с помощью кельмы, терки, скребка, гладилки, резиновой лентой. Выступающее на поверхности цементное молоко удаляют скребками. Мелкие дефекты устраняют затиркой цементным раствором с помощью металлического шпателя.

Учитывая повышенные требования к бетонированию днища илоуплотнителя, когда требуется плотность и водонепроницаемость покрытия, ее железят.

Железнение бетонного покрытия выполняется через 30-40 мин после заглаживания. Железнение выполняют с применением сухого просеянного цемента и заканчивают до начала схватывания бетона. Железнение затвердевшего бетона запрещается.

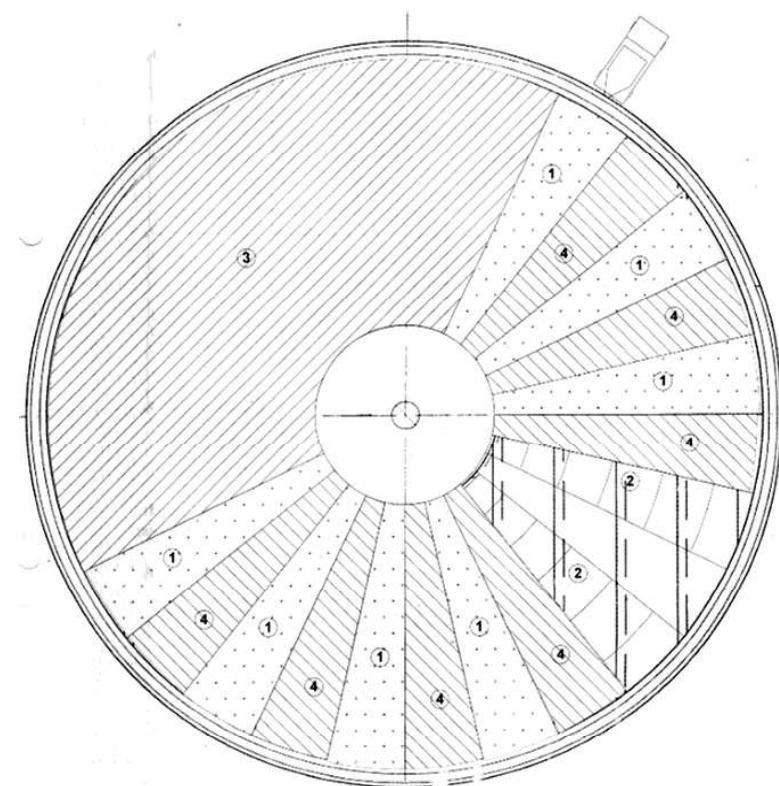
Начало и конец схватывания бетона определяется ГОСТом 7473-94 и зависит от температуры окружающей среды, В/ц отношения, цемента. Для цемента начало схватывания равно 2,5-3 часа; конец схватывания – 4-6 часов от момента приготовления.

Нормами запрещается движение людей по свежеуложенному бетону, если прочность бетона не достигла 1,5 МПа. Такую прочность бетон может набрать, в зависимости от температуры окружающей среды, в срок не менее суток. Прочность бетона полосы можно определить с помощью таблицы или определить неразрушающим методом. Поэтому бетонирование днища илоуплотнителя выполняется по следующей схеме:

- в смену звено бетонщиков бетонирует 6-7 нечетных полос;

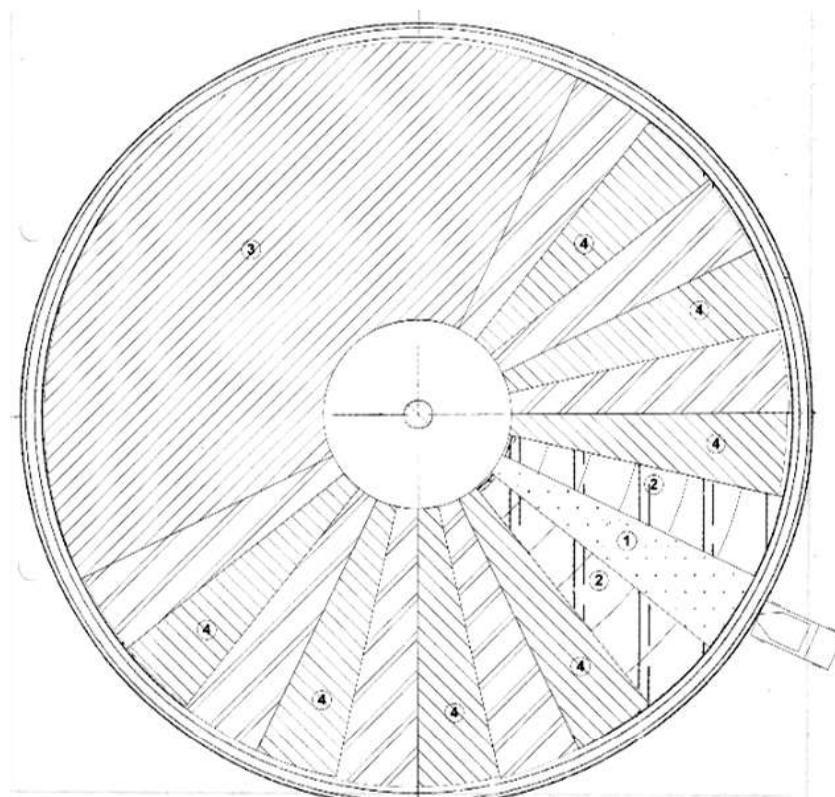
- на следующий день производится разборка и установка маячных рам на новые захватки и бетонирование следующих 6-7 полос (рисунки 2, 3);

- на третий день вновь производится перестановка маячных рам; одновременно идет подготовка четных полос к бетонированию – перед возобновлением укладки бетонной смеси после перерыва вертикальную кромку затвердевшего бетона покрытия очищают от пыли и грязи и промывают водой, вертикальная поверхность должна быть очищена от цементной пленки с помощью металлической щетки. В месте рабочих швов уплотнение и


Таблица – Зависимости прочности бетона от его температуры при твердении (данные НИИЖБ)

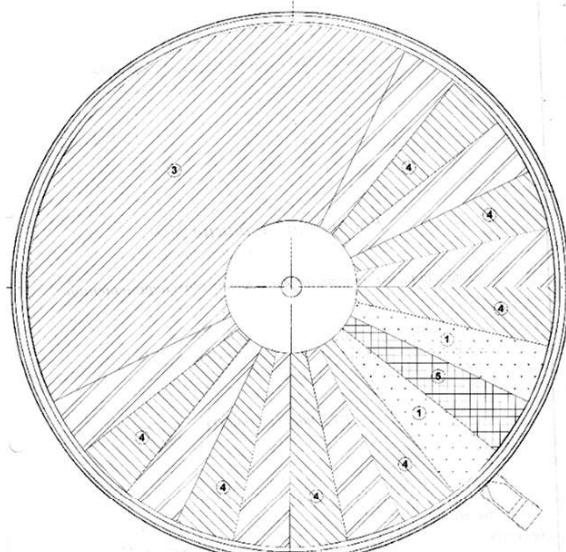
Марка бетона	Возраст бетона, сут	Прочность бетона, проц. От R ₂₈ при температуре бетона, °С								
		-3	0	5	10	20	30	40	50	60
На цементе марки 300										
200	0,5	-	-	2	5/3	8/6	15/12	20/20	-	-
	1	-	4	6/3	10/6	18/12	27/20	36/35	45/45	52/60
	2	-	8/4	12/7	18/12	30/20	45/35	55/50	65/65	72/76
	3	5/2	12/7	20/12	25/18	40/30	52/46	65/63	75/80	-
	5	8/4	20/13	30/20	40/30	55/45	65/60	78/80	-	-
	7	0/6	30/18	38/25	48/40	64/55	74/70	85/92	-	-
	14	12/8	40/25	52/40	64/55	80/75	90/90	100	-	-
	28	15/10	55/35	68/55	80/70	100/100	-	-	-	-
На цементе марки 400										
300	0,5	-	1	4/2	5/4	12/7	17/12	28/25	38/32	50/42
	1	3	5/3	9/6	12/10	23/16	35/30	45/40	55/50	63/65
	2	6/3	12/8	19/12	25/18	40/30	55/40	65/60	75/75	80/90
	3	8/5	18/13	27/18	37/25	50/40	65/55	77/70	85/90	-
	5	12/8	28/20	38/27	50/35	65/55	78/65	90/85	-	-
	7	15/10	35/25	48/34	58/43	75/65	87/70	98/92	-	-
	14	20/12	50/35	62/50	72/60	87/80	100/96	100	-	-
	28	25/15	65/45	77/65	85/80	100/100	-	-	-	-

Примечание: 1. В числителе приведены данные для бетона на портландцементе, а в знаменателе на шлако-портландцементе.


2. Прочность бетона на портландцементе с С₅% более 6% приведена в таблице данных на 5...10%.

3. Сведения о нарастании прочности даны для бетона, полученного из бетонной смеси с ОК 1...3 см; при использовании смесей с ОК более 3 см темп нарастания прочности замедляется.

1 – полосы для бетонирования; 2 – маячные рамы; 3,4 – забетонированные полосы


Рисунок 5 – Четвертый день бетонирования

1 – полосы для бетонирования; 2 – маячные рамы; 3,4 – забетонированные полосы

Рисунок 6 – Пятый день бетонирования

ПРОИЗВОДСТВО РАБОТ ПО УСТРОЙСТВУ МОНОЛИТНОГО ЖЕЛЕЗОБЕТОННОГО ДНИЩА КОНУСНОГО ТИПА, ИМЕЮЩЕГО УКЛОН К ЦЕНТРУ ИЛОУПЛОТНИТЕЛЯ

1 – полосы для бетонирования; 2 – маячные рамы; 3-5 – забетонированные полосы

Рисунок 7 – Шестой день бетонирования

заглаживания бетона проводят до тех пор, пока шов станет незаметным. Бетонирование выполняется за 4 дня (рисунки 3-7).

Уход за бетоном должен обеспечить температурно-влажностный режим, исключающий интенсивное высыхание бетона и связанные с этим температурно-усадочные трещины и созданием условий, обеспечивающих нарастание его прочности; условия, исключающие механическое повреждение свежеуложенного бетона. При температуре воздуха выше 15° бетон первые 3-е суток поливают с интервалом в 3 часа. Поверхность бетона можно покрыть специальными пленкообразующими составами или защитными пленками. Качество бетонных работ необходимо контролировать в соответствии с требованиями СНиП 3.03.01-87.

Бетонную смесь принимают по сопроводительной документации – паспорту и выписке из паспорта на каждую транспортную единицу. Кроме того, строительная организация контролирует прочность бетона на объекте изготовления и испытания образцов или неразрушающими методами.

Образцы, изготовленные на строительной площадке, должны твердеть по режиму, аналогичному твердению бетона конструкции.

Ровность поверхности покрытия проверяют в радиальном направлении профилимерной рейкой длиной 2 м, в тангенциальном направлении – нивелиром. Трешины и выбоины не допускаются.

При армировании днища и монтаже направляющих для бетонирования днища илоуплотнителя необходимо выполнить:

- для монтажа арматурной сетки в проектное положение устанавливаются фиксаторы в виде штырей из арматуры Ø16 длиной 300-400 мм – 5 шт.; шаг фиксаторов 450 × 450 мм.

- для фиксирования трубных направляющих при бетонировании днища из арматурных штырей Ø16 длиной 200 мм – 160 шт.; фиксаторы устанавливаются попарно в местах сопряжения поперечных и продольных направляющих – не менее 10 штук на каждую раму.

Работы следует выполнять, соблюдая правила техники безопасности согласно СНиП 12-03-2001, СНиП 12-04-2002 «Безопасность труда в строительстве». Часть 1. Общие требования с обязательным соблюдением требований».

Калько Иван Кондратьевич – к.т.н., доцент кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stroygips@list.ru;

Калько Светлана Ивановна – архитектор НПО «Стройгипс», E-mail: stroygips@list.ru;

Козлова Валентина Кузьминична – д.т.н., профессор кафедры «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: Kozloba36@mail.ru;

Остапова Дарья Ивановна – инженер отдела практик и трудоустройства ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stroygips@list.ru.

ПРОКЛАДКА ИНЖЕНЕРНЫХ СЕТЕЙ ЧЕРЕЗ АВТОМОБИЛЬНЫЕ ДОРОГИ БЕЗ ВСКРЫТИЯ ГРУНТА СПОСОБОМ ПРОКОЛА

И. К. Калько¹, С. И. Калько², Г. С. Меренцова¹, Д. И. Остапова¹

¹ Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

² НПО «Стройгипс», г. Барнаул

В статье приведены результаты производства работ по прокладке водопроводной трубы ПЭ 80 SDR 17 диаметром 225 × 12,8 в металлической трубе диаметром 426 × 6 мм без вскрытия грунта способом прокола

Ключевые слова: прокладка, направляющие рамы, пластиковая и металлическая трубы, футляр, кожух, захватка, колодец, котлован, глубина, крутизна, откос, доработка, уровень, грунтовые воды, рыхление, заглушка, опорные башмаки, домкрат, приямок, конусный наконечник.

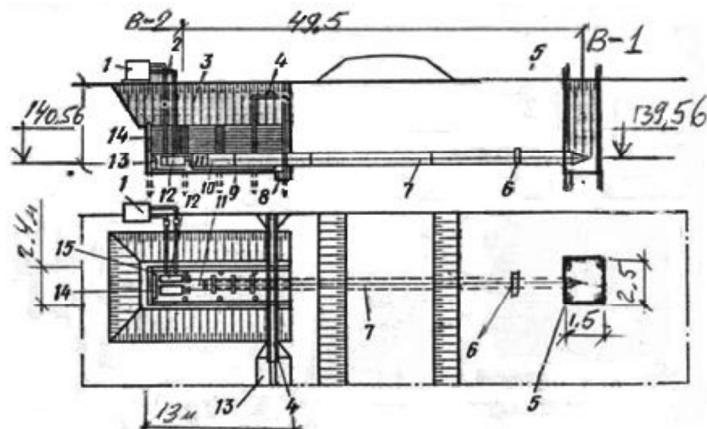
Прокладка инженерных сетей через автомобильные дороги и иные транспортные пути является актуальной проблемой, особенно, в населенных пунктах. При прокладке новых, расширение и реконструкция действующих инженерных сетей не должны создаваться препятствия на автомобильных дорогах для пропуска транспортных средств. Материалы данной работы являются основанием для выполнения следующей работы.

Инженерные решения необходимо разработать на производство работ по прокладке водопроводной пластмассовой трубы ПЭ-80 SDR-17 Ø 225 × 12,8 в металлической трубе (футляре) Ø 426 × 6 мм без вскрытия грунта способом прокола между колодцами В-1 и В-2 протяженностью 49,5 м по улице Гоголя через проспект Красноармейский в городе Барнауле.

При пересечении трамвайных путей по проспекту Красноармейскому водопровод прокладывается в металлической трубе (футляре) в соответствии с требованиями пп. 2.6 и 2.7 СНиП 2.05.09-90. Трасса прокладки водовода от колодца В-1 до В-2 пересекает инженерные сети, расположенные по обе стороны трамвайных путей: газовые сети и сети канализации.

Естественным основанием для сетей служат пески средней крупности и плотности, водонасыщенные, слабопучинистые. Удельный вес грунта – 20,1/10,0 кН/м³; залегание грунтовых вод от поверхности земли встречены на глубине 0,35 м; нормативная глубина промерзания 2,3 м.

Все строительно-монтажные работы по прокладке водопровода при пересечении сетей канализации, трамвайных путей и автомобильных дорог способом прокола по улице Гоголя через проспект Красноармейский в го-


роде Барнауле необходимо выполнять в следующей последовательности:

- по обе стороны проезжей части проспекта Красноармейского вырыть два котлована: рабочий для размещения оборудования и прокладываемой трубы в зоне колодца В-2 и приемный по другую сторону перехода в зоне колодца В-1;
- произвести укрепление откосов котлованов, понижение уровня грунтовых вод;
- в рабочем котловане оборудовать упор для восприятия реакции давления от домкратной установки, произвести монтаж установки для прокладки трубы (кожуха);
- произвести прокалывание грунтового массива шириной 49,5 м;
- подготовить для монтажа пластмассовые трубы;
- выполнить монтаж пластмассовых труб с присоединением с трубами колодцев В-1 и В-2;
- произвести устройство колодцев В-1 и В-2 с выполнением наружной гидроизоляции и обратной засыпкой грунта.

Для размещения оборудования, прокладываемой трубы-кожуха и рабочей пластмассовой трубы необходимо вырыть в зоне колодца В-2 рабочий котлован, а по другую сторону проспекта Красноармейского в зоне колодца В-1 – приемный котлован размером 1,5 × 2,5 м. Размеры рабочего котлована приняты; длина 13 м, ширина 2,4 м. Глубина котлована принимается на 50 см больше проектного заложения трубопровода. Размер котлована по верху зависит от глубиныкопания и крутизны откосов (рисунок 1).

Разработку рабочего котлована необходимо начинать от дороги, перемещаясь постепенно в сторону колодца В-2 до заданной. Недобор грунта должен составлять 0,20 м.

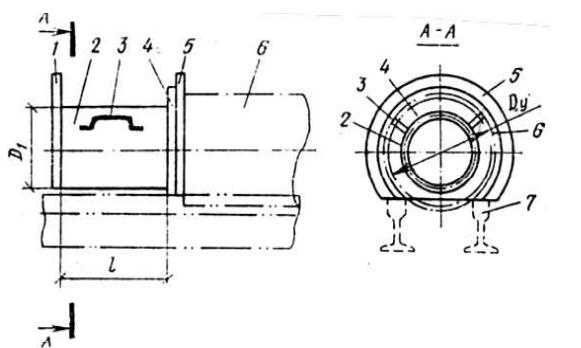
ПРОКЛАДКА ИНЖЕНЕРНЫХ СЕТЕЙ ЧЕРЕЗ АВТОМОБИЛЬНЫЕ ДОРОГИ
БЕЗ ВСКРЫТИЯ ГРУНТА СПОСОБОМ ПРОКОЛА

1 – насос высокого давления; 2 – труба высокого давления; 3 – рабочий котлован; 4 – водоотводной лоток; 5 – приемный котлован; 6 – лобовая обделка (наконечник или нож); 7 – кожух; 8 – приямок для сварки звеньев кожуха; 9 – направляющая рама; 10 – нажимной патрубок; 11- нажимная заглушка; 12- гидравлические домкраты; 13 – водоотводная канава; 14 – опорный башмак; 15 – упорная стенка

Рисунок 1 – Схема домкратной установки для прокладки кожухов прокалыванием

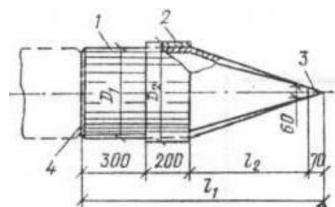
В зоне прокладки водопроводных сетей уровень грунтовых вод высокий – 0,35 м от поверхности земли, пески водонасыщенные средней крупности. Поэтому в водоносных грунтах котлованы необходимо разрабатывать путем устройства водоотлива или искусственного понижения уровня грунтовых вод. Водоотлив осуществляется путем откачки воды насосами непосредственно из котлована в процессе разработки грунта ниже уровня грунтовых вод, а после достижения проектного уровня для беспрепятственного выполнения работ по прокладки водопровода. Открытый водоотлив является наиболее простым, но в котловане практически всегда будет присутствовать вода, усложняющая производство работ. Для понижения уровня грунтовых вод можно использовать искусственный способ, применяя легкие иглофильтровые установки, позволяющие при одногрунтовом расположении понизить уровень грунтовых вод до 4-5 м.

Так как прокладка подземных коммуникаций проходит в стесненных условиях, рекомендуется разработку рабочего котлована выполнять с креплением продольных стенок на половину высоты – 1,5 метров, используя консольный тип крепления. Крепление торцовой стенки со стороны дороги необходимо выполнить на всю высоту для предотвращения обвала проезжей части дороги; со стороны колодца В-2 для передачи на грунт давления от установки монтируется упорная стенка. Стенки приемного котлована при его разработке укрепляют консольно-анкерным способом (рисунок 1). Для спуска рабочих в траншее следует использовать стремянки с перилами шириной не менее 0,75 м, а в узкие


траншеи – приставные лестницы. В пределах призмы обрушения вдоль верхней бровки траншеи не допускается размещать материалы, устанавливать строительные машины и допускать их движение.

Рытье котлованов и траншей с откосами без креплений в нескальных грунтах выше уровня грунтовых вод (с учетом капиллярного поднятия) или в грунтах, осущененных с помощью искусственного водопонижения, допускается при глубине выемки 3 м крутизна откосов 1:1.

Прокладка труб-кожухов способом прокалывания.


Прокалывание грунтового массива, в котором размещается труба-кожух, осуществляется с помощью стальной трубы снабженной наконечником. Для кожуха используется стальная электросварная труба Ø426 × 6 ГОСТ 10704-91. Для устройства упорной стенки используются брусья сечением 160×160 мм. Для укрепления продольных стенок рабочего котлована потребуются стальные трубы Ø89 мм L = 2,5 метров и доски t = 30 мм.

Труба-кожух, снабженная наконечником, вдавливается в грунт, образуя в нем скважину. При продвижении трубы происходит сдвиг грунта и уплотнение его за пределами скважины. Для вдавливания в грунт труб-кожухов способом прокалывания используют установки, состоящие из одного или нескольких гидравлических домкратов, число которых зависит от требуемых усилий и силовых усилий, создаваемых одним домкратом (рисунок 1). Установка состоит из двух домкратов типа ГД-170/1150 или ГД-170/1600.

1 – передний фланец; 2 – патрубок; 3 – скоба; 4 – задний фланец; 5 – диск; 6 – кожух; 7 – направляющая рама

Рисунок 2 – Нажимная заглушка для прокладки кожухов методом прокалывания

1 – корпус; 2 – кольцо; 3 – конус; 4 – соединение с трубой

Рисунок 3 – Конусный наконечник

Гидравлические домкраты приводятся в действие насосами высокого давления. Передача нажимных усилий от гидравлических домкратов к торцу трубы-кожуха осуществляется нажимными патрубками, нажимными шомполами и заглушками. Силовые домкратные установки для прокладки труб-кожухов прокалыванием монтируют на дне рабочего котлована.

При бестраншейной прокладке труб-кожухов используют горизонтальные направляющие рамы. Рамы можно изготовить из укороченных шпал и рельсов. Рамы размещают на дне рабочего котлована. Длина рамы должна быть на 1-1,5 м короче звеньев прокладываемого кожуха; при наращивании кожуха звеньями, например, длиной 6 м направляющие рамы должны иметь длину 4,5-5 м. Для передачи нажимных усилий от установки на упорную стенку применяют опорные башмаки, которые изготавливают из листовой стали толщиной 10-80 мм. Нажимные заглушки служат для передачи нажимных усилий на торцы труб-кожухов (рисунок 2). Для передачи нажимных усилий от силовой установки к нажимным заглушкиам служат нажимные патрубки.

Для снижения сопротивлений трения при прокладке труб-кожухов прокалыванием применяют наконечник, наружный диаметр которого на 20-50 мм больше диаметра прокладываемых труб. Часто используют

конусные наконечники сварной конструкции (рисунок 3).

Упорные стенки монтируют в заднем конце рабочего котлована. Они предназначены для передачи на грунт усилий от прокалывания. Конструкция упорных стенок зависит от прочностных характеристик грунтов и условий работы стенок. Упорная стенка принята шириной 4 м и глубиной заделки 1,5 м.

Способом прокалывания можно использовать установку Главмосстроя, которая позволяет прокладывать трубы – кожухи диаметром 200-400 мм в грунтах I-IV группы любой влажности. В установке используется один домкрат, длина его рабочего хода 1000 мм. Усилие прокалывания передается от продольной рамы на грунт через упорную стенку. Прокладка осуществляется звеньями длиной по 3 м.

До начала работ по прокладке труб-кожухов должна быть выполнены работы по подготовке рабочего котлована для монтажа силовой установки и по монтажу силовой установки.

В подготовку рабочего котлована входит укрепление передней стенки котлована со стороны дороги, укрепление продольных стенок на половину высоты с устройством откосов 1:1 на оставшейся части высоты и отступлением от границы укрепления на 0,5 метров, устройством упорной стенки в соответствии рекомендуемой схемы. Готовится основание рабочего котлована под проектную отметку для монтажа направляющей рамы, приямок для сборки, сварки, испытания и изоляции монтажного стыка при наращивании труб. Решается вопрос понижения и водоотведение грунтовых вод.

При монтаже направляющей рамы необходимо соблюдать проектные размеры: вертикальные, горизонтальные и уклон. Вертикальные проектные отметки оси водопровода между колодцами В-1 и В-2:

– абсолютная отметка оси трубы колодца 139,56 м; колодца В-2 – 140,25 м. Разница отметок составляет 0,69 м на длине $L = 49,5$ метров. Отметка конца кожуха, расположенного на расстоянии 5 м от оси колодца В-2, составляет 140,18 м. Разность отметок 0,62 м на длине кожуха $L = 44,5$ м. Уклон прокладываемых труб $i = 0,01394$. В соответствии с приведенными отметками, уклоном труб и учитывая диаметр трубы – кожуха $\varnothing 426$ мм необходимо произвести

ПРОКЛАДКА ИНЖЕНЕРНЫХ СЕТЕЙ ЧЕРЕЗ АВТОМОБИЛЬНЫЕ ДОРОГИ БЕЗ ВСКРЫТИЯ ГРУНТА СПОСОБОМ ПРОКОЛА

монтаж направляющей рамы и всей силовой установки.

Прокладку подземных трубопроводов под дорогами следует осуществлять при постоянном маркшейдерско-геодезическом контроле строительной организации за соблюдением предусмотренного проектом планового и высотного положений футляров и трубопроводов.

При прокладке защитного футляра под дорогами необходимо контролировать глубину заложения футляра (кожуха) и его положение в горизонтальной плоскости с учетом допускаемых отклонений оси от проектных положений. Отклонения оси защитных кожухов переходов от проектно положения для напорных трубопроводов не должны превышать по вертикали 1% и горизонтали 1,5% длины кожуха.

Процесс прокола состоит в укладке трубы-кожуха на направляющую раму, выверенную по проектному уклону трубопровода, в оснащении рабочего торца трубы коническим наконечником с диаметром опорного основания на 50 мм большим диаметра трубы (рисунок 3). Установка наголовника для передачи давления от домкратов трубы-кожуху, включение домкратов в действие.

Рабочий ход штока домкрата в зависимости от его конструкции и мощности составляет от 1,05 до 1,6 м при длине трубы не менее 6 м. Для продолжения процесса прокола применяют специальные удлинительные патрубки длиной от 1 до 4 м.

Смена патрубков сопряжена с большими затратами ручного труда. Для их снижения применяют внутренний шомпол. Он представляет собой трубу меньшего диаметра и составляет 0,5-0,7 диаметра прокладываемой трубы-кожуха. Шомпол блокирован со штоком домкрата, свободно перемещается внутри прокладываемой трубы. В стенках шомполя сделаны отверстия, в которые вставляют штыри. Штыри передают усилие, развиваемое домкратом, через наголовник трубы.

По мере перемещения трубы и при каждом возврате штока домкрата вместе с шомполом в исходное положение для возобновления прокола штырь переставляют в новое отверстие. После этого начинается следующий рабочий цикл.

Монтаж труб-кожухов.

После входа первого звена трубы-кожуха с коническим наконечником в массив грунта так, что противоположный конец трубы

будет находиться над приямком в заданном месте, производится монтаж второго звена на направляющую раму. Трубу осматривают, очищают от грязи, остатков земли и смесят в направление первого звена, оставляя зазор между торцами двух труб необходимый для сварки.

Торцы труб обрабатывают для производства сварки встык, проверяется проектное положение и соосность свариваемых труб. Затем производится их сварка. Сварной стык обрабатывается, производится его изоляция и начинается следующий рабочий цикл до полного монтажа и прокладки всех звеньев трубы. После прокладки кожуха в проектное положение конец трубы в рабочем котловане засыпается грунтом при этом отверстие остается открытым для пропуска рабочей трубы.

Засыпку лучше выполнять песком слоями, высота которых позволяет утрамбовать минимум до 85% максимальной плотности. При этом высота слоя не должна превышать 30 см. Во избежание смещения трубы засыпку и трамбование необходимо выполнять симметрично относительно укладываемой трубы.

После засыпки производится демонтаж силовой установки, упорной стенки и подготовка основания для прокладки рабочей пластмассовой трубы. Перед торцом кожуха готовится приямок, который служит для сварки рабочей трубы и для ее протаскивания через кожух.

В приемном котловане отделяют конический наконечник от кожуха.

Калько Иван Кондратьевич – к.т.н, доцент кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stroygips@list.ru;

Калько Светлана Ивановна – архитектор НПО «Стройгипс», E-mail: stroygips@list.ru;

Меренцова Галина Степановна – д.т.н., профессор, заведующий кафедрой «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: adio-06@mail.ru;

Остапова Дарья Ивановна – инженер отдела практик и трудоустройства ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stroygips@list.ru.

ПРОИЗВОДСТВО РАБОТ ПО УСТРОЙСТВУ МОНОЛИТНОЙ ЖЕЛЕЗОБЕТОННОЙ ЦЕНТРАЛЬНОЙ ПОЛОЙ КОНУСНОГО ТИПА ОПОРЫ ИЛОУПЛОТНИТЕЛЯ

И. К. Калько¹, С. И. Калько², Д. И. Остапова¹

¹ Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

² НПО «Стройгипс», г. Барнаул

В статье приведены результаты производства работ по устройству монолитной железобетонной центральной полой конусного типа опоры илоуплотнителя (1 и 2) в г. Барнауле. По результатам выполненных работ можно переходить к монтажу оборудования илоуплотнителя (1 и 2).

Ключевые слова: илоуплотнитель, арматура, полосы, стык арматуры и бетона, маячные рамы, опалубка, напряжение, приборы, захватка, стержень, подмости, бетонирование, вибратор, теплляк, зимнее бетонирование, температура твердения, лотки, опора, полоя, конусная.

Материалы данной работы являются продолжением статьи «Производство работ по устройству монолитного железобетонного днища конусного типа, имеющего уклон к центру илоуплотнителя».

Центральный стакан представляет сложное сооружение. Стакан состоит из приямка и центральной полой опоры. Опора состоит из верхней и нижней частей. Высота нижней части 2,49 м, верхней части 3,69 м. Опора является сложной конструкцией конусного типа. Размеры центральной полой опоры в плане составляют: наружный диаметр 1900 мм, толщина стенок опоры в верхней части 200 мм, в нижней части 490 мм, глубина полой части опоры 2810 мм. Верхняя часть центральной опоры завершается железобетонной плитой толщиной 200 мм, диаметром 2100 мм, которая опирается на шесть стоек Ø215 мм, основанием которых служит в свою очередь верх стенки полой опоры. В железобетонной плите предусмотрены 12 отверстий размером 50 × 120 мм по R = 900 мм; 4 отверстия 80 × 80 мм в центральной части и одно отверстие Ø100 мм в центре плиты. Пол приямка представляет собой кольцо вокруг центральной опоры с двухсторонним уклоном $i = 0,9$ и $i = 0,29$, что так же ведет к усложнению производства бетонных работ. Инженерные сети располагаются под днищем илоуплотнителя.

До начала бетонных работ устанавливается схема бетонирования: способ подачи, направления бетонирования, укладки и уплотнения, заглаживания бетонной смеси, продолжительность бетонирования, потребность в рабочих и механизмах.

Вначале производится укладка бетонной смеси бетонной подготовки на отметке 180,78 м толщиной 100 мм. Бетон принят В7,5, площадь подготовки составляет 3,5 м², объем – 0,35 м³. При устройстве бетонной подготовки устанавливаются две маячные деревянные рейки. Вначале производится бетонирование двух крайних полос, а затем средней полосы. Бетон уплотняется с помощью виброреек. После набора бетоном прочности не менее 1,5 МПа выполняется устройство опалубки для оформления стакана под центральную опору. Опалубка стенок стакана представляет цилиндрическую поверхность Ø1,9 м из листового проката толщиной 2 мм, укрепленного вертикальными ребрами жесткости из уголков 50×5 и 3-мя кольцевыми полосами сечением 60 × 4 мм (на отметках 180,78 м и 181,97 м). От смещения опалубку раскрепляют подкосами, распорками. Опалубка состоит из двух полуколец, которые соединяются вместе с помощью 3-х болтов по высоте. Высота опалубки 1,20 м. до выпуска радиальных стержней нижней сетки (рисунок 1).

Для подачи бетона к месту укладки устраивается деревянный настил по днищу илоуплотнителя (рисунок 4). Площадь бетонирования составляет 33,9 м², диаметр – 6,84 м, объем бетона – 10,76 м³. Предварительно вся площадь разбивается на 12 секторов с размерами дуг 2094 мм (Ø6,84) и 660 мм (Ø1,9). Укладка бетонной смеси производится послойно с высотой слоя 20-25 см и уплотнением бетона с помощью вибратора с гибким валом. Затем выполняется бетонирование по секторам через один (рисунок 2). После набора бетоном прочности не менее 1,5 МПа

ПРОИЗВОДСТВО РАБОТ ПО УСТРОЙСТВУ МОНОЛИТНОЙ ЖЕЛЕЗОБЕТОННОЙ ЦЕНТРАЛЬНОЙ ПОЛОЙ КОНУСНОГО ТИПА ОПОРЫ ИЛОУПЛОТНИТЕЛЯ

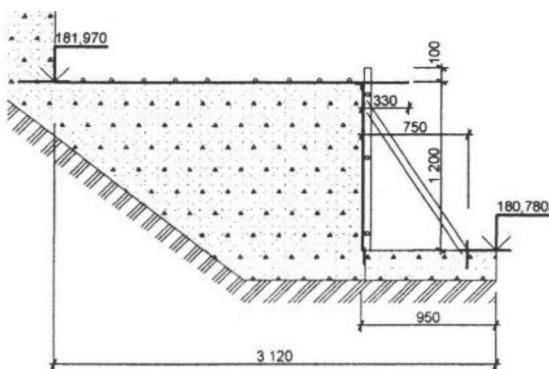


Рисунок 1 – Опалубка стенок стакана

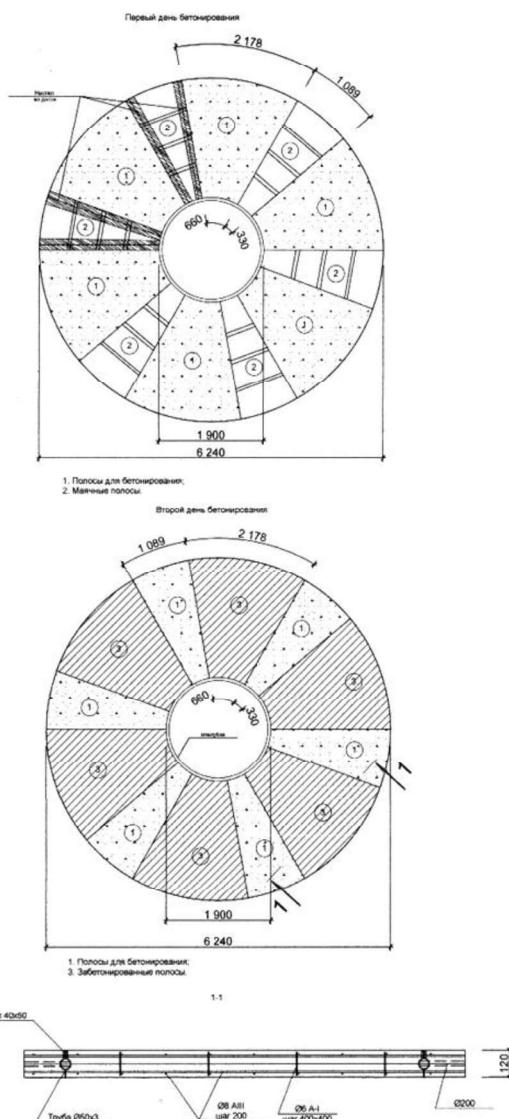


Рисунок 2 – Первый и второй день бетонирования полос

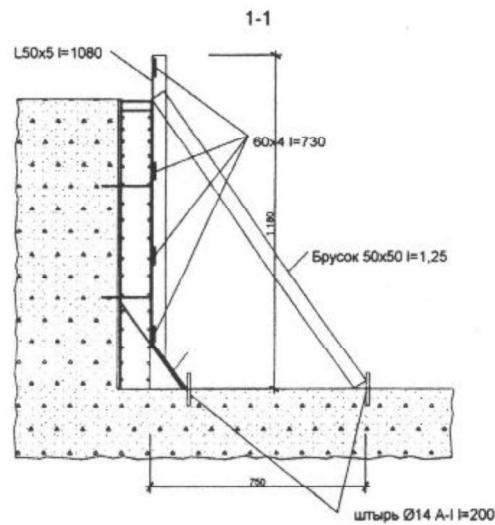


Рисунок 3 – Опалубка стакана

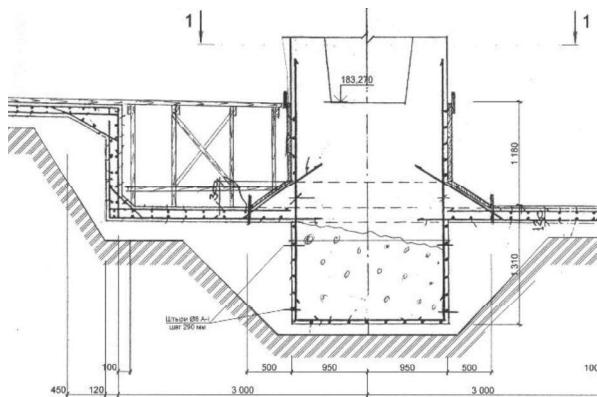


Рисунок 4 – Бетонирование центральной опоры (нижняя часть)

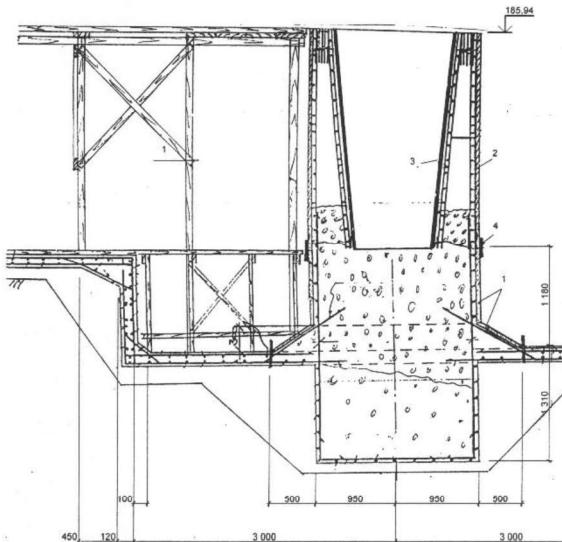


Рисунок 5 – Бетонирование центральной опоры

снимаются маячные рейки и выполняется бетонирование оставшихся секторов. Бетонирование вертикальной стенки приямка между отметками днища илоуплотнителя (182,90 м) и дном приямка на отметке 181,97 м выполняется устройство опалубки, которая представляет цилиндрическую поверхность Ø6,24 м из листового проката толщиной 2 мм, усиленного вертикальными ребрами жесткости из уголков 50×5 с шагом 0,785 мм и 3-мя кольцевыми полосами сечением 60×4 мм. Высота листа проката опалубки принимается 1080 мм. Опалубка по длине окружности разбивается на 5 элементов, из которых 4-е приняты длиной 4,9 м и один длиной 0,75 м.

Крайние ребра 5-ти элементов соединяются вместе с помощью 4-х болтов по высоте. Нижняя часть опалубки закрепляется от смещения с помощью штырей Ø14 мм и шагом 350 мм, которые вставляются в предварительно просверленные гнезда. Верхняя часть опалубки в местах расположения ребер жесткости укрепляется подкосами (рисунки 1, 3). Подача бетона к месту укладки производится по деревянному настилу, который использовался при бетонированию дна приямка. Деревянный настил устраивается также по периметру приямка. Площадь бетонирования составляет $48,59 \text{ м}^2$, диаметр – 10,04 м, объем бетона – $14,69 \text{ м}^3$. Предварительно вся площадь разбивается на 14 секторов с размерами дуг $2,25 \text{ м}$ ($\text{Ø}10,04$) и $1,40 \text{ м}$ ($\text{Ø}6,24$ м) (рисунок 4). Между секторами устанавливаются по уровню маячные рейки с отметкой верха 182,90 м. Высота реек 100 мм, длина 1,9 м. Вначале выполняется бетонирование с отметки 181,97 м до низа маячных реек.

После набора бетоном прочности в вертикальной стенке приямка не менее 1,5 МПа производится демонтаж опалубки и монтаж нижней сетки арматуры дна приямка с выпуском арматуры за гран опалубки на 300 мм в сторону центральной опоры (рисунок 1). Затем производится наращивание опалубки вертикальной стенки под центральную опору до отметки 182,09 м. полосой шириной 105 мм, которая монтируется на выпуски арматуры нижней сетки и крепится к ребрам жесткости ниже расположенной опалубки. Бетонную смесь укладывают на подготовленное основание между маячными рамами полосами через одну, разравнивая ее скребками или лопатами. Поверхность выровненного бетонного слоя с учетом последующей его осадки в процессе виброобработки должна быть на 3-5 мм выше маячных полос. Все операции по обработке свежеуложенной бетонной смеси

описаны подробно при бетонировании днища илоуплотнителя.

Через сутки, когда бетон наберет прочность не менее 1,5 МПа, необходимо выполнить демонтаж опалубки стакана под опору, установить штыри в гнезда по периметру через 380 мм и в два ряда по высоте.

В вертикальной стенке приямка устанавливаются штыри в гнезда в два ряда по высоте и с шагом по периметру 40 см. Длина штырей 20 см, Ø10 мм, выступают штыри за грань поверхности на 120 мм. Штыри служат для монтажа арматуры в проектное положение и распорками при установке опалубки.

Для бетонирования стенки приямка используются 4-е элемента прежней опалубки длиной дуги по 4,9 м. Опалубка представляет собой цилиндрическую поверхность диаметром 6 м с устройством фартука под углом 45° и размером катетов 100 мм (рисунок 3). Бетонирование выполняется слоями высотой от 20 до 25 см.

После набора бетоном стенки приямка прочности не менее 1,5 МПа производится демонтаж опалубки и армирование центральной опоры до отметки 183,27 м. В нижней части опоры между отметками 180,78 м и 182,09 м. арматура крепится к штырям, которые вставляются в предварительно просверленные гнезда с шагом по периметру 29 см в два ряда по высоте в шахматном порядке. Штыри готовятся из арматуры Ø8 мм А-1, $l = 100$ мм.

После монтажа арматуры в соответствии с проектом производится установка опалубки. Опалубка состоит из 2-х полуокружностей, которая описана выше, длиной каждой по 2985 мм. Для сохранения вертикального положения (проектного) верх опалубки закрепляется с помощью 4-х подкосов. Подача бетона к месту бетонирования центральной опоры выполняется по деревянному настилу, который использовался ранее при бетонировании приямка. Деревянный настил в пределах дна приямка устраивается по подмостям (рисунок 4). При бетонировании центральной опоры (верхней и нижней частей) по периметру устраиваются сплошные трубчатые леса (рисунок 4).

При бетонировании нижней части центральной опоры бетонную смесь можно подать с помощью Автокрана КС-55713-6 «Галичанин», а частично бетонная смесь подается вручную тачками. Бетонирование производится слоями высотою 20-25 см. Уплотнение выполняется вибратором с гибким валом. Объем бетона составляет $7,06 \text{ м}^3$.

ПРОИЗВОДСТВО РАБОТ ПО УСТРОЙСТВУ МОНОЛИТНОЙ ЖЕЛЕЗОБЕТОННОЙ ЦЕНТРАЛЬНОЙ ПОЛОЙ КОНУСНОГО ТИПА ОПОРЫ ИЛОУПЛОТНИТЕЛЯ

После монтажа конусной опалубки производится монтаж внутренней конусной арматурной сетки, состоящей из двух половинок. Горизонтальные арматурные выпуски двух сеток свариваются между собой. Аналогично выполняется монтаж внешней арматурной сетки, представляющая собой цилиндрическую поверхность. Нижние концы стержней арматуры внешней сетки свариваются с выпусками арматуры нижней части опоры (рисунок 5). Обе сетки соединяются между собой с помощью горизонтальных стержней Ø6 мм длиной, равной расстоянию между опалубками. Затем производится установка 6-ти арматурных пучков для армирования стоек под опорную плиту. Каждый арматурный пучок состоит из 8 Ø20 A-111, $l = 1650$ мм.

Внешняя цилиндрическая опалубка состоит из двух половинок, которые соединяются между собой на болтах. Обе опалубки раскрепляются от смещения системой подпорок и раскосов. Высота опалубок 267 см. Для выполнения арматурных работ, устройства опалубки и производства бетонных работ устраиваются леса по периметру центральной опоры. Через 24 часа после набора прочности бетона производится демонтаж внутренней конусной опалубки стакана и установка опалубки стоек под опорную плиту. Опалубка стоек принята из асбестоцементных труб Ø215 мм.

При бетонировании опорной плиты вначале бетонной смесью заполняется опалубка стоек. Бетонная смесь уплотняется вибратором с гибким валом и диаметром булавы не более 50 мм. Затем выполняется бетонирование опорной плиты. При бетонировании плиты необходимо соблюдать осторожность, чтобы исключить подвижку пробок. Уплотнение бетонной смеси выполняется виброрейками, после чего поверхность выравнивается правилом. С интервалом 20-30 минут двое рабочих заглаживают поверхность резиновой лентой, длина которой примерно на 1 м больше ширины бетонируемой поверхности плиты. Заглаживание лентой выполняется за два прохода. Демонтаж опалубки опорной плиты производится после набора прочности

бетоном не менее 70% от проектной. Одновременно производится демонтаж временного настила, подмостей и лесов, которые использовались при выполнении арматурных и бетонных работ, связанных с устройством приямка и центральной опоры.

Уход за бетоном должен обеспечить температурно-влажностный режим, исключающий интенсивное высыхание бетона и связанные с этим температурно-усадочные трещины и созданием условий, обеспечивающих нарастание его прочности; условия, исключающие механическое повреждение свежеуложенного бетона. При температуре воздуха выше 15° бетон первые 3 суток поливают с интервалом в 3 часа. Поверхность бетона можно покрыть специальными пленкообразующими составами или защитными пленками.

Как только бетон достигает прочности, при которой может быть обеспечена при распалубке сохранность поверхностей и граней конструкции, можно приступать к распалубке боковых элементов опалубки.

Бетонную смесь на объекте принимают по сопроводительной документации – паспорту и выписке из паспорта на каждую транспортную единицу. Кроме того, строительная организация контролирует прочность бетона на объекте изготавлением и испытанием образцов или неразрушающими методами. Образцы, изготовленные на строительной площадке, должны твердеть по режиму, аналогичному твердению бетона конструкции.

Калько Иван Кондратьевич – к.т.н., доцент кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stroygips@list.ru;

Калько Светлана Ивановна – архитектор НПО «Стройгипс», E-mail: stroygips@list.ru;

Остапова Дарья Ивановна – инженер отдела практик и трудоустройства ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stroygips@list.ru.

ПРОКЛАДКА РАБОЧЕЙ ПЛАСТМАССОВОЙ ТРУБЫ В КОЖУХЕ ЧЕРЕЗ АВТОМОБИЛЬНЫЕ ДОРОГИ

И. К. Калько¹, С. И. Калько², Д. И. Остапова¹

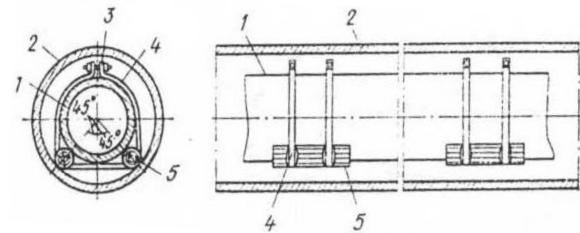
¹ Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

² НПО «Стройгипс», г. Барнаул

В статье приведены результаты прокладки рабочей пластмассовой трубы в кожухе через автомобильные дороги

Ключевые слова: прокладка, направляющие рамы, пластиковая и металлическая- труба, кожух, захватка, колодец, котлован, глубина, сварка, откос, стыковка, уровень, грунтовые воды, рыхление, заглушка, штабель, деревянные ползунки, опора, стяжные хомуты, звено.

Материалы данной работы являются продолжением статьи «Прокладка инженерных сетей через автомобильные дороги без вскрытия грунта способом прокола». При прокладке новых, расширение и реконструкция действующих инженерных сетей не должны создаваться препятствия на автомобильных дорогах при пропуске транспортных средств. Инженерные решения необходимо разработать на производство работ по прокладке водопроводной пластмассовой трубы ПЭ-80 SDR-17 Ø225 × 12,8 в трубе-кожухе Ø426 × 6 мм без вскрытия грунта способом прокола между колодцами В-1 и В-2 протяженностью 49,5 м по улице Гоголя через проспект Красноармейский в городе Барнауле. При пересечении трамвайных путей по проспекту Красноармейскому водопровод прокладывается в трубе. Трасса прокладки водовода от колодца В-1 до В-2 пересекает инженерные сети, расположенные по обе стороны трамвайных путей: газовые сети и сети канализации.


После прокладки трубы-кожуха способом прокола производятся подготовительные работы для прокладки рабочей пластмассовой трубы. Рабочая труба по проекту принята ПЭ-80 SDR-17 «питьевая» Ø 225 × 12.8 ГОСТ 18599-2001. Трубы изготавливаются длиной 6, 8, 10, 12 м. Допускается изготовление труб длиной 5,5 м. На участке протяженностью 49,5 м потребуется 9 труб длиной 5,5 м. Концы труб должны быть отрезаны без заусенцев перпендикулярно оси трубы. Цвет труб черный. Для прокладки рабочей трубы в кожухе необходимы деревянные ползунки и стяжные хомуты.

Пластмассовые трубы должны храниться на стеллажах в закрытых помещениях или под навесом, а в условиях строительной площадки – в тени или под

навесом в горизонтальном положении или укладываться в штабеля высотою не более 2,3 м. Пластмассовые трубы и фасонные части необходимо оберегать от механических нагрузок и ударов, поверхности труб оберегать от нанесения царапин. При перевозке труб длина свешивающихся концов не должна превышать 1,5 м.

Монтаж труб.

Перед монтажом пластмассовых труб необходимо выполнить подготовительные работы. Трубная плеть, протаскиваемая через защитный кожух, должна оснащаться опорноцентрующими устройствами из диэлектрического материала, который служит для опищения пластмассовой трубы на стенки кожуха. В качестве опор предлагается использовать деревянные ползунки диаметром 95 мм и длиной 500 мм, которые устанавливаются на трубе под углом 45° к вертикальной оси сечения трубы. Перед установкой ползунки обязательно антисептируют. Крепят ползунки к трубе стяжными хомутами, изготовленными из полосовой стали. На звене пластмассовой трубы длиной 5500 мм устанавливают симметрично две смежные опоры с расстоянием между ними 2750 мм (рисунок 1). Таким образом подготавливается каждая труба, которая будет находиться в кожухе – всего 8 штук.

1 – рабочая труба; 2 – кожух; 3 – болт с гайкой; 4 – стяжные хомуты; 5 – деревянный ползунок

Рисунок 1 – Деревянные опоры для рабочей трубы

ПРОКЛАДКА РАБОЧЕЙ ПЛАСТМАССОВОЙ ТРУБЫ В КОЖУХЕ ЧЕРЕЗ АВТОМОБИЛЬНЫЕ ДОРОГИ

После засыпки производится демонтаж силовой установки, упорной стенки и подготовка основания для прокладки рабочей пластмассовой трубы. Перед торцом кожуха готовится приямок, который служит для сварки рабочей трубы и для ее протаскивания через кожух. В приемном котловане отделяют конический наконечник от кожуха.

Для удобства при работе по монтажу рабочей трубы каждое звено готовится на специально подготовленном стенде, а затем подается в рабочий котлован. На стенде к трубе крепятся опоры. Перед кожухом на длину звена укладывают деревянные подкладки так, чтобы соблюдалась соосность рабочей трубы и кожуха. Монтируемая труба вставляется в кожух и продвигается до первой опоры, проверяется симметричное расположение опор относительно вертикальной оси, затем продолжается дальнейшее протаскивание трубы так, чтобы выступал из кожуха конец трубы на 30-40 см для удобствастыковки с очередным звеном.

Для обеспечения проектного положения опор на кожухе и концах каждого звена наносятся вертикальные и горизонтальные оси.

При монтаже очередного звена трубы необходимо оставить место для того, чтобы рабочий мог свободно работать между торцами смонтированной и монтируемой труб для проверки разметки и очистки трубы. Затем монтируемое звено продвигают к ранее смонтированному звену для выполнения сварки труб встык.

При сварке необходимо подбирать трубы по партиям поставки. При стыковой сварке непосредственно перед нагревом свариваемые поверхности торцов труб должны подвергаться механической обработке для снятия возможных загрязнений и окисной пленки. После механической обработки между торцами труб, приведенными в соприкосновение с помощью центрирующего приспособления, не должно быть зазоров, превышающих 0,7 мм.

Сварку пластмассовых труб встык в монтажных условиях следует производить на сварочных установках. Допускается применение ручной сварки в малоудобных местах с использованием устройств для торцовки и центровки, а также нагревательных элементов. Постоянная температура на рабочей поверхности нагревателя должна поддерживаться

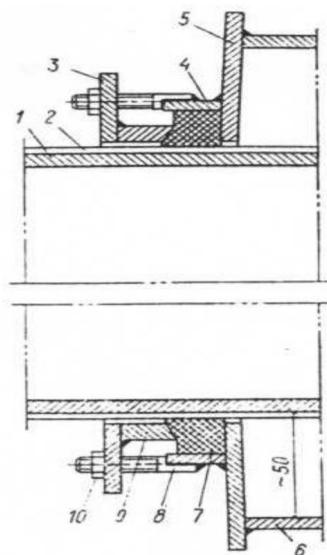
терморегулятором или автотрансформатором. Для сварки следует использовать установки, которые обеспечивают поддержание параметров технологических режимов в соответствии нормативно-технической документации, утвержденной в установленном порядке.

При контактной стыковой сварке с применением монтажных приспособлений подлежат выполнению следующие операции:

- установка и центровка труб в зажимном центрирующем приспособлении;
- торцовка труб и обезжиривание торцов;
- нагрев и оплавление свариваемых поверхностей;
- удаление сварочного нагревателя;
- сопряжение разогретых свариваемых поверхностей под давлением;
- охлаждение сварного шва под осевой нагрузкой.

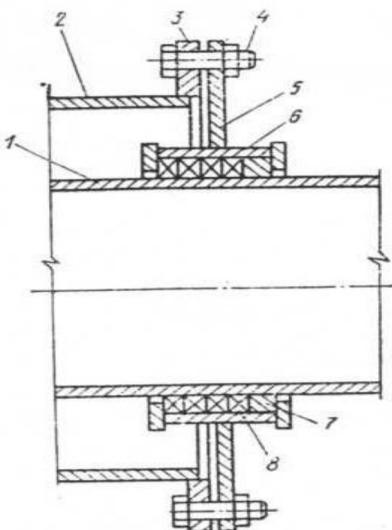
При производстве сварочных работ должны обеспечиваться прочность и плотность сварных стыков. Проверка качества сварных соединений трубопроводов должна производиться путем:

- проверки размеров сопрягаемых труб и рабочих элементов нагревателя, осуществляется до начала сварочных работ и всех используемых приспособлений;
- операционного контроля осуществляющегося в процессе сборки и сварки труб;
- внешнего осмотра сварных соединений;
- испытания на одноосное растяжение и изгиб.


Операционный контроль должен предусматривать:

- проверку подготовки к сварочным работам; очистку поверхностей труб от загрязнений, влаги; контроль технологии сварки (температура нагревателей, продолжительность нагрева).

Внешнему осмотру подлежат все сварные стыки в соответствии с требованиями нормативных документов.


К сварке трубопроводов из ПВД и ПНД допускаются сварщики при наличии документов на право производства работ по сварке пластмасс. Сварку труб из ПВД и ПНД допускается производить при температуре наружного воздуха не ниже минус 10°C. При выполнении сварочных работ место сварки необходимо защищать от воздействия атмосферных осадков и пыли.

После приемки сварного стыка продолжается продвижение трубы в кожух. Если первое звено можно вставить в кожух

1 – рабочая труба; 2 – слой изоляции; 3 – фланец нажимной; 4 – кольцо неподвижное; 5 – фланец неподвижный; 6 – кожух; 7 – набивка; 8 – шпилька; 9 – кольцо нажимное; 10 – гайка

Рисунок 2 – Сальник стальной поджимной

1 – рабочая труба; 2 – кожух; 3 – фланец; 4 – болт с гайкой; 5 – крышка; 6 – корпус сальника; 7 – цементное уплотнение; 8 – уплотнение из просмоленного каната

Рисунок 3 – Сальник с постоянным уплотнением

вручную, то при числе звеньев более одного это будет сделано труднее. Для создания тягового усилия можно использовать винтовую пару (ходовой винт-гайка), ручные храповые блоки или гидроцилиндры, рычажной лебедки, реечного домкрата. Можно воспользоваться силовой установкой, которая служила для прокладки кожуха. В этом случае демонтаж установки необходимо осуществить после проектного расположения

трубы из 8 звеньев по отношению к кожуху. После соединения всех звеньев водопроводной трубы с помощью сварки встык и проектного протаскивания ее через кожух зазоры между трубой и кожухом заделываются. Для заделки применяются уплотнительные сальники, конструкции которых приведены на рисунках 2 и 3.

Сопряжение рабочей трубы водопровода с колодцами В-1 и В-2 проектное. После устройства водопроводных колодцев, выполнения наружной гидроизоляции стен колодцев и выполнения сопряжения пластмассовой трубы со стенками колодцев производят обратную засыпку котлованов.

При обратной засыпке выполняют послойное трамбование. Труба должна иметь однородную и непрерывную опору по всей длине из плотного материала (подушку). Подушка должна быть расположена так, чтобы иметь полный контакт между дном котлована и пластмассовой трубой, и должна быть утрамбована минимум до 90% максимальной плотности. Затем выполняют боковую засыпку с симметричным трамбованием грунта по обе стороны трубы. После того как боковая засыпка утрамбована до требуемой плотности, над трубой следует поместить 30 см слой того же материала и слегка его утрамбовать. Чрезмерное трамбование может привести к деформации трубы.

Наконец выполняется обратная засыпка оставшегося объема котлована с послойным ручным трамбованием.

По завершению работ составляются акты на скрытые работы, акты приемки выполненных работ, предоставляется вся исполнительная документация.

Калько Иван Кондратьевич – к.т.н., доцент кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stroygips@list.ru;

Калько Светлана Ивановна – архитектор НПО «Стройгипс», E-mail: stroygips@list.ru;

Остапова Дарья Ивановна – инженер отдела практик и трудоустройства ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stroygips@list.ru.

АНАЛИЗ ФОРМ ПОТЕРИ УСТОЙЧИВОСТИ СТАЛЬНОГО СТЕРЖНЯ ИЗ ТОНКОСТЕННОГО ХОЛОДНОГНУТОГО ПРОФИЛЯ

А. А. Кикоть, К. А. Красулина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье реализована симуляция работы центрально-загруженного тонкостенного стержневого элемента С-образного поперечного сечения с использованием расчетного комплекса SIMULIA Abaqus/CAE Student Edition 2020, реализующего метод конечных элементов. Приведены заданные характеристики материала, граничные условия, тип конечного элемента, разбиение конечно-элементной сетки. В результате варьирования длины стержня, толщины металла и пропорций поперечного сечения достигнута реализация практически всех возможных форм потери устойчивости тонкостенного стержневого элемента: потеря местной устойчивости стенки, поясов профиля, потеря устойчивости формы сечения; изгибная и изгибно-крутильная глобальные формы.

Ключевые слова: легкие стальные тонкостенные конструкции, С-образный профиль, SIMULIA Abaqus/CAE, центрально-загруженный стержневой элемент, формы потери устойчивости.

Легкие стальные тонкостенные конструкции (ЛСТК) привлекают все большее внимание, особенно в сфере строительства энергоэффективных быстровозводимых зданий на основе каркаса. Малый вес, обеспечивающий сокращение расходов на доставку к строящемуся объекту (немаловажно для труднодоступных регионов), быстрые сроки возведения, простой монтаж – всё это обеспечивает технологии ЛСТК конкурентные преимущества по сравнению с традиционными технологиями с использованием кирпича и бетона.

Стальные профили за счёт оптимальной формы придают этим конструкциям легкость и прочность, а новые типы цинковых и полимерных покрытий обеспечивают защиту от коррозии, улучшение эксплуатационных и эстетических качеств.

В данной работе поставлена задача симуляции работы центрально-загруженного стержневого элемента С-образного поперечного сечения (рисунок 1) длиной $l = 1,5; 2$ и 3 метра с целью изучения возможных форм потери устойчивости [1]. Материал профиля – сталь марки 350 по ГОСТ 14918-2020. Размеры первого поперечного сечения: $h = 120$ мм, $b_f = 60$ мм, $c = 20$ мм; второго – $h = 180$ мм, $b_f = 40$ мм, $c = 20$ мм. Толщина изменяется $t = 1,5; 2$ и 3 мм для получения различных форм потери устойчивости.

Расчет ведётся с использованием расчетного комплекса SIMULIA Abaqus/CAE Student Edition 2020 [2], реализующего метод конечных элементов. Геометрическая модель профиля – оболочка, полученная методом

«Выдавливание». Для всех моделей были приняты следующие характеристики материала: модуль упругости (модуль Юнга) – $2.06 \cdot 10^5$ МПа, коэффициент Пуассона – 0,3.

Поскольку С-образный профиль не имеет физического центра тяжести, то его моделирование требует задание ограничений для поперечного сечения: смещение и вращение каждого подчиненного узла ограничивается смещением и вращением контрольной точки – центра тяжести (рисунок 2). Благодаря этому можно задать необходимые граничные условия и приложить нагрузку.

Следующим этапом является создание конечно-элементной сетки (рисунок 3). Поскольку студенческая версия данного комплекса ограничивает число узлов модели до 1000 шт., размеры прямоугольных элементов сетки изменяются в зависимости от размеров

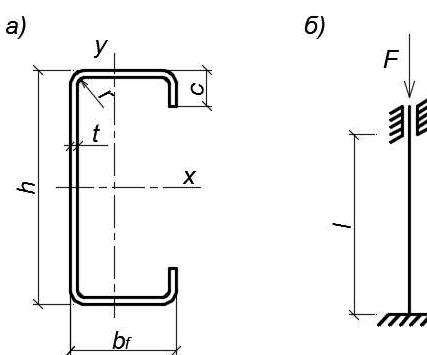


Рисунок 1 – Стержневой элемент:
а) размеры С-образного поперечного сечения;
б) расчётная схема в плоскости X-X и Y-Y

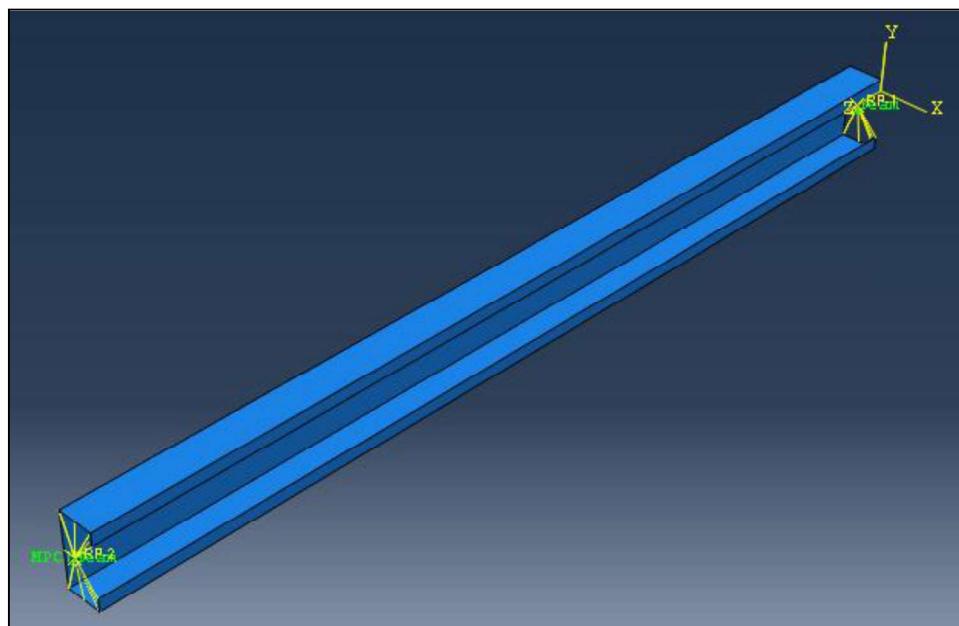


Рисунок 2 – Модель стержня С-образного профиля в SIMULIA Abaqus/CAE Student Edition 2020

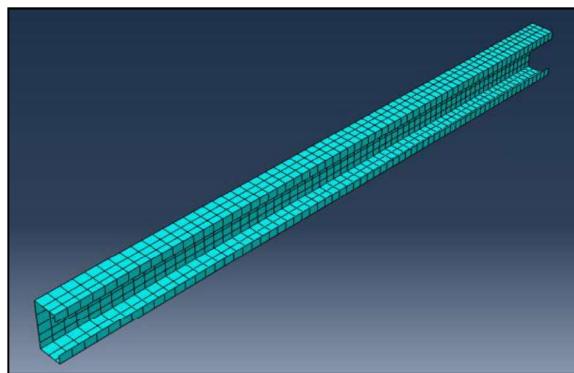


Рисунок 3 – Конечно-элементная сетка стержня в SIMULIA Abaqus/CAE Student Edition 2020

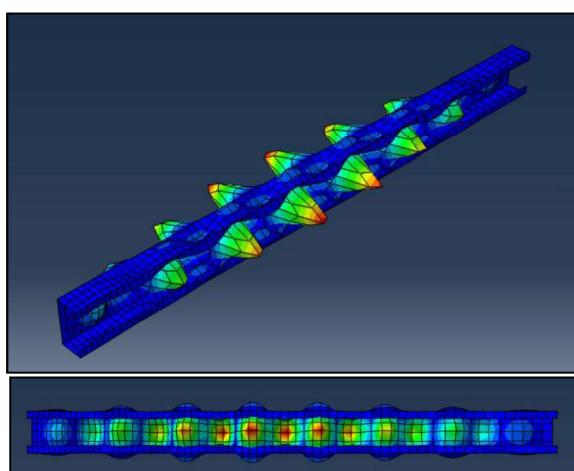


Рисунок 4 – Потеря местной устойчивости стенки и пояса в профиле С1.5-120-60 ($l = 1,5$ м)

профиля, однако соотношение длины и ширины остается постоянным, равным 2:1 (от 15×30 мм до 23×46 мм).

Тип конечного элемента – S4R (линейный прямоугольный элемент семейства «Оболочка»).

В результате, при толщине $t = 1,5$ мм и длинах элемента $l = 1,5$ и 2 м в обоих профилях С1.5-120-60 и С1.5-180-40 наблюдается потеря местной устойчивости стенки и поясов (рисунок 4). При этом в профиле С1.5-180-40 кроме того добавляется потеря устойчивости формы сечения (рисунок 5).

В профилях толщиной 2,0 мм при длинах $l = 1,5$ и 2 м сохраняются те же формы потери устойчивости (рисунок 6).

С увеличением толщины до 3 мм ($l = 1,5$ и 2 м) преобладающей формой потери устойчивости для обоих размеров профилей является потеря устойчивости формы сечения (рисунок 7) при сохранении потери местной устойчивости стенки.

В элементах длиной 3 м при $t = 1,5$ мм для обоих типов профилей сохраняются те же формы потери устойчивости. Это же справедливо и для $t = 2$ мм в профиле С2.0-180-40.

В профиле С3.0-120-60 ($l = 3$ м) реализуется ярко выраженная изгибно-крутильная форма потери устойчивости (рисунок 8). В то время как в С3.0-180-40 имеет место изгибная форма потери устойчивости с сохранением потери устойчивости формы сечения (рисунок 9).

АНАЛИЗ ФОРМ ПОТЕРИ УСТОЙЧИВОСТИ СТАЛЬНОГО СТЕРЖНЯ ИЗ ТОНКОСТЕННОГО ХОЛОДНОГНУТОГО ПРОФИЛЯ

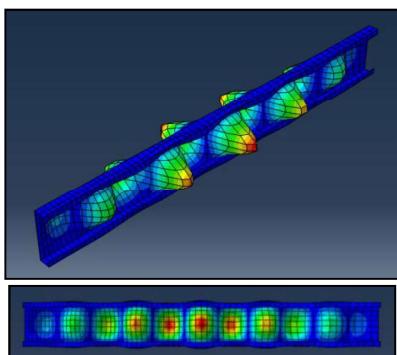


Рисунок 5 – Потеря местной устойчивости стенки, пояса и потеря устойчивости формы сечения в профиле С1.5-180-40 ($l = 1,5$ м)

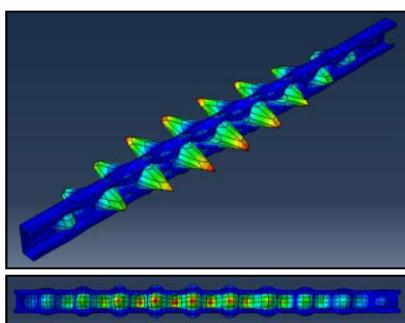


Рисунок 6 – Потеря местной устойчивости стенки, пояса и потеря устойчивости формы сечения в профиле С2.0-120-60 ($l = 2$ м)

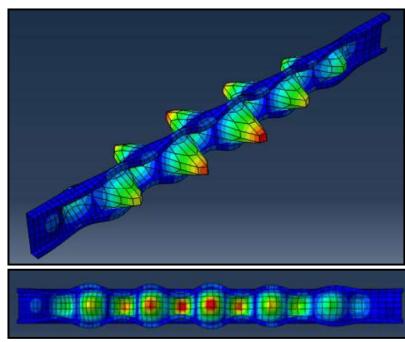


Рисунок 7 – Потеря устойчивости формы сечения и потеря местной устойчивости стенки в профиле С3.0-180-40 ($l = 2$ м)

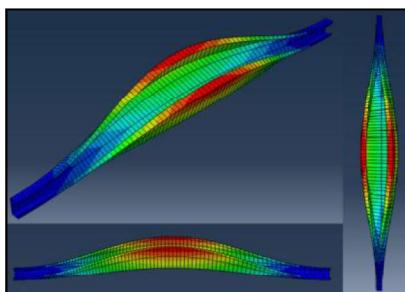


Рисунок 8 – Изгибно-крутильная форма потери устойчивости в профиле С3.0-120-60 ($l = 3$ м)

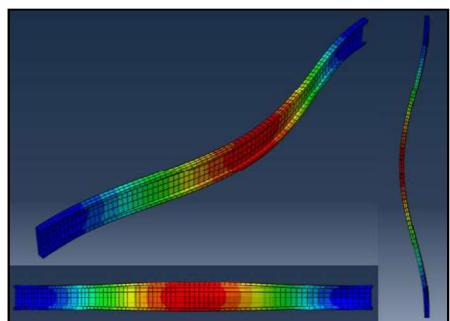


Рисунок 9 – Изгибная форма потери устойчивости при наличии потери устойчивости формы сечения в профиле С3.0-180-40 ($l = 3$ м)

Заключение

Таким образом, варьируя длиной исследуемого элемента, толщиной металла и пропорциями поперечного сечения, была достигнута реализация практически всех возможных форм потери устойчивости тонкостенного стержневого элемента. Это потеря местной устойчивости стенки, поясов профиля, потеря устойчивости формы сечения; глобальные формы: изгибная и изгибно-крутильная. Во многих случаях эти формы потери устойчивости имеют место в сочетании друг с другом. И такое взаимодействие оказывает влияние на несущую способность элементов.

СПИСОК ЛИТЕРАТУРЫ

1. Abaqus. Пособие для начинающих. Пошаговая инструкция / Д. В. Нуштаев, под. ред. С. Н. Тропкина. – ООО «Тесис», Москва, 2010. – 78 с
2. SIMULIA Abaqus/CAE Student Edition 2020, User's Guide, 2020.
3. СП 260.1325800.2016. Конструкции стальные тонкостенные из холодногнутых оцинкованных профилей и гофрированных листов. Правила проектирования / Министерство строительства и жилищно-коммунального хозяйства Российской Федерации. – Москва, 2016. – 116 с.

Кикоть Андрей Александрович – к.т.н., доцент кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: deltaing@mail.ru;

Красулина Ксения Андреевна – студент группы СУЗ-81 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kraska906@mail.ru.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОЦЕДУРЫ ПОСТРОЕНИЯ МОДЕЛИ МЕТАЛЛИЧЕСКОЙ ФЕРМЫ В ПРОГРАММНЫХ ОБЕСПЕЧЕНИЯХ TEKLA STRUCTURES И AUTODESK REVIT

А. А. Кикоть, А. А. Кунц

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Статья посвящена обзору использования современных программных комплексов для информационного моделирования металлической фермы. Детально рассмотрены методы построения металлической фермы в ПО Autodesk Revit и Tekla Structures и проведен сравнительный анализ использования данных программных средств по нескольким критериям.

Ключевые слова: Tekla Structures, Autodesk Revit, металлическая ферма, информационное моделирование.

BIM (информационное моделирование зданий) – это цифровое представление объекта в виде модели с параметрами, которые хранят в себе функциональные и физические характеристики и иную информацию о нём со всеми взаимосвязями и зависимостями [1]. Одними из наиболее часто используемых программных комплексов для моделирования металлоконструкций являются Tekla Structures и Revit.

Рассмотрим ПО Autodesk Revit на примере моделирования металлической фермы. Построение любых элементов и конструкций в Revit возможно с использованием семейств.

Семейство – это совокупность различных объектов, объединенных набором параметров (свойств) [1]. Наиболее удобными и автоматизированными считаются параметрические семейства, в которых пользователю достаточно внести основные данные (например, длина, высота, сечение), а программа автоматически построит объект, и, если необходимо, рассчитает недостающие данные. Рекомендуется пользоваться системными семействами, которые находятся в библиотеке и доступны после установки программы.

Семейство ферм является не только параметрическим, но и имеет в своем составе вложенные семейства такие, как балки различных сечений.

Однако предоставляемые Revit семейства не всегда удовлетворяют действующим стандартам РФ, поэтому часто пользователи создают необходимые семейства самостоятельно. Некоторые из них находятся в свободном доступе в сети Интернет, другие необходимо приобретать. Также вместо семейства можно создать ферму отдельными элементами (балками) и объединить в группу, однако такой метод сразу исключает все преимущества автоматизированных семейств.

Рассмотрим стропильную ферму длиной 18 м, которая находится в библиотеке семейств Revit. Основные параметры, доступные для управления в данном семействе – это выбор связей в начале и в конце (шарнирное, жесткое, изгибающий момент и пользовательское), выбор угла поворота элементов относительно локальных осей, а также задание сечения поясам, стойкам и раскосам (рисунок 1).

При построении элементов раскосов и стоек видно, что они не доходят до поясов. Это не повлияет на схему, при выгрузке в расчетную программу, однако визуально неправдоподобно. Поэтому появляется необходимость с каждого элемента снимать закрепление, доводить вручную каждый элемент до

Параметр	Значение
Верхние пояса	
Расчетная вертикальная проекция	Центр балки
Тип несущего каркаса	Двутавр широкополочный (ГОСТ 26020-83) I 20Н
Снятие связей в начале	Шарнирное
Снятие связей в конце	Шарнирное
Угол	0.00°
Стойки	
Тип несущего каркаса	Задание типа каркаса
Снятие связей в начале	Шарнирное
Снятие связей в конце	Шарнирное
Угол	0.00°
Раскосные решетки	
Тип несущего каркаса	Задание типа каркаса
Снятие связей в начале	Шарнирное
Снятие связей в конце	Шарнирное
Угол	0.00°
Нижние пояса	
Расчетная вертикальная проекция	Центр балки
Тип несущего каркаса	Задание типа каркаса
Снятие связей в начале	Шарнирное
Снятие связей в конце	Шарнирное
Угол	0.00°
Строительство	
Решетки с разрывом между элементами	<input checked="" type="checkbox"/>
Ориентация перегородок	По вертикали
Размеры	
Смещение2	0.0
Смещение1	0.0
Идентификация	

Рисунок 1 – Параметры семейства фермы в Revit

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОЦЕДУРЫ ПОСТРОЕНИЯ МОДЕЛИ МЕТАЛЛИЧЕСКОЙ ФЕРМЫ В ПРОГРАММНЫХ ОБЕСПЕЧЕНИЯХ TEKLA STRUCTURES И AUTODESK REVIT

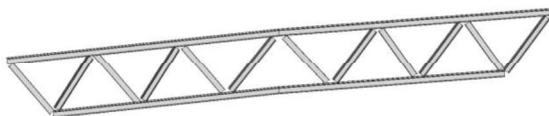


Рисунок 2 – Ферма с параллельными поясами в Revit

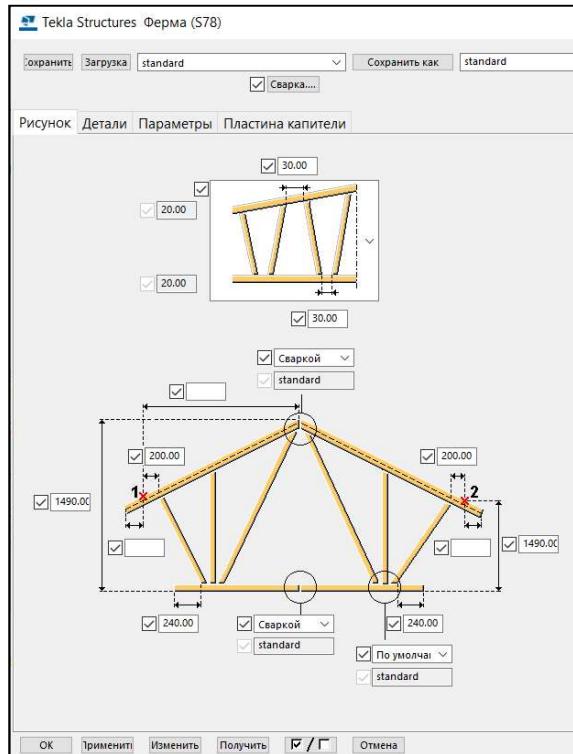


Рисунок 3 – Свойства компонента Ферма (S78)



Рисунок 4 – Ферма с параллельными поясами в Tekla

поясов и использовать команду «Врезка» (рисунок 2).

В Tekla Structures используются так называемые компоненты [2]. Они позволяют соединять детали в модели, а также автоматизировать задачи моделирования, группируя объекты. Если в модели необходимо выполнить какие-либо изменения, компонент автоматически адаптируется к ним.

Как и в Revit, компоненты входят в состав программы, но также имеется возможность их создания пользователем. При работе с компонентами необходимо пользоваться

диалоговым окном, где задаются свойства компонента.

При создании металлической фермы используется компонент Ферма (S78), который моделирует ферму между выбранными точками. Однако соединений с существующими деталями данный компонент не создает. С помощью этого компонента можно создать верхний и нижний пояса ферм, диагональные связи (раскосы), вертикальные связи между диагональными связями (стойки) и пластины капители.

Для создания фермы необходимо выбрать данный компонент и соединить две верхние точки колонн (или иные точки в пространстве модели). Двойным щелчком левой кнопки мыши открывается диалоговое окно со свойствами, которое содержит четыре вкладки: рисунок, детали, параметры и пластина капители (рисунок 3).

На первой вкладке «Рисунок» пользователю предоставляется возможность задавать расстояние между стойками и раскосами (для сварки), размеры эксцентрикитета, отступ от начальной точки фермы до раскоса, высоту конькового узла, вылет верхнего и нижнего поясов фермы, тип соединения вертикальных связей, а также полудлина фермы [2].

На вкладке «Детали» в верхней части задается профиль элементов фермы. В Tekla Structures уже внесено большое количество видов сечений металлических элементов с их свойствами, пользователю достаточно просто выбрать из открывшегося списка нужный. В нижней части указывается номер типа заданного профиля и количество связей с помощью несложной формулы. Также предоставляется возможность выбора сдвоенного профиля, его тип и зазор.

Для управления сборкой фермы и созданием диагональных и вертикальных связей (элементов решётки) служит вкладка «Параметры». Она позволяет указать, какая деталь является главной в сборке фермы, и дополнительные параметры для вертикальных связей фермы (их местоположение, вылеты). Данная вкладка позволяет выбрать тип фермы – односкатная, коньковая, перевернутая коньковая – и стиль фермы – откуда начинается первая диагональная связь.

Вкладка «Пластина капители» позволяет управлять конструктивным оформлением опорных узлов, которые создаются с помощью компонента Торцевая пластина (1002) с заданным набором свойств.

Управляя всеми свойствами и задавая необходимые значения параметров, созда-

дим аналогичную стропильную ферму с параллельными поясами в Tekla (рисунок 4).

Для создания фермы без помощи компонентов пользователи данной программы чаще всего рисуют геометрию фермы вспомогательными линиями, и далее по ним прорисовывают профиль фермы. Затем добавляются соединения элементов существующими компонентами.

Данный способ более трудоемкий и требует больше внимания и времени для создания фермы, что напрямую влияет на скорость построения модели и дальнейшее проектирование. Однако, несмотря на то, что компания - разработчик ввела множество параметров для получения различных типов ферм, некоторые применяемые в России конструктивные решения ферм создать данным компонентом сложно или невозможно вовсе, поэтому пользователи вынуждены применять последний представленный метод.

Выходы

На основе приведённого материала можно провести сравнительный анализ построения модели металлической фермы в Tekla Structures и Revit. Выделим некоторые критерии для этого:

1) Доступность. При построении фермы в Revit для начала пользователю необходимо загрузить в проект семейство фермы, которое нужно найти в библиотеке семейств, а в Tekla компоненты уже загружены в проект и можно сразу приступить к настройке компонента и созданию шаблона. Однако, если ферма не типовая, вероятность найти нужное семейство (компонент) для Revit, намного выше, так как данный программный комплекс более распространен, и пользователи выкладывают созданные ими семейства, в том числе, в свободный доступ.

2) Редактирование и настройка. В данном случае Tekla заметно превосходит Revit, так как имеет намного больше изменяемых и настраиваемых параметров,

которые позволяют быстрее и более точно построить пользователю необходимую ферму.

3) Удобство построения модели. В целом, специфика построения в обеих программах схожа. Выбираем семейство (компонент) и две точки, обозначающие начало и конец фермы. Но в Tekla элементы фермы сразу доходят друг до друга, в отличие от Revit, где необходимо доводить их вручную.

4) Уровень детализации. Данный критерий одинаков в обеих программах. Для дальнейшей проработки и повышения уровня детализации, а именно построение узлов, намного удобнее пользоваться программой Tekla, ввиду уже созданных компонентов и автоматизации самой программы.

Таким образом, можно сделать вывод, что для построения металлической фермы лучше отдавать предпочтение Tekla Structures. Это позволит ускорить процесс проектирования и моделирования, а это один из ключевых моментов использования BIM-технологий.

СПИСОК ЛИТЕРАТУРЫ

1. СП 328.1325800.2017. Информационное моделирование в строительстве. Правила описания компонентов информационной модели : дата введения 2017-12-15. – Москва, 2017. – 14 с.

2. Tekla. User Assistance: Официальный сайт Tekla / Руководство пользователя. – URL: https://support.tekla.com/ru/doc/tekla-structures/2022/tekla_structures_product_guides (дата обращения 20.02.2022).

Кикоть Андрей Александрович – к.т.н., доцент кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ, им. И. И. Ползунова, E-mail: deltaing@mail.ru;

Кунц Агата Андреевна – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: agata.kunts@mail.ru.

О ВОЗМОЖНОСТЯХ СОЗДАНИЯ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ ИСТОРИЧЕСКИХ ЗДАНИЙ НА ОСНОВЕ ТЕХНОЛОГИИ ЛАЗЕРНОГО СКАНИРОВАНИЯ

А. И. Кириллова, А. А. Сапай, Л. Н. Пантюшина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье описывается возможность создания информационных моделей исторических зданий на основе технологии лазерного сканирования. Рассматриваются примеры применения данной технологии в городах России и за рубежом. Также поднимаются вопросы, касающиеся классического подхода к созданию информационной модели исторического здания, приводятся аргументы, подтверждающие преимущество лазерного сканирования таких зданий.

Ключевые слова: технологии, историческое здание, лазерное сканирование, информационное моделирование, Revit, ReCAP Pro.

В настоящее время технологии стремительно развиваются, появляется все больше возможностей для повышения качества, точности и скорости выполняемых работ. Технологии лазерного сканирования могут быть широко применены с целью сохранения культурных и исторических ценностей.

В Барнауле в настоящий момент находится около 40 зданий, требующий восстановления. К примеру, Дом инженерно-технических работников, расположенному по адресу ул. Ленина д. 94, который считается ярким образцом сталинского ампира; музикальный лицей на ул. Калинина д. 5а, построенный в 20-х годах прошлого века, он был изначально средней школой, а в годы Великой Отечественной Войны стал хирургическим госпиталем, после чего в здании открыли музыкальную школу, позже в ней играл известный советский пианист Рихтер. Однако, вопрос финансирования данных проектов зачастую является ключевым, что не может не влиять на сроки выполнения. Состояние зданий ухудшается с каждым годом, их лишают звания памятника архитектуры и мы теряем свое историческое наследие.

Обследование исторических зданий имеет особую сложность, так как многие несущие конструкции разрушаются со временем. В этом случае разумным решением может стать применение технологий лазерного сканирования и создание информационной модели. В случае применения лазерного сканирования, создается облако точек, которое дает достаточно точную картину исследуемого объекта, включая цвет поверхностей, рельеф деталей. Результаты сканирования объектов могут храниться в электронном формате. Таким образом, существует воз-

можность создания базы исторических и культурных объектов, обладающей высокой детализацией. В случае разрушения некоторых конструкций или же полного разрушения, даже спустя длительное время, по облаку точек можно воссоздать данный элемент. При реконструкции исторических зданий лазерное сканирование имеет большое преимущество при восстановлении сложных элементов, таких как резные балки и наличники, множество других мелких элементов, сделанных в большинстве случаев из дерева. По полученным данным создается точная детализированная модель элемента, имеющая достоверные размеры, и чертежи для его изготовления.

Однако, существует множество нюансов, на которые стоит обращать внимание на практике. Качество облаков точек может существенно различаться, в зависимости от сканера, на который производилась съемка. Наземные лазерные сканеры сильно отличаются по характеристикам и назначению. Универсального сканера, хорошо адаптированного под любые задачи пока не существует. Определенный тип сканера применяется для конкретной задачи, в зависимости от расстояния до объекта, его размеров, наличия мелких элементов.

Применение технологии лазерного сканирования в связке с такими программными комплексами, как Revit, Navisworks, ReCAP, достаточно эффективно. Форматы полученных лазерным сканированием данных позволяют открывать, обрабатывать их в вышеупомянутых ПО. После сбора данные необходимо обработать и преобразовать в файлы сканирования (RCS) и файлы проекты (RCP), которые могут быть открыты в других ПО для

создания модели и чертежей. Это позволяет выполнить Autodesk ReCap.

Существует возможность регулировать отображение облака точек путем увеличения или уменьшения количества и размера отображаемых точек (рисунок 1). Стоит обратить внимание, что производительность программы зависит от параметров отображения.

Для работы со сложными графическими задачами обычные компьютеры не подходят, так как тяжелое облако точек, которое может иметь вес более 200 Гб, будет загружать компьютер, делая создание модели медленным и сложным для восприятия специалистом по моделированию. Сборка подходящей графической станции будет стоить довольно дорого, учитывая что одна только специализированная видеокарта NVIDIA Quadro стоит на данный момент в среднем 300-400 тысяч рублей. Поэтому при работе облака точек часто облегчают для повышения производительности, что влияет на их качество и детализацию создаваемой модели. Поэтому массовое создание цифровых двойников исторических объектов на практике будет невозможно, так как для этого необходимы слишком большие и неоправданные затраты. Такой вид работ может применяться единично для коммерческих проектов высокой сложности.

В мире существуют примеры применения лазерного сканирования для реставрации исторических зданий и даже его восстановления, которые доказывают важность данной технологии. В 2019 году в Париже произошел пожар на крыше собора Нотр-Дам де Пари, важного не только для Франции, но и для всего мира, как архитектурный и исторический объект. Ранее было создано облако точек всего здания (рисунок 2). Технологии лазерного сканирования в данном случае применялись для создания видео-игры, в которой создали достаточно точную модель собора, но эти данные пригодились и для его реставрации.

В России также используется технология лазерного сканирования, чаще всего для коммерческих объектов, требующих реконструкции, таких как нефтебазы, заводы и другие объекты [1]. Например, авторами статьи, в ходе прохождения производственной практики в компании ООО «ТРУБИМ ИНЖИНИРИНГ», по облаку точек была создана информационная трехмерная модель исторического здания в г. Москве, расположенного на Софийской набережной (рисунок 3).

Объект был построен в 1875 году, как и в большинстве исторических зданий этого вре-

мени, никакая проектная документация не сохранилась до наших дней, поэтому было принято решение получить исполнительную документацию по результатам лазерного сканирования и создания информационной модели.

Процесс моделирования здания по облаку точек осуществлялся следующим образом: сначала был создан файл в программе

Рисунок 1 – Регулирование отображения облака точек

Рисунок 2 – Облако точек Нотр-Дам де Пари

Рисунок 3 – Модель здания по адресу Софийская набережная, 34

О ВОЗМОЖНОСТЯХ СОЗДАНИЯ ИНФОРМАЦИОННЫХ МОДЕЛЕЙ ИСТОРИЧЕСКИХ ЗДАНИЙ НА ОСНОВЕ ТЕХНОЛОГИИ ЛАЗЕРНОГО СКАНИРОВАНИЯ

Рисунок 4 – Проверочный вид плана этажа, со-вмешанный с облаком точек

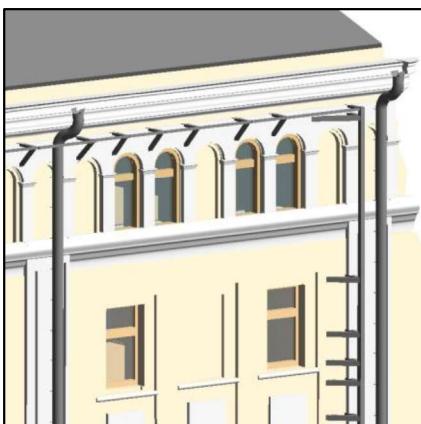


Рисунок 5 – Элементы фасада, выполненные инструментом форма

Revit, затем в него была вставлена связь с облаком точек в формате *.gcp. Чтобы начать моделирование этажей, был создан разрез, на нем видно конструкцию перекрытия, по которой строятся уровни этажей.

Моделирование этажей начинается с создания перекрытий, а затем стен. Это один из самых простых процессов, так как перечисленные элементы лучше всего видно на планах этажей. Но при моделировании фасадов мы столкнулись с тем, что на каждом этаже толщина стен была не постоянной, а некоторые стены были под наклоном, поэтому было принято решение разделять их на части, чтобы стены соответствовали облаку точек (рисунок 4).

После того, как основные элементы здания были замоделированы, мы приступили к созданию декоративных элементов, таких как

окна, двери, арочные потолки, резные балки, лестницы, элементы фасада. Часть элементов была создана с помощью контекстной модели, а затем преобразована в семейство для облегчения веса файла. Контекстные элементы это один из самых удобных способов моделирования по облаку точек, так как он накладывается непосредственно на облако и позволяет в точности повторить контур моделируемого элемента. Они применяются для создания окон и других повторяющихся элементов.

Другой способ моделирования – создание формы в контексте (рисунок 5). Его применяют, когда каждый элемент имеет уникальную форму, например арочные потолки. Формы не нагружают файл и могут быть часто использованы.

Примеры моделирования некоторых элементов представлены на рисунках 6-9. Как было сказано ранее, облако точек позволяет добиться детальной проработки сложных элементов.

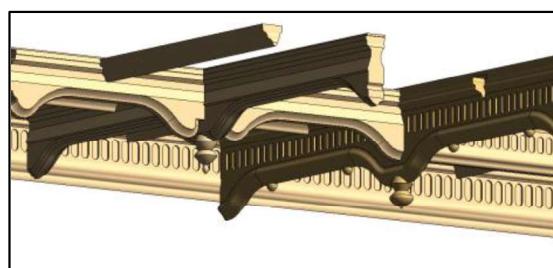


Рисунок 6 – Модель сложных деревянных балок

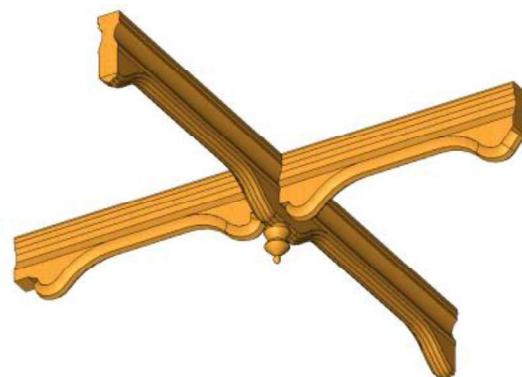


Рисунок 7 – Модель резного деревянного элемента

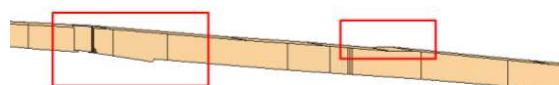


Рисунок 8 – Дефекты деревянной балки

Рисунок 9 – Фрагмент фасада

Рисунок 10 – Пример модели здания в Нижнем Новгороде

В Нижнем Новгороде уже существует база информационных моделей исторических зданий на основе облака точек (рисунок 10). Они были созданы при поддержке мэрии города, обучающего проекта «Высоцкий Консалтинг» и Росатома. В их план входит создание информационной модели всего города, было замоделировано уже более 800 зданий. Они были созданы Инжиниринговым дивизионом Госкорпорации «Росатом», компанией Vysotskiy consulting, Нижегородским государственным строительным университетом (ННГАСУ) и Нижегородским региональным отделением «Российские Студенческие Отряды» при поддержке министерства градостроительной деятельности и развития агломераций Нижегородской области в ходе проведения международного образовательно-практического проекта «BIM-менеджмент».

Целью данного курса является обучение людей навыкам BIM-менеджмента на примере реальных объектов, таким образом увеличивая количество квалифицированных спе-

циалистов, имеющих опыт координации и создания информационной модели. В их план входит создание информационной модели всего города, было замоделировано более 800 цифровых копий знаковых зданий, сооружений и памятников Нижнего Новгорода. В дальнейшем эти модели могут быть использованы в качестве информационной базы в процессе эксплуатации здания или для дальнейшей его реставрации.

Также с помощью цифровых моделей предлагается отслеживать изменения в зданиях, путем сравнения двух моделей, сделанных с определенным временным промежутком путем наложения друг на друга. К примеру, таким функционалом обладает платформа BIM360.

Таким образом, направление применения технологий лазерного сканирования для создания информационных моделей зданий, в частности исторических, является достаточно перспективным. В статье были проанализированы, как достоинства, так и недостатки данной технологии. Можно сделать вывод, что она имеет множество путей развития, как самой технологии съемки облака, так и программного обеспечения для моделирования и подходов к нему. С развитием технологий процесс моделирования по облакам точек станет более быстрым и доступным, облегчая таким образом работу по созданию информационных моделей зданий.

СПИСОК ЛИТЕРАТУРЫ

1. СП 333.1325800.2020. Информационное моделирование в строительстве. – М. : Изд-во стандартов, 2020. – 195 с
2. Тапалов, В. В. Технология BIM: суть и особенности внедрения информационного моделирования зданий / В. В. Тапалов. – М. : ДМК Пресс, 2015. –410 с.

Кириллова Анна Ивановна – студент ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail:anna.kirillova1@mail.ru;

Сапай Анна Александровна – студент ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: alina.sapay@mail.ru;

Пантюшина Лариса Николаевна – к.т.н., доцент кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: pantushinalarisa@mail.ru.

О ДИНАМИКЕ ИЗМЕНЕНИЯ СОДЕРЖАНИЯ В АТМОСФЕРЕ КИСЛОРОДА И УГЛЕКИСЛОГО ГАЗА

В. К. Козлова, А. М. Маноха, А. В. Вольф

Алтайский государственный технический университет им. И. И. Ползунова, Барнаул, Россия

Рассмотрены вопросы влияния жизнедеятельности человека на динамику содержания кислорода в атмосфере. В настоящее время можно констатировать, что с развитием различных технологий, связанных с использованием кислорода, увеличивается расход свободного кислорода и постоянно возрастает потребность в нем. Необходимы мероприятия по контролю содержания кислорода в атмосфере и его восполнению.

Ключевые слова: кислород, углекислый газ, загрязнения, технологии.

По мнению В.И. Вернадского в последние тысячелетия произошел новый скачок в развитии Земли как планеты – приобрела особое значение геохимическая деятельность человека. Эта деятельность, несущая огромные блага людям, может иметь значительные вредные последствия. Одним из таких последствий является наблюдаемое в настоящее время глобальное потепление климата, выражющееся в повышении средних температур, что приводит к наводнениям, таянию ледников, уменьшению их диаметра, более глубокому залеганию слоя вечной мерзлоты и другим изменениям, связанным с климатическими условиями.

Большинство ученых связывают глобальное потепление климата с повышением в атмосфере содержания парниковых газов, в основном, углекислого газа, являющегося продуктом горения различных видов топлив, попутным продуктом производства в различных технологических процессах, в том числе таких строительных материалов, как известняк и цемент. Повышенное внимание к изменению содержания углекислого газа выразилось в том, что многие государства мира подписали Киотский протокол, согласно которому они обязуются сокращать выбросы CO_2 в атмосферу, не превышая при этом отведенную каждой стране норму выбросов.

В России при разработке проекта Энергетической стратегии до 2020 г. просчитывался ежегодный уровень выбросов углекислого газа. В Энергетической стратегии России на период до 2035 г. предусмотрен переход на путь инновационного и энергоэффективного развития, изменение структуры и масштабов производства энергоресурсов, что выражается в последовательном снижении нагрузки топливно-энергетического комплекса на окружающую среду и климат путем уменьшения выбросов и сбросов загрязняющих веществ, в

т.ч. эмиссии парниковых газов, сокращения отходов производства и потребления энергии [1]. Однако происходящие изменения климатических условий могут быть связаны не только с увеличением выбросов в атмосферу углекислого газа, а также с сопутствующим уменьшением содержания кислорода в атмосфере за счет увеличения его затрат в различных технологических процессах.

В условиях нашей планеты главная роль из числа всех элементов принадлежит кислороду. В виде соединений кислород является наиболее распространенным элементом на земной поверхности. В земной коре на долю связанного кислорода приходится 47,0% массы. Он составляет 8/9 весовых частей воды, которая, в свою очередь занимает почти 3/4 земной поверхности. В главных породообразующих минералах, из которых состоят горные породы, слагающие земную кору (силикатах и алюмосиликатах) большие по размеру ионы кислорода расположены очень плотно и почти касаются друг друга. В целом, на долю кислорода приходится свыше 3/4 объема земной коры. Однако содержание свободного кислорода составляет незначительную часть от его общего количества.

Кислород в свободном состоянии содержится в атмосфере – 23,15% по массе и 20,95% по объему. Свободный кислород восполняется только в процессе фотосинтеза на земле и в гидросфере. Процессы дыхания животных, а также процессы гниения, горения и коррозии металлов действуют в направлении, обратном фотосинтезу, и переводят кислород атмосферы в связанное состояние. В настоящее время можно констатировать, что с развитием различных технологий, связанных с использованием кислорода, увеличивается расход свободного кислорода и постоянно возрастает потребность в нем, а возможности его восполнения постоянно

уменьшаются за счет сокращения лесных массивов (вырубание лесов, лесные пожары) и загрязнения гидросферы. С развитием промышленности и ростом использования ядохимикатов в сельском хозяйстве загрязнение гидросферы выросло в серьезную проблему. За счет загрязнения рек, морей и океанов в них задыхаются микроскопические водоросли, ослабевает процесс фотосинтеза, дающего миру кислород.

При уменьшении общего содержания кислорода в воздухе происходит активное разложение содержащегося в нем озона в озоносфере. Таким образом, возникновение так называемых «озоновых дыр» свидетельствует о значительном сокращении количества кислорода в различных слоях атмосферы.

Многие окислительно-восстановительные процессы в живой и неживой природе происходят с участием кислорода и составляют круговорот кислорода в природе, который тесно связан с круговоротом углерода. Но процессы, идущие в природе с участием кислорода и различные технологические процессы с его использованием значительно многообразнее. Кислород является обязательным технологическим компонентом многочисленных промышленных производств (выплавка металлов, получение кислот и многих органических веществ).

Углекислый газ служит главным источником углерода при развитии растений, которые поглощают двуокись углерода из атмосферного воздуха в процессе фотосинтеза, сопровождающегося выделением свободного кислорода. Таким образом, в природе происходит естественная утилизация углекислого газа, образующегося в процессах биологического окисления. При большом количестве растительности на поверхности земли может происходить естественная утилизация значительно большего количества углекислого газа в процессе фотосинтеза. Концентрация CO_2 в воде может быть в 25 раз больше, чем в воздухе, так как углекислый газ хорошо растворяется в воде с образованием угольной кислоты. Наибольшая растворимость CO_2 наблюдается при температуре около 4°C , в одном объеме воды растворяется 0,88 объема углекислого газа. В воде рек и пресных озер в растворенном состоянии преобладает гидрокарбонат кальция $\text{Ca}(\text{HCO}_3)_2$. Значительная часть углекислого газа может утилизироваться за счет растворения в воде рек, озер, морей и океанов. Но возможное равновесие нарушается за счет активной деятельности человека. Основное количество необходимой человечеству энергии дает сжигание различ-

ных видов топлива, при этом образуется углекислый газ и расходуется кислород.

Наибольшее количество углекислого газа образуется при полном сгорании твердых видов топлива. При сгорании 1 кг угля образуется более 3,5 кг CO_2 , при этом расходуется более 2,5 кг кислорода. При сгорании нефти, нефтепродуктов, природного газа наряду с углекислым газом образуется большое количество паров воды. Горение такого топлива сопровождается снижением выбросов углекислого газа. Однако в этом технологическом процессе расходуется большое количество кислорода (8 кг кислорода на 1 кг водорода) с образованием воды [2].

По мнению ученых в 21 веке по многим причинам придётся отказаться от углеводородного топлива. На форуме в Давосе был представлен консорциум по продвижению водорода в качестве топлива будущего.

Водород считается экологичным топливом, продукты его сгорания полностью представлены водой. Кроме того, основная часть водородного топлива может быть получена из воды. По этой причине выбросы при работе двигателей на водородном топливе действительно не представляют вреда для экологии. Однако, при сгорании водородного топлива затрачивается большое количество кислорода. Широкое использование такого топлива может быть связано с экологическим ущербом за счет сокращения содержания кислорода в атмосфере [3].

Одним из источников загрязнения окружающей среды являются предприятия цементной промышленности. Данные производства относятся к энергоемким – 40% себестоимости производства цемента – расходы на энергию. При производстве портландцемента, количество выбрасываемого углекислого газа составляет около 900 кг/т цементного клинкера, что составляет 5% всех выбросов CO_2 в мире.

Возможности усовершенствования процессов производства портландцементов с целью снижения выбросов углекислого газа путем оптимизации современных технологий обжига и помола практически исчерпаны, поэтому особую важность представляет производство композиционных портландцементов. Замена клинкерной составляющей различными минеральными добавками приводит к значительному сокращению выбросов CO_2 .

В Европе производство композиционных портландцементов составляет 55% от общего объема. Цементная промышленность ориентирована на снижение топливно-энергетических производственных затрат и

О ДИНАМИКЕ ИЗМЕНЕНИЯ СОДЕРЖАНИЯ В АТМОСФЕРЕ КИСЛОРОДА И УГЛЕКИСЛОГО ГАЗА

повышение экологической безопасности. Цементные заводы используют различные отходы промышленности, увеличивая объемы производства многокомпонентных цементов. Основное количество таких портландцементов изготавливается с использованием комплексных добавок из доменного гранулированного шлака, золы и известняка. В России производство композиционных портландцементов только начинает осваиваться. Основной объем производства (более 60%) составляет бездобавочный цемент марки ЦЕМ I.

Большой перерасход кислорода наблюдается при использовании различных устаревших технологических процессов. Так, при факельном сжигании твердого топлива в парогенераторных установках на тепловых электростанциях в топках развиваются температуры 1500°С и выше. При таких температурах в дымовых газах становится возможным взаимодействие азота воздуха и кислорода с образованием оксидов азота. На 1 кг взаимодействующего азота расходуется более 3 кг кислорода. Оксиды азота являются вредными выбросами, но ущерб для окружающей атмосфере значительно увеличивается за счет расхода кислорода в данной реакции горения.

Более широкое внедрение котельных установок с низкотемпературным сжиганием твердого топлива позволит повысить экологическую безопасность и энергоэффективность предприятий теплоэнергетики. Как показано в работе [4], при низкотемпературном сжигании бурых углей Канско-Ачинского бассейна не формируется шлаковая составляющая, а улавливаемая зола гидратируется и твердеет без деструктивных изменений.

При работе неэффективных систем отопления с подачей теплоносителя на большие расстояния имеют место значительные потери тепла, при получении которого бесполезно сжигалось топливо и затрачивалось зря большое количество кислорода.

При проектировании и возведении зданий, ограждающие конструкции которых характеризуются низким коэффициентом термического сопротивления, происходит отапливание окружающей среды. За счет процессов коррозии при взаимодействии металлов с кислородом ежегодно теряется около 1,5 % металла, извлеченного из земных недр. Трудно переоценить потери кислорода за счет этих процессов. Необходимы эффективные меры предупреждения процессов коррозии. В большинстве развитых стран в настоящее время до 30-35% электроэнергии вырабатывается при использовании альтер-

нативных источников энергии – солнечных батарей и ветрогенераторов.

Заключение

Одним из способов снижения экологической нагрузки на окружающую среду в строительной отрасли является увеличение доли производства малоклинкерных композиционных цементов.

Несмотря на работу международных комитетов [5] по мониторингу и контролю состава и поведения атмосферы Земли, необходимо уделить большее внимание мероприятиям по разработке, исследованию и использованию экологически эффективных способов получения тепловой и электрической энергии без расхода или с минимальным расходом кислорода. Так же необходимо исследовать влияние изменения содержания кислорода на климатические условия.

Отметим, что даже в странах с хорошо организованным автоматическим контролем состава атмосферы анализируются пробы воздуха на содержание CO, NO, NO_x, SO₂ и озона, но не определяется общее количество кислорода [6]. Службы экологического мониторинга за состоянием окружающей природной среды должны отслеживать изменение содержания кислорода в воздухе различных регионов.

СПИСОК ЛИТЕРАТУРЫ

1. Распоряжение Правительства РФ от 9 июня 2020 г. № 1523-р. Об утверждении энергетической стратегии РФ на период до 2035 года. – URL: <http://static.government.ru/media/files/w4sigFOiDjGV DYT4IgsApssm6mZRb7wx.pdf> (дата обращения 20.02.2022).
2. Козлова, В. К. Об основных техногенных факторах, влияющих на экологическую обстановку / В. К. Козлова, В. В. Логвиненко, Ю. С. Саркисов // Sciences of Europe. – Вып. № 45-3. – 2019. – С. 33-36.
3. Козлова, В. К. Влияние предприятий промышленности строительных материалов и энергетики на содержание в атмосфере кислорода и углекислого газа / В. К. Козлова, В. В. Логвиненко, А. М. Маноха // Ресурсоэнергоэффективные технологии в строительном комплексе региона. – Вып. № 10. – 2018. – С. 297-301.
4. Козлова, В. К. Сравнение состава и свойств зол бурых углей Канско-Ачинского бассейна при высокотемпературном и низкотемпературном сжигании топлива / В. К. Козлова, В. М. Каракулов, В. В. Логвиненко // Сб. трудов конф. «Повышение качества и эффективности строительных и специальных материалов». – Новосибирск. – 2019. – С. 63-68.
5. World Meteorological Organization (WMO). – URL: <https://public.wmo.int/ru> (дата обращения 20.02.2022).

6. Контроль и состояние атмосферного воздуха в Израиле / М. Котен // Сб. трудов международной конференции «Актуальные проблемы экологической безопасности». – Иерусалим, 2015. – С. 65.

Козлова Валентина Кузьминична – д.т.н., профессор кафедры «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kozlova36@mail.ru;

УДК 69+004.92

4D МОДЕЛИРОВАНИЕ ЗДАНИЙ С ИСПОЛЬЗОВАНИЕМ AUTODESK NAVISWORKS

Е. А. Кривошайцева, М. Н. Корницкая

Алтайский государственный технический университет им. И. И. Ползунова, Барнаул, Россия

В статье рассмотрены принципы разработки 4D модели в Autodesk Navisworks с использованием Microsoft Project для построения календарно-сетевого графика и Autodesk Revit для создания 3D модели.

Ключевые слова: 4D модель, Autodesk Navisworks, Autodesk Revit, Microsoft Project, календарно-сетевой график, детализация, пространственно-временная модель, 3D модель, BIM, информационная модель.

BIM (Building Information Modeling – информационное моделирование здания или информационная модель здания) – это оцифрованная наглядная визуализация всех физических и геометрических свойств объекта, которая позволяет учитывать не только геометрию здания, но и информацию об элементах модели. Набор геометрических, информационных данных об объекте формируют информационную модель. В России данную технологию называют ТИМ (Технологии Информационного Моделирования). Данная технология имеет более обширное представление о применении информационного моделирования на практике [1]. С развитием BIM появились новые форматы разработки информационных моделей, представленные на рисунке 1, одним из таких форматов стала 4D модель.

4D моделирование – это добавление в классическое 3D моделирование ещё одного измерения – времени. Благодаря пространственно-временной модели можно устроить наглядную демонстрацию строительства объекта в реальном времени. 4D модель в основном разрабатывают во время проектирования объекта. Однако данную технологию возможно применять и для визуализации процессов строительных работ. Наиболее актуально применять 4D моделирование в случаях, когда в строительстве присутствуют ка-

кие-либо ограничения. Ограничения могут быть пространственными (например, стесненные условия строительства в плотной исторической застройке и т.д.), либо временными, когда сроки реализации проекта строительства сильно сжаты и нуждаются в постоянном контроле хода строительства [2].

4D модель – это визуальное представление хода строительного процесса, в рамках которого может отображаться строительная техника, временные помещения, склады, перемещения рабочих и т.д. Создание 4D-модели может значительно упроститься, если проработка модели будет сопоставима с планом работ. Элементы модели должны быть привязаны к задачам, которые имеют свой срок выполнения. Задачи, как правило, содержатся в плане подрядчика.

4D модель формируется путём соединения элементов модели с датами выполнения задач. Если заранее продумать сопоставление элементов модели с планом выполнения проекта строительства, то сопоставление элементов потребует меньше усилий. В моментах, когда элементы не соответствуют задачам в плане выполнения работ, процесс сопоставления элементов вызовет затрату больших усилий. Поэтому лучше всего создавать элементы, которые будут максимально приближены к плану работ [3].

4D МОДЕЛИРОВАНИЕ ЗДАНИЙ С ИСПОЛЬЗОВАНИЕМ AUTODESK NAVISWORKS

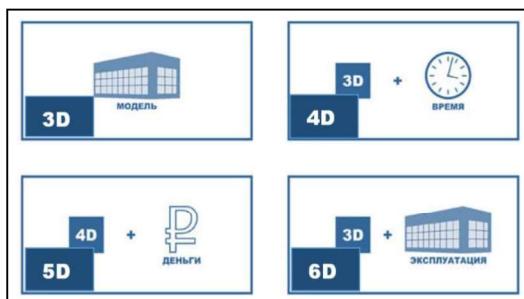


Рисунок 1 – Форматы моделирования

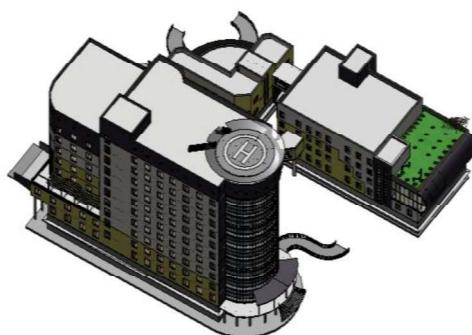


Рисунок 2 – 3D-модель в Autodesk Revit

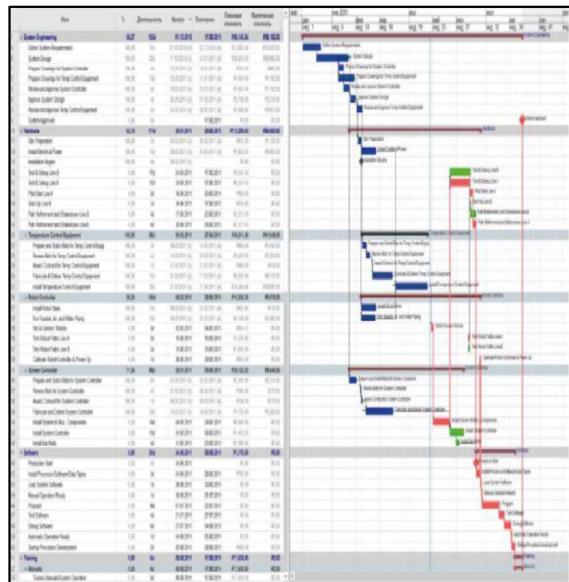


Рисунок 3 – Календарно сетевой график в Microsoft Project

Есть несколько программ, которые позволяют построить 4D-модель, например, Synchro Pro, BEXEL Manager, Autodesk Navisworks и др. В статье рассмотрим программу Autodesk Navisworks.

Autodesk Navisworks – это комплекс, который позволяет контролировать процесс создания информационной модели. Благодаря набору модулей программа позволяет качественно производить контроль за выполне-

нием BIM проекта. А за счет широкого набора загружаемых форматов процесс координирования можно осуществлять из обширного перечня программ. Одно из главных достоинств Navisworks это его «движок», который способен без особых проблем работать с объемными моделями, что очень важно при большом количестве проверяемых разделов, особенно если рассматривать инженерные разделы, где количество элементов может достигать нескольких тысяч. Благодаря модулю TimeLiner в данной программе можно осуществить процесс 4D-моделирования [1].

Процесс создания 4D модели можно разбить на следующие этапы:

- создание 3D модели;
- построение календарно-сетевого графика;
- увязывание элементов 3D модели с сетевым графиком.

Разберём каждый этап подробней.

Создание 3D модели, например, приведенной на рисунке 2, в случае использования Navisworks лучше осуществлять в Autodesk Revit. Данная программа входит в семейство программного обеспечения (ПО) компании Autodesk, что позволяет более точно передавать данные из одного ПО в другое. Также в Revit есть очень важный инструментарий, а именно деление модели на части. Данное преимущество позволяет проектировщикам не моделировать элементы в детализации, которая требуется для построения 4D-модели, а создать отдельную модель, которую можно разбить на части.

Календарно-сетевой график (КСГ) – это наглядное представление процесса реализации проекта строительства. Данный график показывает за какое время и при каких ресурсах будет реализован проект.

Создать данный график можно несколькими способами:

- непосредственно в Navisworks;
- в сторонних ПО.

В Navisworks удобно строить сетевые графики небольших объектов, графики же больших объектов лучше создавать в специальном ПО, например, использовать Microsoft (MS) Project [3].

Данный инструмент довольно простой в использовании, но обладает большим набором инструментов для создания КСГ. В MS Project возможно проанализировать не только КСГ, как показано на рисунке 3, но и финансы. Важно при построении КСГ внести параметры, по которым даты смогут автоматически установить взаимосвязь с 3D-элементами в Navisworks. Данным параметром может

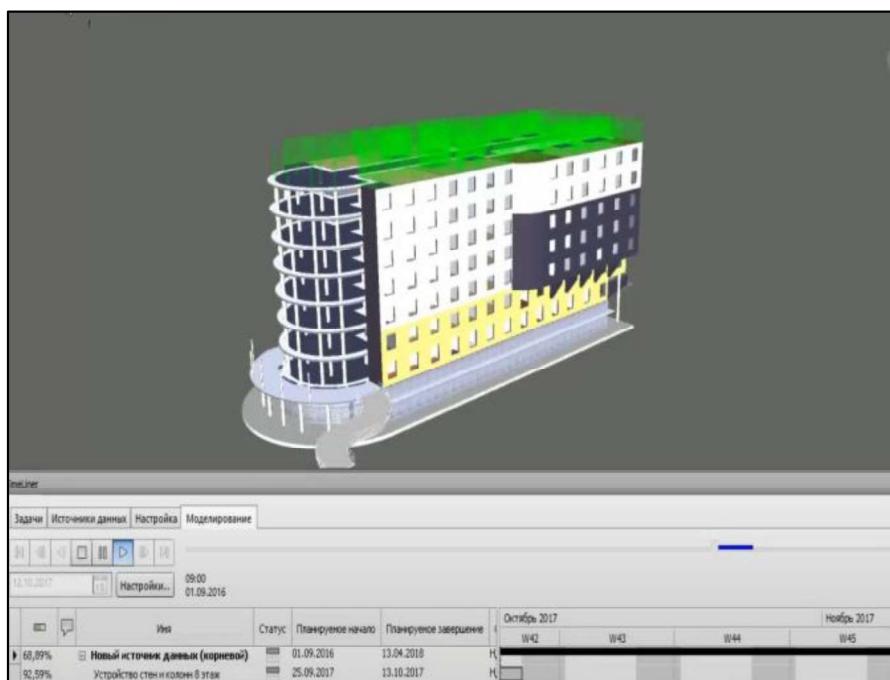


Рисунок 4 – 4D- модель в Autodesk Navisworks

служить этаж, ID элемента и т.д. В рамках больших проектов в моделях каждому элементу назначают свои коды элементов через параметризацию, что позволяет не потерять большинство элементов, и качественно выстроить взаимосвязь.

Когда КСГ и 3D модель готовы можно начинать построение 4D модели в Navisworks, как изображено на рисунке 4. Сначала в Autodesk Navisworks подгружается 3D модель, и начинаются настраиваться наборы элементов для более простого соотношения их с КСГ, лучше всего, если названия наборов элементов и название работ в КСГ будут совпадать, затем подгружается КСГ, и через модуль TimeLine автоматически или вручную сопоставляются элементы 3D модели с КСГ. После окончания данной процедуры можно запустить визуализацию модели, которую можно выгрузить в формате видео для презентации проекта или для сравнения планируемых сроков реализации проекта с реальностью, что очень важно для топ менеджмента строительных компаний.

Результат 4D моделирования можно просмотреть целиком, но для понимания хода строительства можно просматривать визуализацию частями, в том числе с учётом внесённых корректировок в модель.

Заключение

4D моделирование позволяет наглядно визуализировать весь процесс хода строи-

тельства, что помогает проектировщикам, строителям, заказчикам отследить ошибки и сэкономить деньги, так как это значительно упрощает понимание процесса строительства. А руководители смогут принимать своевременные решения для упрощения хода реализации проекта.

СПИСОК ЛИТЕРАТУРЫ

1. Autodesk: Официальный сайт Autodesk / Поддержка и обучение. – Autodesk, Inc., 2022. – URL: <https://knowledge.autodesk.com/support> (дата обращения: 20.02.2022).
2. Преимущества информационного моделирования зданий / Autodesk. – URL: <https://www.autodesk.ru/solutions/bim/benefits-of-bim> (дата обращения: 21.02.2022).
3. BIM технологии в проектировании / Городской центр дополнительного профессионального образования. – URL: <https://doprof.ru/professii/bim-tehnologii-v-proektirovaniy-chto-eto-takoe-i-vchem-ix-preimushhestva/> (дата обращения: 20.02.2022).

Кривошнейцева Екатерина Андреевна – студент группы 8Соим-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: Ekaterina1998kr@mail.ru;

Корницкая Маргарита Николаевна – к.т.н., доцент кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kornic_stud@mail.ru.

ПРИМЕРЫ РЕАЛИЗАЦИИ ВЗАИМОДЕЙСТВИЯ СТРОИТЕЛЬНЫХ ОТДЕЛОВ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ

А. В. Кулешова, Е. Р. Кирколуп

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В рамках работы проведен анализ организации электронного инженерного документооборота на базе Autodesk BIM 360, включающего загрузку документов и назначение прав доступа к директориям хранилища, запуск документации на согласование, создание замечаний и комментариев к запущенной документации, а также простановку штампа в производство работ, QR-кода и электронной цифровой подписи (ЭЦП) по итогам успешного согласования документации.

Ключевые слова: технология информационного моделирования (ТИМ), инженерный документооборот, хранение данных, анализ данных, согласование документации, штамп в производство работ, ЭЦП.

На данный момент всё больше Заказчиков понимает ценность информационной модели объекта строительства, видят её преимущества и рассчитывают, что ТИМ даст значительные преимущества на всех этапах жизненного цикла, поэтому уже сейчас необходимо контролировать соответствие информационной модели реальному объекту при разработке рабочей документации и при её выпуске.

Формирование рабочей документации с использованием ТИМ теряет смысл, если при строительстве будут использованы несогласованные чертежи или чертежи, разработанные в стороннем программном обеспечении, а не полученные непосредственно из информационной модели. Чтобы исключить подобные ситуации необходимо организовать инженерный документооборот с целью следить за качеством рабочей документации на каждом этапе ее согласования. Решений по организации электронного инженерного документооборота современный рынок программного обеспечения предлагает большое количество. В данной работе рассмотрим более детально организацию электронного инженерного документооборота в одном из наиболее подходящих, на наш взгляд, программных продуктов Autodesk BIM360 Document Management. Данный продукт представляет собой облачную платформу для хранения и анализа данных [1]. Платформа служит инструментом для организации совместной работы всех участников проекта в единой среде общих данных.

Функции и преимущества BIM360 Document Management [2]:

ПОЛЗУНОВСКИЙ АЛЬМАНАХ № 1 2022

1. Работа организована в браузере, без необходимости установки стороннего программного обеспечения на компьютер. Платформа позволяет просматривать и проводить анализ таких форматов, как doc, xls, pdf, dwg, png, rvt, nw(c,f), ifc.

2. Возможность организовать собственную структуру хранения документов на основе системы директорий и назначить уровни доступа к этим директориям. На данный момент типовая структура хранения документации выглядит, как показано на рисунке 1.

К каждой папке можно настроить доступ. Он может быть назначен как на всю организацию, так и на конкретную должность или на отдельное лицо. Существует несколько уровней доступа к документации:

- Только просмотр;
- Просмотр, скачивание;

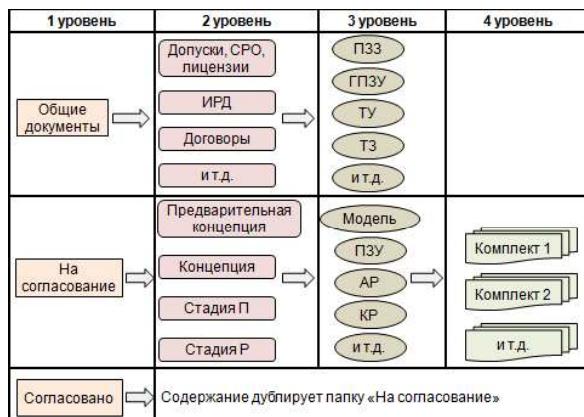


Рисунок 1 – Типовая структура папок BIM360 Docs

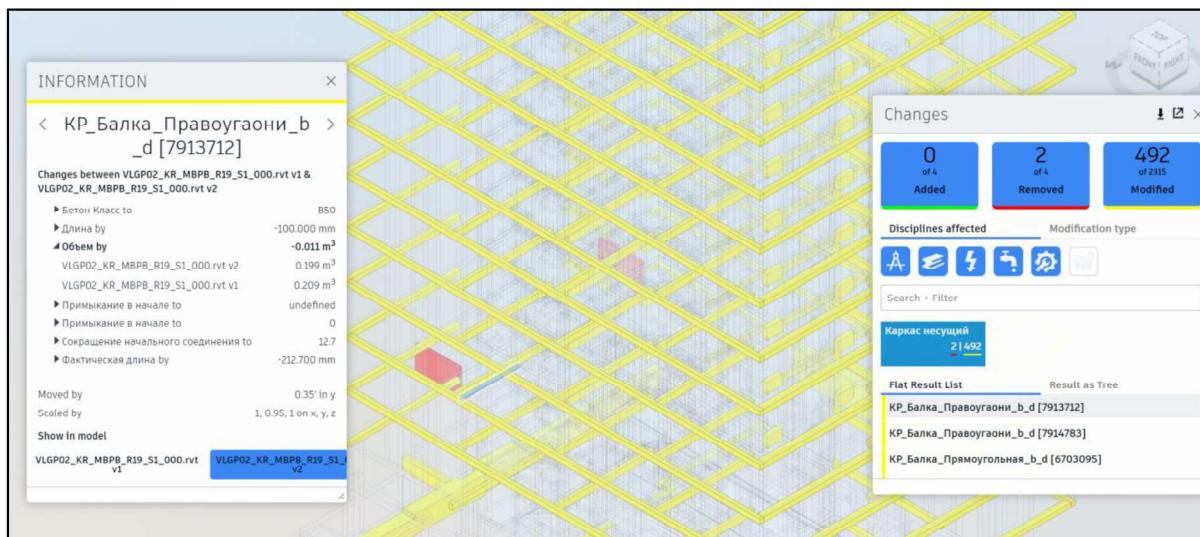


Рисунок 2 – Сравнение моделей и аналитика изменений

- Только загрузка;
- Просмотр, скачивание, загрузка;
- Просмотр, скачивание, загрузка, редактирование;
- Полный контроль с возможностью назначения прав доступа для других пользователей во всех дочерних папках этой директории.

При загрузке файла с тем же наименованием документу присваивается новая версия. По умолчанию при открытии документа открывается его последняя версия. Это позволяет не допустить работу с неактуальной рабочей документацией. Но все старые версии также сохранены и доступны для просмотра. Кроме того, в случае необходимости можно сделать одну из предыдущих версий документа актуальной.

В BIM360 Document Management есть возможность сравнения документации как в 3D, так и в 2D представлении. Это позволяет быстро и наглядно оценить все изменения, произошедшие в модели и документации. На рисунке 2 показан пример анализа изменений в разных версиях модели.

Благодаря системе BIM360 Document Management, обычное согласование рабочей документации становится прозрачным: с назначением сроков согласования, простановкой замечаний и закреплением даты устранения этого замечания, а также подтверждением того, что документация полностью согласована. Цепочки согласования предварительно настраиваются администратором системы. Вариации цепочек согласований в BIM360 могут быть следующие: последовательная (на каждом шаге согласования одно

согласующее лицо) и параллельная (на шаге согласования не менее двух согласующих лиц).

Порядок проведения согласований:

1. Лицо, ответственное за разработку документации (Генпроектировщик / Генподрядчик), загружает рабочую документацию в формате PDF в директории, соответствующие разделу и комплекту, отправляемому на согласование.

2. Инициатор запускает согласование в разделе Reviews по утвержденному Заказчиком маршруту.

3. Участники согласования рассматривают документацию, при наличии замечаний оформляют их с помощью инструментов по меток **Markups** и замечаний **Issues**, а также формируют финальное заключение о согласовании или несогласовании документации. Финальный согласующий консолидирует все замечания и комментарии предыдущих участников согласования и выбирает итоговый статус:

- Согласовано;
- Не согласовано;
- Согласовано с учетом последующей корректировки органами госэкспертизы.

Все комментарии согласующих лиц привязаны к самому согласованию и ко времени их создания, что позволяет в любой момент обратиться к согласованию того или иного комплекта рабочей документации и просмотреть весь процесс его согласования.

4. При положительном решении финального согласующего лица весь комплект документов копируется в отдельную папку для согласованной документации (настраивается в маршруте согласования админис-

ПРИМЕРЫ РЕАЛИЗАЦИИ ВЗАИМОДЕЙСТВИЯ СТРОИТЕЛЬНЫХ ОТДЕЛОВ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ

Рисунок 4 – Простановка штампов

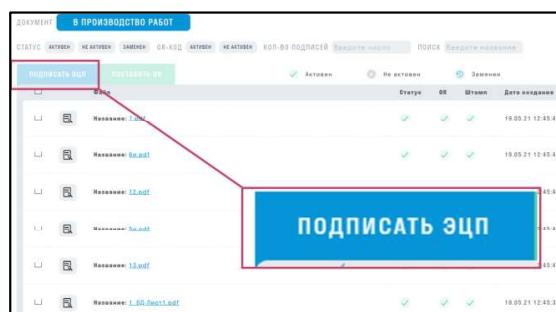


Рисунок 5 – ЭЦП

тратором системы BIM 360), откуда впоследствии производится печать документа.

Система настраивается так, чтобы в папку с согласованной документацией не было возможности собственноручно загрузить документы, они попадают туда только автоматически после согласования и присвоения статуса «Согласовано» или «Согласовано с замечаниями». Несогласованные документы (со статусом «Не согласовано») не переносятся и остаются в исходной папке, куда они изначально были загружены Генпроектировщиком/Генподрядчиком.

После согласования документации все равно остается риск, что на стройку будет распечатан неактуальный комплект рабочих чертежей. Функционал BIM360 не позволяет маркировать документацию, чтобы была возможность определить по печатной версии факт актуальности этого комплекта. Решением выступает разработка Signal от компании Severin Development.

Сервис отслеживает документы, которые попали в папку «Согласовано» в BIM360 и автоматически проставляет штамп «В производство работ» и QR-код (рисунок 4). Кроме того, в личном кабинете Signal есть возмож-

ность подписать согласованный документ квалифицированной электронной подписью (рисунок 5).

Такая ЭЦП является сертифицированной, а значит юридически значимой, что позволяет подписывать всю рабочую документацию в электронном виде в соответствии с требованиями о защите конфиденциальной информации. QR-код позволяет отслеживать актуальность документа при замене или аннулировании листов. При наведении камеры мобильного устройства на QR-код отобразится URL адрес, при переходе на который будет выведена информация о статусе документа.

В заключении отметим, что формирование рабочей документации с использованием ТИМ имеет смысл только в случае правильной организации электронного инженерного документооборота. А именно, в единой среде данных (облачном сервисе) должны присутствовать следующие возможности: загрузка и хранение рабочей документации, полученной непосредственно из информационной модели; разграничение прав доступа к директориям хранилища; сравнение документации как в 3D, так и в 2D представлении; запуск документации на согласование; создание замечаний и комментариев к документации; простановка штампа в производство работ, QR-кода и ЭЦП. Только тогда можно минимизировать вероятность использования несогласованной рабочей документации при строительстве.

СПИСОК ЛИТЕРАТУРЫ

1. Гордиенко, И. Autodesk BIM 360: будущее строительной сферы / И. Гордиенко // САПР и графика. – 2017. – № 11 (253). – С. 24-26.

2. Аминов, Р. Р. BIM-моделирование. Autodesk BIM 360 и Autodesk Revit, основные преимущества и недостатки / Р. Р. Аминов // Информационные и графические технологии в профессиональной и научной деятельности: сборник статей III Международной науч.-практ. конф., Тюмень, 2019 г. – С. 145-147.

Кулемшова Александра Владимировна – студент группы 8С(3)-91 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kuleshova.aleksandra.1997@mail.ru;

Кирколуп Евгений Романович – к.т.н., доцент кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kirkolup@mail.ru.

СТАБИЛИЗАЦИЯ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВЫХ ОСНОВАНИЙ

В. Н. Лебзак

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

При применении химических методов укрепления грунтов необходимо в дорожном деле рассматривать два положения – крепление грунта как дорожной одежды и укрепление грунта как дорожного основания. При укреплении грунтов как дорожных оснований возникает необходимость в том, чтобы грунтам придать только некоторую стабильность, чтобы грунты при избытке в них воды не теряли бы минимальной несущей их способности, что имеет место в некоторых природных грунтах при их переувлажнении. Такое закрепление грунтов, когда изменяются их только некоторые свойства, можно назвать стабилизацией грунтов.

Ключевые слова: железистый купорос, свойства, толща, суглинок мягкопластичный, супесь пластиичная, стабилизация.

Свойства грунтов, как строительного материала, несомненно, в первую очередь обусловливаются их физико-механическими свойствами. Это настолько очевидно, что в настоящее время ни у кого не вызывает никаких сомнений.

При изучении поведения некоторых грунтов в дорожном полотне выяснилось, что они являются неудовлетворительными, при переувлажнении они теряют свою несущую способность. Поскольку было известно, что физико-механические свойства грунтов очень сильно влияют на их поведение в дорогах и зданиях, то вполне естественно, что и исследовательская мысль направилась по пути улучшения их физическими методами. Однако эти методы улучшения грунтов в некоторых случаях являются нерентабельными, а иногда их невозможно и применить.

Известно, что химизм грунтов существенным образом влияет на их свойства и, изменив химизм грунта, можно тем самым изменить его природу. Изменение свойств грунта химическим путем в других видах строительства имеет место уже сравнительно давно [1]. Поэтому естественно было использовать эти методы в дорожном деле и применить их к дорожному полотну.

При применении химических методов укрепления грунтов необходимо в дорожном деле рассматривать два положения – крепление грунта как дорожной одежды и укрепление грунта как дорожного основания. Эти две задачи не одинаковые и меры воздействия на грунты должны быть различными.

В последние годы в ГИПРОДОРНИИ (Барнаульский филиал) проводились работы по укреплению физико-химическими метода-

ми грунтов дорожных оснований. При укреплении грунтов как дорожных оснований возникает необходимость в том, чтобы грунтам придать только некоторую стабильность, чтобы грунты при избытке в них воды не теряли бы минимальной несущей их способности, что имеет место в некоторых природных грунтах при их переувлажнении. Такое закрепление грунтов, когда изменяются их только некоторые свойства, можно назвать стабилизацией грунтов.

Если грунт в естественном состоянии, когда нет избытка воды, является вполне удовлетворительным, то это удовлетворительное состояние мы стараемся сохранить в наиболее критические моменты – весной и осенью, когда грунт будет перенасыщен влагой. Из химических методов, применяемых в других видах строительства и наиболее пригодных в дорожном деле, прежде всего, обращает на себя внимание силикатирование грунтов. При работах в плавунах методом силикатирования получается искусственный камень, имеющий значительную прочность порядка нескольких десятков кгс/см².

Такое закаменение грунтов для дорожных оснований является совершенно излишним, ибо никаких напряжений в грунтовых основаниях, измеряемых десятком кгс/см², не имеется [2]. Поэтому мы пошли по пути стабилизации грунтов возможно малыми количествами вводимых реагентов, такими количествами, которые бы давали только необходимую величину сохраняемости несущей способности грунтов.

В своей работе мы стремились достигнуть достаточной стабилизации грунтов при введении в них веществ в возможно мини-

СТАБИЛИЗАЦИЯ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВЫХ ОСНОВАНИЙ

мальных количествах (таблица 1). Во всех испытаниях первым компонентом было взято жидкое стекло с модулем ($\text{SiO}_2/\text{Na}_2\text{O}$) = 2,63. В качестве второго компонента брались хлористый кальций (CaCl_2), железный купорос (FeSO_4).

Мы брали глину легкую пылеватую, мягкокомпактной консистенции, суглинок тяжелый пылеватый, мягкокомпактной консистенции, супесь пылеватая пластичной консистенции вводили в них полпроцента жидкого стекла и железного купороса, оказалось, что эти глинистые грунты сохраняли водоустойчивость в течение одного месяца и даже значительно больше они оставались в воде в течение 3 месяцев и сохраняли свою форму. Эти образцы в водонасыщенном состоянии дали сопротивление сжатию от 1 до 1,5 кг на 1 см².

Грунты, обработанные последовательно двумя растворами, испытывались на временное сопротивление сжатию и размоканию.

При изготовлении образцов влажность грунтов соответствовала рабочему состоянию и колебалась в пределах от 22 до 27%.

Подготовка образцов к испытаниям производилась следующим образом: вода, которую нужно было прибавить к грунту, делилась на две равные части, одна часть смешивалась с жидким стеклом, а в другой растворялся второй компонент. Затем к грунту, просянному через сито в 2 мм, прибавлялся раствор жидкого стекла, смесь тщательно перемешивалась, к ней добавлялся раствор второго компонента, и все еще раз перемешивалось. Формование образов производилось под нагрузкой 7 кг/см².

Во время работы выяснилось, что формовку необходимо производить непосредственно после введения в грунт второго компонента, в противном случае грунт, сконгелированный в крупные агрегаты, плохо поддается прессованию в компактную массу, так как оболочка каждого агрегата затвердевает.

Таблица 1 – Исследование грунта № 1

Наименование грунта	Диаметры фракций в мм	5,0-2,0	2,0-1,0	1-0,5	0,5-0,25	0,25-0,05	0,05-0,01	0,01-0,005	0,005-0,001	<0,001
Глина легкая пылеватая, мягкокомпактной консистенции	-	1,60	2,40	8,90	12,1	8,2	24,1	27,8	14,9	
Суглинок тяжелый пылеватый, мягкокомпактной консистенции	-	0,7	2,8	10,4	8,7	20,3	26,5	20,4	10,2	
Супесь пылеватая пластичной консистенции	1,1	2,3	7,8	11,9	14,1	23,4	14,6	11,9	8,5	

Таблица 2 – Исследование грунта № 2

Наименование грунта	%, добавок		Время выдерживания образцов (в сутках)		Сопротивление сжатию в водонасыщенном состоянии кг/см ²	Время размокания
	Жидкое стекло	Железный купорос	Во влажной камере	В воде		
Глина легкая пылеватая	0,25	0,30	10	10	0,57	В течение 10 суток образцы не изменились
	0,50	0,60	10	10	0,75	
мягкокомпактной консистенции	1,00	1,20	10	10	0,81	В течение 11 суток образцы не изменились
	2,00	2,40	10	10	0,77	
Суглинок тяжелый	0,50	0,60	10	11	2,85	В течение 11 суток образцы не изменились
пылеватый	1,00	1,20	10	10	1,26	В течение 10 суток образцы не изменились
мягкокомпактной консистенции	2,00	2,40	10	10	1,00	-/-
Супесь пылеватая	1,00	1,20	3	10	2,50	В течение 22 суток образцы не изменились
пластичной консистенции	1,50	1,80	5	22	2,70	

Для испытаний на временное сопротивление сжатию и размокание готовились кубики $2 \times 2 \times 2$ см. Часть их сушилась на воздухе и испытывалась через разные сроки, часть же образцов помещалась во влажную камеру (закрытый эксикатор, на дно которого налита вода) и выдерживалась в ней несколько суток чтобы дать время прореагировать введенным в грунт растворам. Эти образцы затем испытывались во влажном состоянии и некоторые из них предварительно ставились в воду (таблица 2). Как указывалось выше, для укрепления грунтов применяется метод силикатуривания, введение в грунт жидкого стекла хлористый кальций (CaCl_2).

Однако для дорожного дела эти два реагента не дают удовлетворительных результатов, если применять их в тех дозах, которые могут вынести дорожные строительства с экономической стороны. Введение этих реагентов в количестве 23% от веса грунта не дало стабильности грунтов в отношении воды, они сравнительно быстро разваливались. Отсюда, естественно, пришлось заменить хлористый кальций, другим реагентом.

Железистые силикаты и алюмосиликаты являются по отношению к воде более устойчивыми. С другой стороны, железо, как ион, обладает большей коагулирующей способностью, чем ион кальция. Исходя из этого, мы взяли вместо хлористого кальция (CaCl_2) – железный купорос (FeSO_4). Давая добавки жидкого стекла и железного купороса к грунтам, мы пробовали в лаборатории сделать их нечувствительными к воде и обеспечить необходимое сопротивление сжатию. Эти лабораторные работы показали, что можно небольшим количеством жидкого стекла и железистого купороса стабилизировать грунт.

Учитывая те напряжения, которые возникают в основных грунтах дорог, мы думаем, что такое сопротивление является достаточ-

ным, чтобы грунт в основании оказался вполне устойчивым и не содействовал разрушению дорожного основания. При дальнейших работах оказалось, что количество вводимых веществ не во все грунты должно быть одинаково, оно должно быть тем больше, чем меньше внутренних ресурсов в грунте для цементации, чем меньше в нем глинистых частиц.

Из таблицы 1 видно, что если мы берем глину легкую пылеватую, суглинок тяжелый пылеватый, то вполне достаточно, чтобы получить сопротивление сжатию, порядка 1 кг на 1 см^2 , ввести железного купороса (FeSO_4) и жидкого стекла 0,5%, железного купороса, и как сам состав: будет влиять на результаты стабилизации. На основании результатов можно вывести следующее правило: чем выше валентность оснований вводимых солей, тем лучше получаются результаты. Наихудшие результаты получились с солями двухвалентными (хлористый кальций) и наилучшие с хлорным железом и железным купоросом.

СПИСОК ЛИТЕРАТУРЫ

1. Калужский, Я. А. Уплотнение земляного полотна и дорожных одежд: Учебное пособие для специальностей «Автомобильные дороги» и «Строительство аэродромов» вузов / Я. А. Калужский, О. Т. Батраков. – М. : Транспорт, 1971. – 158 с.
2. Соколович, В. Е. Новое в химическом закреплении грунтов / В. Е. Соколович // Основания, фундаменты и механика грунтов. – 1971. – № 2. – С. 5-7.

Лебзак Владислав Николаевич – старший преподаватель кафедры «Технология и механизация строительства», ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: vn230480@mail.ru.

РАЗРАБОТКА ШАБЛОНА СЕМЕЙСТВ ОБОРУДОВАНИЯ ECTOCONTROL В AUTODESK REVIT ДЛЯ СИСТЕМЫ «УМНЫЙ ДОМ»

В. В. Логвиненко, С. М. Гордиенко

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Статья посвящена разработке шаблонов оборудования фирмы *Ectocontrol* для системы «Умный дом», такие как датчик движения, датчик протечки с проводным и беспроводным подключением, беспроводной датчик температуры, извещатель утечки газа, управляемая беспроводная и проводная розетка, устройство управления, беспроводной съемный привод для крана. Был обновлен шаблон семейств Autodesk Revit, который используется для разработки проектной документации систем «Умного Дома» в Autodesk Revit.

Ключевые слова: шаблоны Autodesk Revit, система Умный дом, датчики, устройство управления, *Ectocontrol*.

В настоящее время большинство вещей и процессы в жизни автоматизируются. В том числе это коснулось и бытовых проблем и места проживания. Слаженная работа инженерных систем позволяет поддерживать благоприятную температуру внутри комнат, при этом с максимальной энергоэффективностью с минимальными затратами тепла и электроэнергии. Охранные системы и системы газовой и пожарной безопасности позволяют контролировать ситуацию внутри дома и избежать ЧП, связанных с утечками газа, пожарами, протечками и незаконным проникновением. Управление электроприборами и медиа-системами позволяют контролировать бытовые процессы и сделать жизнь комфортнее и приятнее. Дистанционное управление позволяет все контролировать дома даже тогда, когда собственник вне его. Такие системы объединены в систему под названием «Умный дом». Проекты разработки таких систем уже начинают появляться и внедряться в проектирование [1, 2, 5, 6].

Сама проектная деятельность также подвергается изменению. Использование классических САПР-программ и расчетных комплексов уходит в прошлое. Объединяющие в себе все прошлые программы проектировщиков огромные программные комплексы информационного моделирования внедряются в проектные организации и используются в работе [1, 3, 4, 7]. Создание отдельных элементов, шаблонов, каталогов под каждый элемент в строительстве весьма предсказуемо. Из-за развитий этих двух технологий возникает острая потребность проектирования в среде BIM технологий систем автоматизации «Умный дом».

На данный момент в 2022 году компанией ПОЛЗУНОВСКИЙ АЛЬМАНАХ № 1 2022

ей *Ectocontrol* были разработаны разветвитель и беспроводной датчик влажности. Для обновления созданных шаблонов семейств были разработаны эти семейства.

Разветвитель (рисунок 1) был создан с помощью инструмента выдавливания, а также полой формы выдавливания. Выдавливание позволяет создать 3D-объект «выдавливанием» 2D профиля этого объекта. На двух гранях разветвителя стоят коннекторы для присоединения контактных датчиков.

Таким же образом были замоделированы датчики протечки, влажности и температуры. Они имеют идентичные корпуса. Отличие их во внутреннем устройстве, что определяется шифром датчика. Моделирование идет с помощью инструментов выдавливания и полой формой выдавливания. На рисунке 2 приведен датчик температуры. На рисунке 3 показан пример установки датчика температуры в проект отопления в системе REVIT.

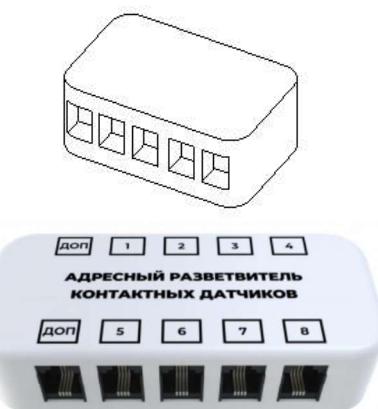


Рисунок 1 – Шаблон и фотография разветвителя контактных датчиков

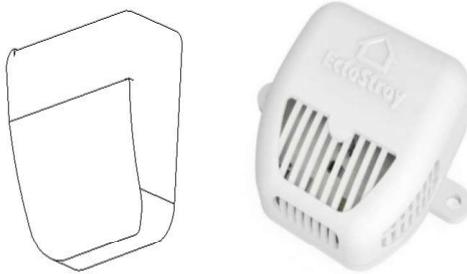


Рисунок 2 – Шаблон и фотография датчика температуры

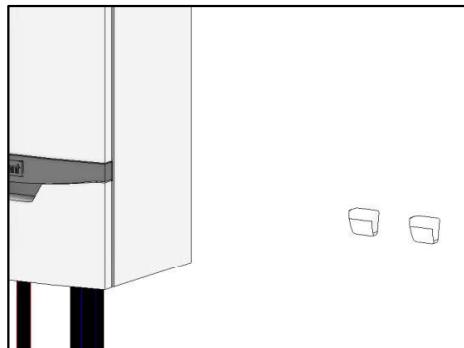


Рисунок 3 – Пример установки рядом с котлом датчика влажности и температуры

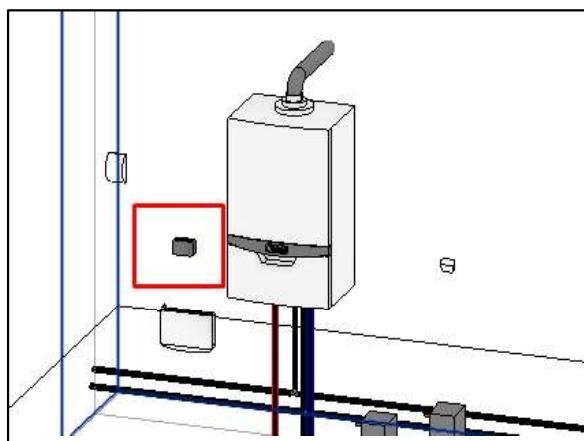


Рисунок 4 – Фрагмент проекта теплоснабжения с использованием некоторых разработанных шаблонов в программе REVIT

Все оборудование создается на основе плоскостей и вспомогательных линий, которым присваивается связь – от слабой до сильной в зависимости от нужного результата. Создавать новые параметры и присваивать их к конкретным элементам необходимо в диалоговом окне «Редактор семейств».

Шаблон проекта представляет собой исходную точку нового проекта и может вклю-

чать в себя шаблоны видов, загруженные семейства, определенные параметры (например, единицы измерения, и веса линий, масштабы вида и т.д.) и геометрию.

На рисунке 4 приведен фрагмент проекта теплоснабжения с использованием некоторых разработанных шаблонов в программе REVIT. Здесь показан фрагмент обвязки котла с приводами кранов на подаче воды, датчиками влажности и температуры.

На рисунке 5 приведена панель, отображающая параметры разрабатываемого семейства беспроводные термометры и проводные термометры.

Шаблон семейств элементов системы Ectocontrol был обновлен и его перечень приведен на рисунке 6.

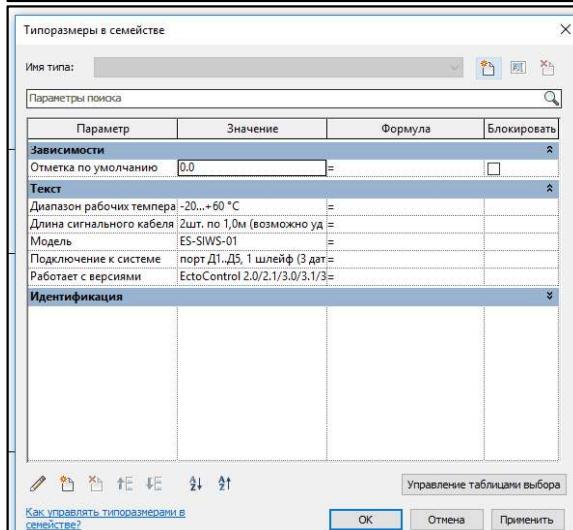
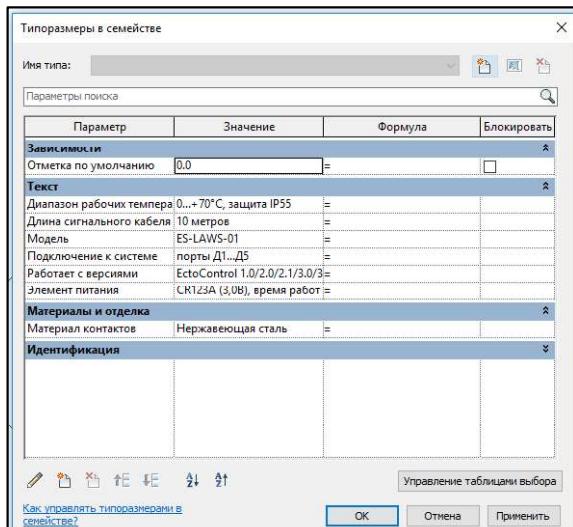



Рисунок 5 – Параметры оборудования для составления спецификаций термометров

РАЗРАБОТКА ШАБЛОНА СЕМЕЙСТВ ОБОРУДОВАНИЯ ECTOCONTROL В AUTODESK REVIT ДЛЯ СИСТЕМЫ «УМНЫЙ ДОМ»

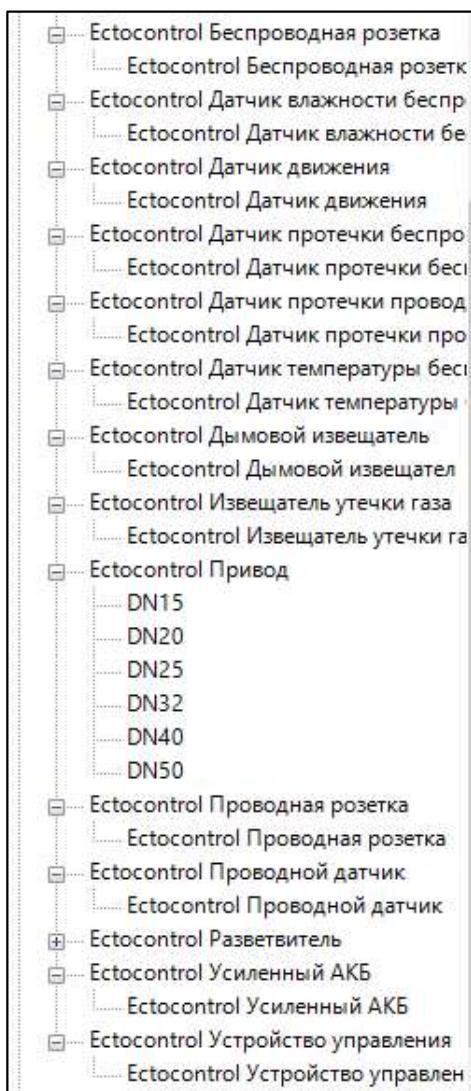


Рисунок 6 – Дополненный шаблон семейств элементов системы «Умный дом» Ectocontrol

Продолжено формирование шаблона семейств элементов Autodesk Revit, которое будет в дальнейшем использоваться для разработки проектной документации при проектировании систем «Умный дом». Обновление шаблонов будут вестись в зависимости от обновления устройств, проводимых компании Ectostroy.

СПИСОК ЛИТЕРАТУРЫ

1. Логвиненко, В. В. Разработка семейства элементов «Умный дом» в Revit / В. В. Логвиненко, С. М. Гордиенко // Ползуновский альманах. – № 1. – 2021. – С. 86-89.
2. СП 77.13330.2016. Системы автоматизации. – М. : Минстрой России, 2016. – 45 с.
3. Федеральный закон «О внесении изменений в Федеральный закон «Об участии в долевом строительстве многоквартирных домов и иных объектов недвижимости и о внесении изменений в некоторые законодательные акты Российской Федерации» и отдельные законодательные акты Российской Федерации от 27.06.2019 № 151-ФЗ : действует с 01.01.2019 [Электронный ресурс]. – Профессиональная юридическая система «Гарант». – Режим доступа: <http://система-гарант.рф/> (дата обращения 17.05.2021).
4. Система Ectocontrol. Дистанционный контроль помещений, управление котлом и оборудованием [Электронный ресурс] / «Эктострой». – URL: <https://ectostroy.ru/> (дата обращения 17.05.2021).
5. Технология BIM для проектирования механических, электрических и сантехнических систем [Электронный ресурс]. – Электронные данные. – Режим доступа: <https://www.autodesk.ru/solutions/bim/mer> (дата обращения 17.05.2021).
6. Российская библиотека для Revit [Электронный ресурс]. – Электронные данные. – Режим доступа: <https://www.to-inform.ru/index.php/arkhiv/item/rossiyskaya-biblioteka-dlya-revit> (дата обращения 17.05.2021).
7. Параметрическое моделирование: описание, методы, обзор программ [Электронный ресурс]. – Электронные данные. – Режим доступа: <http://fb.ru/article/459680/parametricheskoe-modelirovaniye-opisanie-metodyi-obzor-programm> (дата обращения 17.05.2021).

Логвиненко Владимир Васильевич – к.т.н., и. о. заведующего кафедрой «Инженерные сети, теплотехника и гидравлика» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: logvinvv@mail.ru;

Гордиенко Семен Михайлович – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: semengord45@gmail.com.

ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ УСТАНОВКИ БОРДЮРНЫХ ОГРАЖДЕНИЙ НА ЗАКРУГЛЕНИЯХ

В. Н. Лютов, С. А. Ананьев

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье описываются результаты проведённого авторами исследования зависимости величины угла запила торца бортового камня при различных радиусах закругления. Дан анализ повседневной практики монтажа бортовых камней с использованием современных геодезических приборов, систем геолокации и т.д. На основании нормативно-технической документации авторы описывают процесс подготовки и установки бордюрных камней, дают советы по выбору специального инструмента.

Ключевые слова: бордюрные ограждения, бортовые камни, бордюр габариты, бордюр ГОСТ, монтаж бордюр, варианты закруглений, инструменты для работы, алмазные диски, типы дисков для строительных работ/

Город, как сложная система, включает в себя сеть автодорог и пешеходных зон. Для обеспечения безопасности пешеходов и оформления проезжей части используются разные виды бордюрных ограждений из бортовых камней (бордюры). Они устанавливаются вдоль автодорог, на остановках общественного транспорта. Они окантовывают собой пешеходные дорожки, иные виды пешеходных зон. Бортовые камни отделяют зелёные насаждения в парковых зонах и скверах. Поставленные на промышленное производство, такие камни сочетают в себе функциональность и привлекательный внешний вид [1].

Специалисты по строительству автомобильных дорог и ландшафтному дизайну знают, как важно правильно подбирать бордюр по габаритам, форме и размерам бортового камня, регулируемые для всех типов стандартами ГОСТ.

Другим важным вопросом является их правильная установка. Основным помощником специалистов в этом деле является нормативный документ ГОСТ 6665-91 [2], стандартизирующий типоразмеры и формы готовых бетонных или железобетонных бортовых камней (рисунок 1).

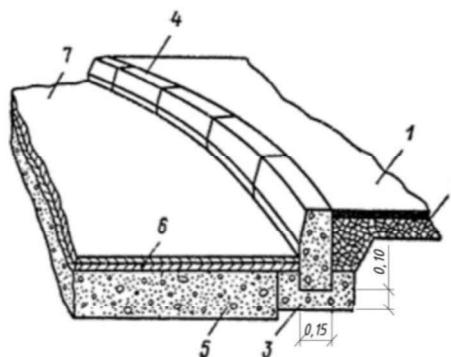
Производимые из качественной бетонной смеси или гранитного камня, или железобетона, бортовые камни создаются методом полусухого вибрационного прессования, что даёт им повышенные эксплуатационные характеристики.

При монтаже бордюр специалисты обращают внимание на геометрию строительного (дорожного) участка. Если на участках с прямолинейным исполнением с монтажом возникает мало вопросов, то в сложных си-

туациях у специалистов всегда много работы.

Повседневная практика по монтажу бордюр неразрывна связана с использованием современных геодезических приборов, систем геолокации и т.п. В природных условиях Сибири и Дальнего Востока специалистам неизбежно приходится решать вопросы гидроизоляции. Как правило, для этого используются стыковочные битумно-полимерные ленты БРИТ-А, обеспечивающие сцепление асфальтобетонного покрытия с плоскостью бордюрного камня, исключая зазор, который со временем, под воздействием осадков приводит к их разрушению.

Подготовив основание и маячные шнуры, можно переходить к установке бортовых камней. Для правильной ориентации бордюра по краям рабочей зоны в виде траншеи вбиваются колышки и между ними натягивается шнур, высота расположения которого от подготовленного основания должна быть не ниже высоты бордюра. Для этого с учётом чётко определённых продольных уклонов, специалисты делают замеры с помощью нивелира, а установку с помощью ручных и механизированных грузозахватных устройств [3].


Значительно сложнее монтировать бортовые камни на поворотах и иных местах, требующих закруглённого исполнения (рисунок 2). В этой ситуации возникают сложности с гарантией герметичности стыка бортовых камней, сложности подпила бортового камня для создания «закруглений», выдержки требуемой толщины фундамента бортового камня. В таких ситуациях чаще всего применяют лекальный бортовой камень, своим бортом повторяющий проектный профиль покрытия.

Специалисты-автодорожники и / или «ландшафтники» следят при таких работах,

ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ УСТАНОВКИ БОРДЮРНЫХ ОГРАЖДЕНИЙ НА ЗАКРУГЛЕНИЯХ

Рисунок 1 – Внешний вид бортового камня

1 – покрытие тротуара; 2 – основание тротуара; 3 – бетонное основание под бордюр; 4 – бортовой камень; 5 – щебеночное основание проезжей части; 6, 7 – нижний и верхний слои асфальтобетонного покрытия проезжей части

Рисунок 2 – Схема установки бортового камня на закруглениях

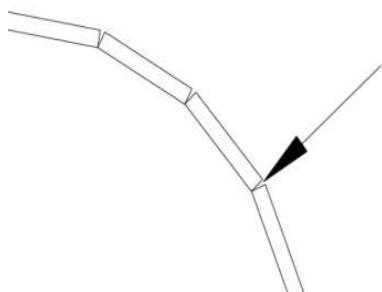


Рисунок 3 – Швы между бортовыми камнями на закруглениях

Рисунок 4 – Смонтированный бортовой камень с нарушением допусков

чтобы в стыках бортовых камней в плане и профиле не допускались уступы. Согласно ГОСТ [2, 3], между криволинейными бортовыми камнями или на стыке криволинейного и прямолинейного бордюра, ширина швов не должна превышать 20 мм.

На рисунке 3 показано, как выглядят швы между бортовыми камнями, получающиеся при производстве работ и обычно заполняемые цементным раствором, постоянно разрушаемым под воздействием осадков и работы снегоуборочной техники.

Нарушение ГОСТов при монтаже бордюра приводит к разрушению шва, что сразу портит внешний вид данного участка дорожного полотна и закладывает основу для его дальнейшей деформации. Попавшая под бортовой камень влага сразу же начинает размывать грунт и разрушать всю конструкцию в целом. Бордюр в таких условиях оседает и смещается (рисунок 4).

Для исключения этой ситуации, специалисты, согласно технологии, подпиливают торец бордюра, улучшая тем самым сстыковку швов между бортовыми камнями на закруглениях, соблюдая величину угла запила, в зависимости от радиуса закругления (рисунок 5).

Авторами статьи с помощью использования программного продукта AutoCAD были смоделированы возможные варианты закруглений стандартных бортовых камней БР 100 (длина 100 см). Отсчёт брался не по толщине бортового камня, а по внешней грани, от которой зависит угол запила (рисунок 6).

По результатам моделирования был построен график зависимости величины угла запила торца бортового камня при различных радиусах закругления (рисунок 7).

На основании анализа этого графика, авторами была определена линия тренда, которая наглядно демонстрирует закономерность изменения угла запила торца стандартного бортового камня БР 100 в зависимости от радиуса закругления при его установке.

Таким образом опытным путём было доказано, что величина угла запила ощутима при малых радиусах закруглений (менее 20 м). В связи со сложностью точного определения радиуса закругления на местности и трудоёмкостью самого процесса, возможны два варианта решения проблемы монтажа бортового камня на закруглениях.

Для нормативного и поточного монтажа бордюрного ограждения необходимо использовать уже готовые изделия, стандартизированного размера и формы.

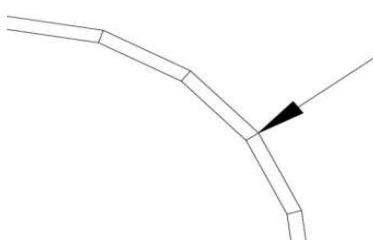


Рисунок 5 – Швы на закруглениях при запиле бортового камня

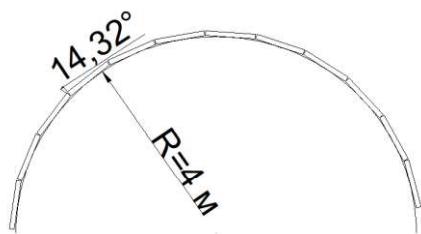


Рисунок 6 – Определение угла запила графическим способом в программе AutoCAD

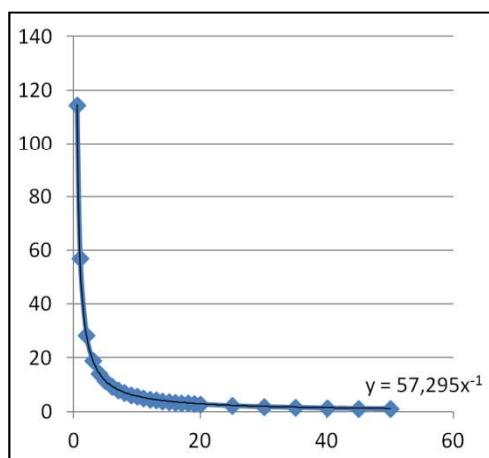


Рисунок 7 – График зависимости величины угла запила торца бортового камня при различных радиусах закругления

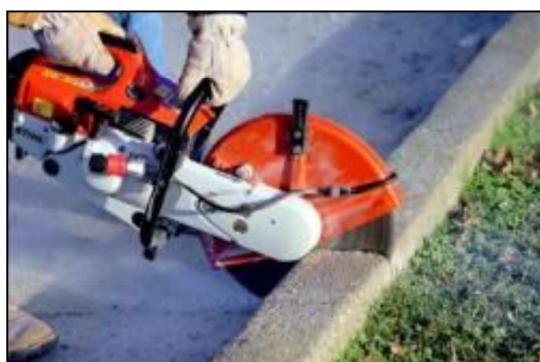


Рисунок 8 – Специализированная углошлифовальная машина (УШМ) для запила бортового камня

Этот подход позволяет исключить воздействие неизбежной пыли и грязи при ручном распиле для окружающей среды. Обратной стороной является необходимость тщательного расчёта размеров изделий, которые должны быть доставлены на место проведения работ, что приводит к их удорожанию. Но даже при выполнении этого условия, изделия должны иметь оптимальный угол запила или тщательно подготовленный участок дорожного полотна, с учётом размеров бортового камня, который должен быть здесь установлен.

Если проводить установку бордюра привычным для большинства дорожных бригад образом, не обращая внимания на вред для здоровья работников и сохранности окружающей среды, можно использовать различный электро- и бензоинструмент с режущими алмазными дисками (рисунок 8).

Использование воды при монтаже бордюра является вынужденной мерой. Поскольку смачивание алмазного диска охлаждает рабочую поверхность, повышая его ресурс; увеличивает время непрерывной работы, а значит, повышает общую эффективность, уменьшая трудозатраты. При сухом же распиле – процесс поверхностен и прерывист. В таком случае совершают несколько небольших распилов на небольшую глубину. При большом объёме работ, рабочие должны быть обеспечены респираторами и другими защитными средствами: очками, перчатками, наушниками и специальной защитной одеждой.

Для ровного распила бетона надо пользоваться маркером или мелом, отмечая на бетоне прямую линию, а затем, рядом с разметкой закрепить направляющие бруски из дерева. Выпиливаются несколько неглубоких линий на поверхности вдоль направляющих, при сохранении глубины распилов не более 1 см. Такой подход облегчает поточную работу по распилу бордюра на стандартную глубину. Если исполнители работ имеют маленький по объёму заказ и алмазные диски не являются обязательными, то в целях экономии можно применять инструмент и диски эконом-класса.

При большом объёме работ и необходимости применения алмазных дисков, используются профессиональные алмазные режущие диски. Специалисты знают, что больший по толщине материал требует большую мощность. Поэтому использовать «болгарку» для всех типов работ нельзя. Выбор инструмента очевиден для специалиста, который исходит в своей работе из опти-

ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ УСТАНОВКИ БОРДЮРНЫХ ОГРАЖДЕНИЙ НА ЗАКРУГЛЕНИЯХ

мального сочетания «цена-качество». Определяющую роль имеет не только страна-производитель, приоритет среди которых имеют Россия, Япония, Франция, Германия и США, но и производитель, который может размещать своё производство в странах третьего мира, при соблюдении условий производства своей франшизы. При отсутствии подходящего к объёму работ оборудования и вынужденного использования, например «болгарки» для большого по размеру изделия, необходимо использовать вид инструмента с системой удаления пыли [4].

По возможности следует выбирать инструмент с системой самоотключения щёток, так как такой инструмент, при работах с повышенной нагрузкой, может перегореть при перебоях с электроэнергией. Говоря о размере инструмента необходимо отметить, что большой инструмент с двумя рукоятками рассчитан на большой диск, который вращается медленнее маленького диска и ему требуется мощность инструмента для разгона. Подбор режущих дисков связан с определением потребностей специалиста и плана работ. Для каждого типа работ необходимо подбирать определённый тип алмазных дисков. Основными типами дисков являются: сегментированные, турбо-алмазные, турбо-алмазные с волновым бесшумным корпусом.

Сегментированные алмазные диски чаще всего применяются для грубого реза бетонных конструкций, для резки швов, для выравнивания наливных полов. Это именно тот инструмент, при помощи которого можно получить качественный грубый пропил бетона, камня, кирпича и гранита. Чаще всего такой диск используется «всухую», и именно сегменты снижают нагрев диска. Существует несколько видов таких дисков, предназначенные для разного вида поверхностей. На данный момент времени можно приобрести специальные диски для плитки и кафеля, позволяющий сделать тонкий, аккуратный разрез при минимальном пылевыделении.

Другими распространёнными в продаже дисками являются диски для работы по асфальту, по камню, специальные диски для резки бетона. Все они востребованы в ежедневных строительных работах на объектах и в автодорожном строительстве. Именно специальный сегментированный диск по асфальту лучше всего применять для замены старого дорожного полотна. Алмазные диски турбо оснащены косой и другими видами насечек по боковым сторонам диска. Они нужны

для увеличения механической прочности круга и постоянного охлаждения диска, что в разы ускоряет рез. Это делает их незаменимыми для быстрой резки любых природных минеральных в своей основе материалов от песчаника до гранита.

Турбо-алмазные диски с волновым бесшумным корпусом дают возможность идеального реза без отклонения. Такие диски нужны для работы с различными типами гранита, его условной «раскройки». Специалист может найти иное применение таких дисков в строительной практике [4].

Таким образом, в заключении статьи можно сказать, что в технологии установки бордюрных ограждений и организации рабочего процесса множество нюансов. Сфера строительства полностью основана на практике и непрерывных научных исследованиях, а значит проведённый эксперимент – только начало большой исследовательской работы.

СПИСОК ЛИТЕРАТУРЫ

1. СП 82.13330.2016 Благоустройство территорий. Актуализированная редакция СНиП III-10-75: дата введения 2017-07-01 [Электронный ресурс]. – URL: <https://docs.cntd.ru/document/456054208> (дата обращения: 02.03.2022).
2. ГОСТ 6665-91. Камни бетонные и железобетонные бортовые. Технические условия / Электронный фонд правовых и нормативно-технических документов [Электронный ресурс]. – URL: <https://www.https://docs.cntd.ru/document/901705131.html> (дата обращения: 02.03.2022).
3. ГОСТ 32962-2014. Дороги автомобильные общего пользования. Камни бортовые. Методы контроля / Электронный фонд правовых и нормативно-технических документов [Электронный ресурс]. – URL: <https://www.docs.cntd.ru/document/1200123713.html> (дата обращения: 02.03.2022).
4. Оборудование и виды алмазной резки / АлмазБурСтрой [Электронный ресурс]. – URL: <https://www.almazburstroy.ru/articles/oborudovanie-i-vidy-almaznoy-rezki.html> (дата обращения: 02.03.2022).

Лютов Владимир Николаевич – к.т.н., доцент, заведующий кафедрой «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: vnlutov@mail.ru;

Ананьев Сергей Анатольевич – старший преподаватель кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: ananda_hasita@mail.ru.

МЕТОДЫ РАСЧЕТА ОГРАЖДЕНИЙ КОТЛОВАНОВ ВОЗВОДИМЫХ ЗДАНИЙ ИЗ ГРУНТОБЕТОННЫХ СВАЙ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОГО КОМПЛЕКСА «GEOWALL» В УСЛОВИЯХ ГОРОДА БАРНАУЛА

В. Н. Лютов, М. А. Ботабаев

Алтайский государственный технический университет им И. И. Ползунова, г. Барнаул

Приведены обзор и предварительный расчет основных параметров ограждения котлована на основе имеющихся исходных данных по грунтам с территории застройки в г. Барнауле. Описана методика теории моделирования работы ограждающей конструкции котлована из грунтовобетонных свай. Проанализирован поэтапный процесс работы метода в программном расчетном комплексе «GeoWall». Приведены результаты расчетов в текстовом и графическом виде, с указанием эпюр основных сил и моментов, действующих на конструкцию.

Ключевые слова: ограждение котлована, программно-расчетный комплекс, активное давление, пассивное давление, горизонтальное перемещение стенки котлована, струйная цементация грунтов, боковое давление грунта.

В современных жилых, общественных и промышленных зданиях, зачастую возникает необходимость ниже уровня 1-го этажа строить подземные парковки, технические, складские помещения и т.п., что вынуждает строительные организации сооружать глубокие котлованы. В этом случае для проектных организаций при проектировании сооружения котлованов возникает отдельная, независимая от основного возводимого здания, задача - проведение полноценной, достаточно трудоемкой проектно-расчетной работы.

Для ограждения котлована из грунтовобетонных свай по технологии jet-grouting встает вопрос определения следующих основных параметров свай: количество рядов свай, шаг, их радиус, длина и профиль армирующего элемента. Необходимо собрать все нагрузки, действующие на ограждение из свай, и сделать на основе их вывод об эффективности выбранного типа и параметров свай[1].

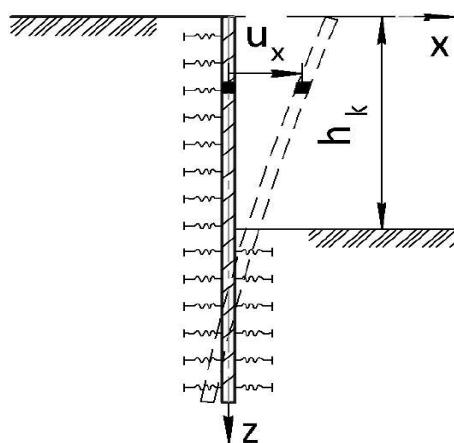
В связи с этим в настоящее время появляются и набирают популярность различные расчетные программные комплексы, выполняющие геотехнические расчеты, в том числе, ограждения котлованов. На российском рынке программное обеспечение (ПО) уже представлено рядом интересных решений, среди которых довольно популярным является программный комплекс «GeoWall» от ООО «ИнжПроектСтрой» [2].

Программный комплекс «GeoWall» позволяет определять прочностные характеристики элементов ограждения котлованов, а

также поведение массива грунта в зоне самого котлована.

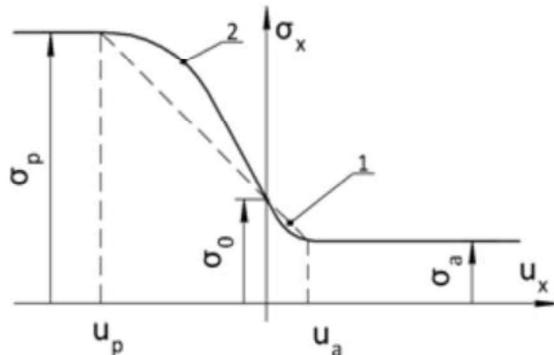
Модель расчета можно представить в виде защемленной балки, работающей на изгиб, которая стремится изменить свое положение. Анкера и распорные элементы выступают в роли связей, обеспечивающих ее устойчивость.

Горизонтальное давление грунтового массива является первым параметром, который необходимо определить в ходе расчетной работы. Его величина зависит от многих факторов, таких как механические свойства грунта, угол наклона поверхности грунта к горизонту, силы трения между грунтовым массивом и подпорной стеной. Величина давления на ограждающую конструкцию равна сумме эффективного давления, от напряженно деформированного состояния грунтового массива и порового давления воды.


Боковое давление грунта на ограждение из грунтовобетонных свай можно представить в виде схемы, представленной на рисунке 1.

Давлением в состоянии покоя называют давление грунта на стену ограждающей конструкции $u_x = 0$. Оно определяется выражением

$$\sigma_0(z) = \sigma_x(z, u_x) \Big|_{u_x=0} = \lambda_0 \gamma z, \quad (1)$$


где λ_0 – коэффициент бокового давления грунта в состоянии покоя; γ – удельный вес грунта, t/m^3 ; z – расстояние от поверхности грунта до рассматриваемой точки, м.

МЕТОДЫ РАСЧЕТА ОГРАЖДЕНИЙ КОТЛОВАНОВ ВОЗВОДИМЫХ ЗДАНИЙ ИЗ ГРУНТОБЕТОННЫХ СВАЙ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОГО КОМПЛЕКСА «GEOWALL» В УСЛОВИЯХ ГОРОДА БАРНАУЛА

h_k – глубина котлована, u_x – горизонтальное перемещение ограждающей конструкции

Рисунок 1 – Схема работы подпорной стенки

1 – аппроксимация кусочно-линейной функцией, 2 – фактическое давление

Рисунок 2 – Графическая зависимость давления грунта (σ_x) на стену котлована от ее перемещения (u_x)

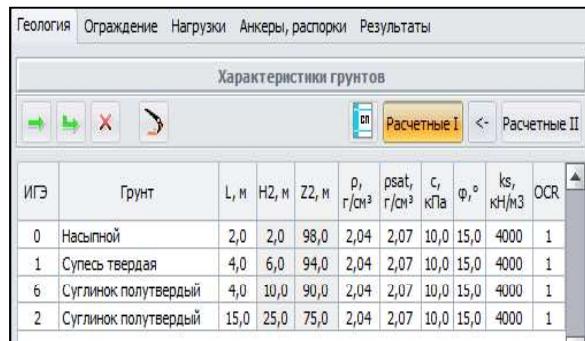


Рисунок 3 – Вкладка ввода исходных данных «Геология» в программе «GeoWall»

В случае, если смещение ограждающей конструкции на глубине z будет предельно допустимым, в работу включается активное давление σ_a , соответствующее минимальному давлению [3]. Пассивное давление σ_p ,

реализуется при значительных смещениях стены на грунт и соответствует максимальному значению давления.

Активное и пассивное давление грунта, если нагрузки на поверхности грунта отсутствуют, можно представить как

$$\sigma_a(z) = \lambda_a \gamma z - c \lambda_{ac}, \quad \sigma_p(z) = \lambda_p \gamma z + c \lambda_{pc}, \quad (2)$$

где, λ_a – коэффициент активного давления грунта; λ_{ac} – коэффициент учета влияния связности грунта на активное давление; λ_p – коэффициент пассивного давления грунта; λ_{pc} – коэффициент учета влияния связности грунта на пассивное давление; c – удельное сцепление грунта, кПа.

Активное и пассивное давление грунта на ограждение котлована являются максимальными величинами давлений. Поэтому можно сделать вывод, что эффективное давление всегда будет находиться в диапазоне

$$\sigma_a(z) \leq \sigma_x(z, u_x) \leq \sigma_p(z). \quad (3)$$

Эффективное горизонтальное давление грунта и перемещение конструкции от него имеет сложную зависимость, которую можно представить графиком на рисунке 2.

Авторами произведен проектный расчет параметров ограждения котлована под строящееся многоэтажное здание на основе исходных данных по грунтам с участка по адресу: г. Барнаул, пр. Комсомольский дом 6в. Данные получены по результатам бурения 5 скважин глубиной 15 м. Далее, в грунтовой лаборатории, были проведены исследования физико-механических свойств грунтов.

Исследуемый участок представлен следующими слоями:

1 слой – супесь лессовидная просадочная высокопористая твердая;

2 слой – суглинок лессовидный просадочный низкопористый полутвердый;

3 слой – суглинок лессовидный непросадочный твердый.

Первым этапом расчета при моделировании ограждения котлована является задание и ввод исходных данных. На вкладке «Геология» (рисунок 3) задаем основные слои грунтового массива, их состав, мощность слоя (h , м). Каждому типу грунта программа назначает значения удельного веса грунта (γ , кН/м³), плотность грунта (в естественном (ρ , кН/м³) и водонасыщенном (ρ_{sat} , кН/м³) состоянии), угол внутреннего трения (ϕ , град), а также ряд коэффициентов, таких как, коэффициент Пуассона (v), коэффициент переуплотнения грунта (OCR), коэффициент

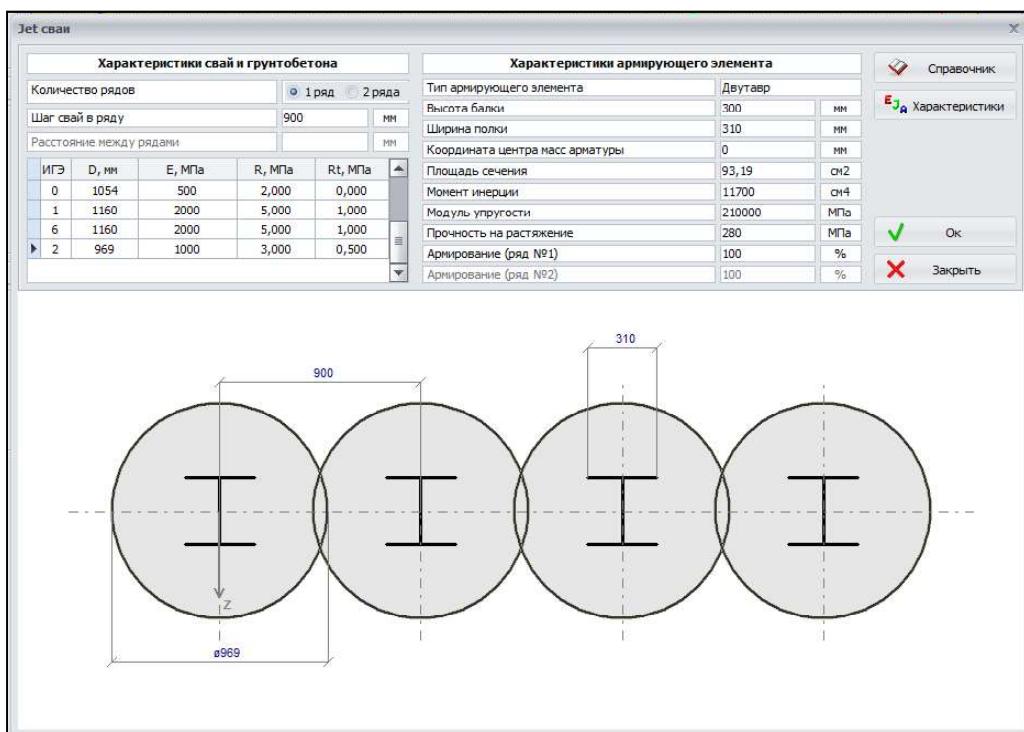


Рисунок 4 – Окно настройки характеристик сечения jet-свай в программе «GeoWall»

активного (K_a) и пассивного (K_p) давления грунта и другие параметры.

Следующим этапом задаем: глубину проектируемого котлована от поверхности земли, длину проектируемого ограждения, глубину заделки свай (участок ограждения ниже уровня дна котлована) и параметр контакта с грунтом. Во вкладке «Параметры ограждения» можно выбрать тип ограждения, а также задать характеристики ограждающих элементов (свай). В частности, для jet-свай есть возможность задать шаг свай, рядность, параметры армирующего элемента.

Все изменения отображаются в видовом окне, показывающем элемент ограждения в плане (рисунок 4). Что примечательно, программа автоматически рассчитывает диаметр сваи для каждого слоя. Это обосновано тем, что диаметр сваи, расход грунтобетона непосредственно зависит от типа грунта [4].

Вкладка «Нагрузки» позволяет задавать нагрузку от зданий, расположенных вблизи, техники и прочей нагрузки на грунт и ограждение (рисунок 5). Этап действия нагрузки отражает время, с которого начинает (и заканчивает) действовать нагрузка. Это может быть момент, когда ограждение еще не возведено, и действовать на протяжении всех этапов жизненного цикла здания.

После того, как были введены все необходимые исходные данные для расчета, производится расчет характеристик моделируе-

мого ограждения котлована на выбранном участке застройки в г. Барнауле. Его результаты появляются во вкладке «Результаты» (рисунок 6).

Его также можно выгрузить в виде отдельного текстового файла. В окне результатов представлены значения максимального

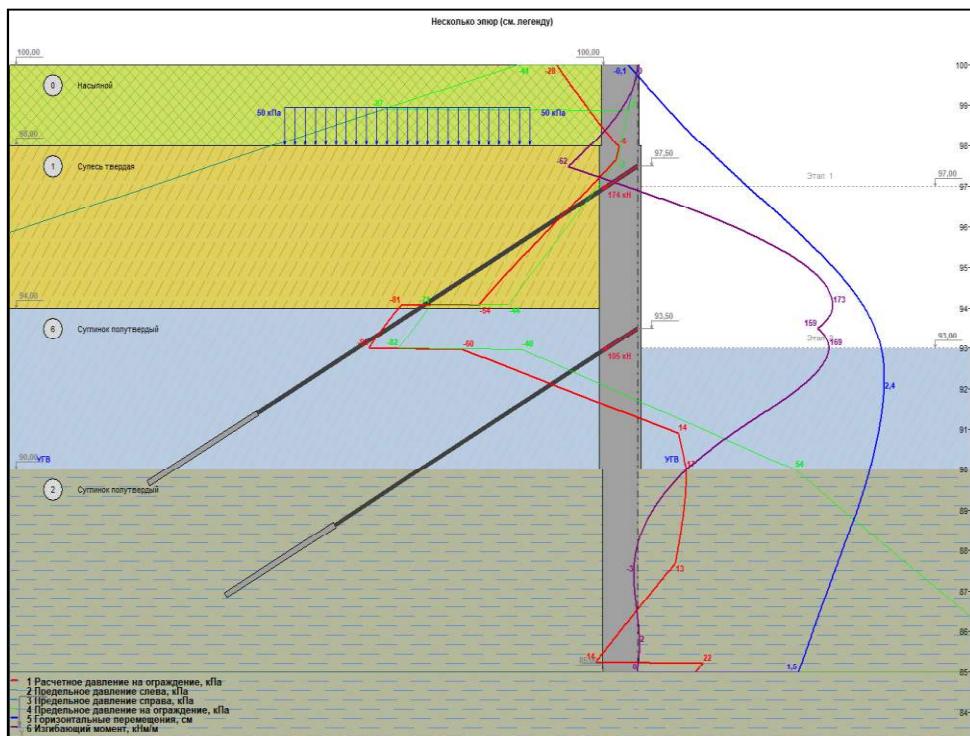


Рисунок 5 – Вкладка ввода расчетных нагрузок в программе «GeoWall»

Максимальные значения	
Макс. изгибающий момент.....	240 кНм/м
Макс. горизонтальное перемещение.....	2,6 см
Макс. перерезывающая сила.....	124 кН/м
Мин. коэффициент запаса в заделке.....	1,69
Мин. значение коэф. запаса в металле Ks.....	3,05
Мин. значение коэф. запаса в бетоне Kb.....	2,17
1 Анкер:	
Усилие.....	196 кН
Коэф. запаса по грунту.....	1,26
Коэф. запаса по материалу	3,26
2 Анкер:	
Усилие.....	105 кН
Коэф. запаса по грунту.....	2,19
Коэф. запаса по материалу	6,10

Рисунок 6 – Фрагмент результата расчета ограждения в программе «GeoWall»

МЕТОДЫ РАСЧЕТА ОГРАЖДЕНИЙ КОТЛОВАНОВ ВОЗВОДИМЫХ ЗДАНИЙ ИЗ ГРУНТОБЕТОННЫХ СВАЙ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОГО КОМПЛЕКСА «GEOWALL» В УСЛОВИЯХ ГОРОДА БАРНАУЛА

Красная линия – Расчетное давление на ограждающую конструкцию, кПа; зеленая – значение предельного давления на ограждение; синяя линия – горизонтальное перемещение, см; фиолетовая линия – изгибающий момент, кНм/м

Рисунок 7 – Окно графического представления разреза ограждения котлована в программе «GeoWall»

изгибающего момента, максимального горизонтального перемещения, перерезывающей силы, усилия в анкерах (если они были заданы в исходных данных). В случае, если какой-то из параметров не удовлетворяет минимальным требованиям расчета по прочности или устойчивости ограждения, появляется ошибка. Результат расчета также отображается в окне графического представления разреза котлована (рисунок 7).

На разрезе можно отобразить графики зависимостей давления на ограждение, перемещения ограждения, изгибающих моментов и критическую призмы от глубины заделки.

На основе расчета ограждающей конструкции можно сделать выводы о его эффективной работе. Результаты исследования данного программного комплекса показали, что процесс моделирования подпорного сооружения является быстрым, и крайне важным этапом в производственном цикле сооружения здания.

СПИСОК ЛИТЕРАТУРЫ

1. Пономарев, А. Б. Подземное строительство: учебное пособие / А. Б. Пономарев, Ю. Л. Винников. – Пермь : Изд-во Перм. нац. исслед. политехн. ун-та, 2014. – 262 с.
2. GeoWall [сайт]. – URL: <https://www.malininsoft.ru/GeoWall.html>.
3. Руководство пользователя / GeoWall [Электронный ресурс]. – URL: <https://www.malininsoft.ru/GeoWall-UserGuide.html>.
4. Малинин, А. Г. Струйная цементация грунтов / А. Г. Малинин. – М. : ОАО «Издательство «Стройиздат», 2010. – 226 с.

Лютов Владимир Николаевич – к.т.н., доцент, заведующий кафедрой «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: vnlutov@mail.ru;

Ботабаев Мурат Абдырахманович – студент группы 8Спгс-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: mirat.botabaev@gmail.com.

ИССЛЕДОВАНИЕ СОВРЕМЕННЫХ МЕТОДОВ РЕКОНСТРУКЦИИ ПРОМЫШЛЕННЫХ БОЛЬШЕПРОЛЁТНЫХ ЗДАНИЙ

В. Н. Лютов, К. А. Красулина, Ю. С. Юрина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В данной статье рассматриваются современные методы реконструкции промышленных большепролетных зданий. Промышленный комплекс нашего города включает застройки, нуждающиеся в реконструкции. Главная задача реконструкции – организация инновационного и интенсивного производства, отличающегося эффективным потреблением ресурсов и соответствующего экологическим нормам. В статье проведены технологии и этапы работ, составляющих основу деятельности по реконструкции объекта, а также рассмотрены общие методы и приемы усиления несущих конструкций промышленных зданий, в том числе один из современных методов – усиление конструкций при помощи композиционных материалов, основанных на углеродных волокнах.

Ключевые слова: технология, реконструкция, реконструкция промышленных зданий, усиление, углеволокно.

Реконструкция является одним из передовых направлений в современном строительстве. Промышленность определяет экономический потенциал нашей страны, поэтому реконструкция выступает как один из важнейших аспектов постоянного развития и является наиболее экономически целесообразным методом достижения интенсивного производства.

При реконструкции необходимо учитывать, что она всегда разнородна, мелкообъемна и рассредоточена. Демонтаж, усиление и замена некоторых конструкций, а также ведение работ в ограниченном пространстве, значительно влияет на общую схему организации работ. Каждое большепролётное здание требует индивидуального подхода, учитываяющего как особенности технологии производства, так и степень морального и физического износа предприятия.

Среди задач реконструкции, направленных на совершенствование производства и трудовых условий, можно выделить:

1. модернизация производства;
2. ремонт и усиление характеристик несущих конструкций;
3. оптимизация условий труда;
4. экологизация промышленного комплекса;
5. улучшение эстетического облика зданий.

Современные технологии предполагают повышение энергоэффективности самого здания и надежности его несущих конструкций. Инновационные методы реконструкции зданий способствуют получению социальной или экономической выгоды.

Промышленные большепролётные здания с непрерывным производственным циклом возведения, при реконструкции требуют использования специальных технологий. В таких нестандартных условиях непроизводительные временные затраты увеличиваются почти в 2 раза по сравнению с тем же объемом работ нового строительства [1].

При разработке проекта организации строительства необходимо учитывать реализуемую технологию производства, график работы предприятия, сроки, отведенные на каждый этап реконструкции, а также стесненность условий и повышенную опасность при проведении работ. Также необходимо подготовить экономическое обоснование эффективности технологий и актуальность применяемых проектных решений, учитывая полный жизненный цикл здания.

Комплекс реконструкции производственных зданий состоит из следующих этапов работ:

Обследование здания и проведение дополнительных геологических изысканий.

На этом этапе рассматривается непосредственно обследование несущих конструкций здания для определения их текущего состояния и несущий способности, а также общее состояние отделки, инженерных коммуникаций и подъездных путей [2]. Необходимо также провести санитарно-экологические и инженерно-геологические изыскания, чтобы определить необходимые параметры окружающей среды и грунта. В последствии проводится анализ для реализации требуемых задач и повышения харак-

ИССЛЕДОВАНИЕ СОВРЕМЕННЫХ МЕТОДОВ РЕКОНСТРУКЦИИ ПРОМЫШЛЕННЫХ БОЛЬШЕПРОЛЁТНЫХ ЗДАНИЙ

теристик объекта соответственно актуальным нормам;

Проектирование. Данный этап включает в себя разработку проектной документации на основании технического задания. Проектирование ведется по следующим направлениям – проект плана организации работ, сметные расчеты, а также проекты для отдельных работ (возвведение пристроек, благоустройство прилегающей территории, модернизация инженерных сетей и т. п.) [3]. При реконструкции необходимо учитывать режим работы и технологический процесс предприятия, а также сроки выполнения работ и их повышенную опасность;

Общестроительные работы. При реконструкции промышленных зданий необходимо стремиться к максимальному сохранению существующих конструкций, повышать их несущие способность и согласованность с новыми условиями эксплуатации. Необходимо уменьшить воздействия на фундаменты и конструкции, что достигается использование инновационных технологий и материалов, например, строительные материалы из легких сплавов и эффективные утеплители. Также повышается производительная мощность путем устранения недоработок в технологических процессах;

Модернизация инженерных систем, коммуникаций. Выполняя реконструкцию промышленных предприятий, необходимо руководствоваться требованиями по охране окружающей среды, пожаро- и взрывобезопасности путем установки дополнительного современного оборудования по очистке, пожарной безопасности, кондиционирования и т.д. Требуется выполнять модернизацию систем вентиляции, электроснабжения, а также водоотведения и водоснабжения.

Внутренняя, наружная отделка. При выборе отделки помещений необходимо руководствоваться технологией производства, а также целесообразно применение инновационных материалов, которые могут способствовать, например, снижению уровня шума от производственного объекта. Целесообразно предусмотреть благоустройство прилегающей территории, которое можно использовать для пыле- и звукозащиты окружающего пространства и повышения эстетического облика территории, оптимизировать расположение парковок, зон выгрузки и погрузки, подъездных путей и т.д.

На практике при реконструкции зданий зачастую приходится сталкиваться с необходимостью усиления конструкций, которая обуславливается некоторыми причинами:

- при усилении или замене вышележащих конструкций увеличиваются нагрузки на нижерасположенные;

- при изменении технологического процесса или модернизации;

- из-за воздействий агрессивной среды или длительных динамических и вибрационных нагрузок может возникать потеря несущей способности конструкции;

- потеря несущей способности конструкции из-за нарушения условий эксплуатации;

- повреждение конструкций при реконструкции, демонтаже и т.д.;

Усиление конструкций является более экономным методом реконструкции, чем их полная замена, а также может быть выполнен без остановки производства.

Методы усиления конструкций решают основную задачу реконструкции – обеспечивают дальнейшую способность несущих конструкций выполнять свою эксплуатационные функции соответственно всем требованиям и нормам.

Для повышения несущей способности конструкций могут быть применены следующие методы:

Метод изменения условий эксплуатации конструкций. Реализуется с помощью уменьшения приложенных к конструкции нагрузок, например, путем замены тяжелых стенных панелей на более легкие и современные материалы. Также эффективны способы уменьшения технологических нагрузок через модернизацию оборудования, и использования распределительных балок, способных изменить распределение усилий в конструкции выгодным образом.

Данный метод обеспечивает дальнейшую эксплуатацию конструкции без последующего ее усиления.

Метод изменения конструктивной схемы сооружения или отдельных его частей. Используется при повышении нагрузок на конструкцию и реализуется следующими способами:

- введение дополнительных опор, а также установка тяжей, подкосов, шпренгелей, ребер и диафрагм;

- перераспределение усилий в конструкции путем установки конструкции-дублера;

- замена разрезных конструкций на неразрезные.

Метод регулирования усилий в конструкциях реализуется с помощью обеспечения пространственной работы конструкций, а также повышение жесткости отдельных элементов. При этом в конструкции достигается

наиболее сбалансированное распределение усилий в ее элементах и сечениях.

Метод усиления отдельных элементов конструкций и узловых соединений. Рассматриваемый метод применяется чаще других, а также может осуществляться в комбинации со всеми вышеперечисленными методами усиления. Для повышения жесткости конструкции производится увеличение поперечного сечения элемента. В узлах усиление соединения достигается с помощью увеличения существующих соединений, а также с помощью их разгружения путем введения дополнительных элементов.

В качестве возможных вариантов усиления могут рассматриваться:

- введение дополнительных ненапрягаемых элементов;
- введение предварительно напряженных элементов;
- введение предварительно напряженных жестких элементов;
- подведение дополнительных разгружающих конструкций;
- усиление стыков соединений конструкций и их элементов.

Одним из современных методов является усиление конструкций при помощи композиционных материалов, основанных на углеродных волокнах (рисунок 1).

Рисунок 1 – Пример усиления здания углеволокном

Углеродное волокно является линейно упругим материалом с высокими характеристиками прочности. Сферой применения данного материала является внешнее армирова-

ние конструкций. Такие элементы хорошо реагируют при увеличении деформаций конструкции, в них возникают большие дополнительные усилия, поскольку они закрепляются на конструкции с помощью монтажного эпоксидного, эпоксиполиуретанового или полимерцементного клея. Это свойство стало причиной использования углеволокна для усиления железобетонных конструкций.

Семипроволочный канат диаметром от 12 до 15.7 мм выполняет роль затяжки. Канат помещают в заполненную антакоррозийным составом пластиковую трубку, что при натяжении уменьшает силы трения. Благодаря наличию трубы натяжение арматурных канатов можно выполнять после бетонирования и набора бетоном проектной прочности.

Таким образом, необходимо отметить, что реконструкция является сложным комплексом преобразования здания, который включает изменение технико-экономических показателей, внешнего вида зданий, объема, одной из конечных целей которого является улучшение условий эксплуатации зданий и сооружений.

СПИСОК ЛИТЕРАТУРЫ

1. Беляков, Ю. И. Строительные работы при реконструкции предприятий / Ю. И. Беляков, А. В. Резуник, Н. М. Федосенко. – М. : Стройиздат, 1986. – 222 с.
2. Давыдов, В. А. Монтаж конструкций реконструируемых промышленных предприятий / В. А. Давыдов. – М. : Стройиздат, 1987. – 208 с.
3. Одоевская, А. А. Строительные материалы будущего / А. А. Одоевская, А. Н. Леонова // Проектирование и строительство автономных, энергоэффективных зданий: сб. ст. Междунар. науч.-практ. конф., 2018. – С. 142-147.
4. Шихов, А. Н. Реконструкция зданий и сооружений: курс лекций / А. Н. Шихов. – Пермь : ИПЦ «Прокрость», 2016. – 398 с.

Лютов Владимир Николаевич – к.т.н., доцент, заведующий кафедрой «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: vnlutov@mail.ru;

Красулина Ксения Андреевна – студент группы СУЗ-81 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kraska906@mail.ru;

Юрина Юлия Сергеевна – студент группы СУЗ-81 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: silkeleds@gmail.com.

ОРГАНИЗАЦИЯ ОТВОДА ВОДЫ ПРИ ЭКСПЛУАТАЦИИ ДОЖДЕВЫХ И ЛИВНЕСТОЧНЫХ КАНАЛИЗАЦИОННЫХ СИСТЕМ

Т. Е. Лютова

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье дан обзор и анализ основных методов монтажа элементов дождевой и ливнесточной канализации и мест их установки, описаны причины сбоев в работе систем точечного водосбора. На основании нормативно-технической документации приведены рекомендации по организации работы службы эксплуатации, определены основные задачи работы таких служб в рамках того или иного города, как организованной сложной системы или другого населенного пункта. Автор определяет основные требования для проектирования систем водоотведения.

Ключевые слова: дождевая и ливнесточная канализация, элементы точечного водосбора, организация отвода воды, типы дождевой и ливнесточной канализации, содержание и обслуживание дождевой и ливнесточной канализации.

На данный момент города РФ и всего постсоветского пространства постоянно сталкиваются с проблемами водоотведения, налаживания работы ливнесточной канализации. Всё это ведёт к систематическому затоплению инфраструктуры городов и населённых пунктов, заболачиванию газонов и парковых зон. На этом фоне как никогда актуален вопрос профилактики работы дренажных систем, их реконструкции, перепроектирования, либо строительства новых.

Дождевая и ливнесточная канализация – это сложная инженерная система труб, дождеприёмников, лотков, каналов, желобов, фильтров, производящих очистку осадков от различных загрязнений, пескоуловителей, дождеприёмных колодцев, коллекторов, смотровых колодцев, ёмкостей, цистерн, в которых хранятся очищенные осадки, предназначенная для сбора и отвода дождевых и талых вод с кровли зданий, дорожных покрытий и различных площадок за пределы городской черты и других видов населённых пунктов, с использованием коллекторов, вододёсов и придорожных кюветов [1].

Основными местами устройства ливневой канализации являются тротуары, парки, аллеи и участки возле домов и зданий, бензоколонки, заправочные станции, парковки, парковочные дома, станции перекачки и хранения нефтепродуктов, производственные и складские территории и т.п. (рисунок 1).

Основным принципом работы дождевой и ливнесточной канализации является сбор потоков и вод в каналы, с использованием уклонов естественных и искусственных поверхностей. Для очищения собранной воды

перед выпуском в канализацию используют специальные пескоотделители.

Другим важным элементом системы водоотведения и сбора вод являются дождеприёмники. Они оснащены специальными фильтрами для очистки стоков. Трубы ливневой канализации используются для водоотвода в специальные дождеприёмные коллекторные колодцы, откуда они дальше выводятся в коммунальную канализацию или открытую дрену. Обратный ток вод предотвращается использованием обратных клапанов [2].

Сбор и отвод дождевой и паводковой воды – это обязательный элемент инженерного оснащения строительных объектов. Для предотвращения затопления проезжих дорог и улиц дождевыми и / или талыми паводковыми водами, дорожное покрытие должно

Рисунок 1 – Общая схема городской канализационной системы

Рисунок 2 – Дождеприёмный колодец

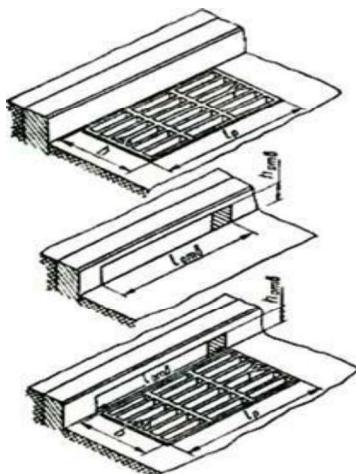


Рисунок 3 – Дождеприёмники на проезжих дорогах и улицах для отвода сточных вод в колодцы канализационных систем

Рисунок 3 – Дождеприемники под водосточными трубами зданий для отвода дождевых вод

Таблица – Наибольшие расстояния между дождеприемниками

Уклоны улиц	Расстояние между дождеприемниками, м
До 0,004	50
Более 0,004 до 0,006	60
Более 0,006 до 0,01	70
Более 0,01 до 0,03	80

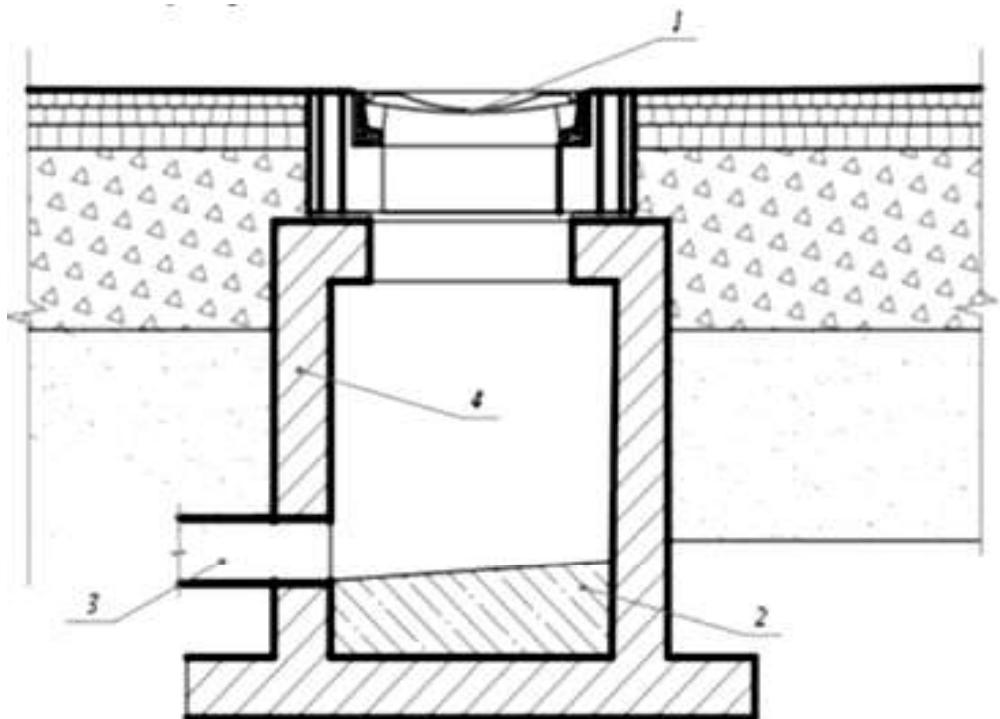
быть уложено с уклоном примерно 5 мм/м в сторону бордюра, имеющими через равные промежутки решётки для слива вод в дождеприёмные колодцы. Каналы и трубы ливне-

вой канализации также прокладываются на водосборной территории под углом.

Равномерное распределение колодцев и оптимальные, ГОСТовские размеры канализационных труб способствуют профилактике затоплений и заболачиванию улиц, тротуаров, газонов и других элементов городской инфраструктуры (рисунки 2, 3).

Размещение дождеприёмников производится согласно Свода правил, в которых приведены ГОСТовские стандарты и методические рекомендации по размещению дождеприёмников и колодцев. Так ширина потока в лотке перед решёткой не должна превышать 2 метра при расчётной интенсивности дождя. На широких улицах (до 30 м) при отсутствии дополнительного затопления улиц со стороны жилых кварталов расстояние между дождеприёмниками также регулируется Сводом правил (таблица). Увеличение расстояния между дождеприёмниками возможно при пропорциональном увеличении ширины улиц. При нарушении Свода правил неизбежны сбои в работе городской и иного типа системы водоотведения.

Под водосточными трубами должны быть установлены дождеприёмники, куда по желобам попадают сточные воды с крыш зданий и сооружений. Из дождеприёмников воды уходят в дождеприёмный колодец и коллектор (рисунок 3).


Для оборудования ливневой канализации используются заглубленные желоба и пескоуловители, а по обе стороны водостока для предупреждения проседания грунтов создаются плоские уклоны. Попадающая в трубы ливневой канализации дождевая вода, должна проходить фильтрацию в пескоуловителях, а затем последовательно попадать в дождеприёмный колодец и коллектор (рисунок 4).

Дождеприёмные колодцы, как правило, устанавливаются в специальных местах, согласно ГОСТ [2]:

- в пониженных местах и в конце улиц с затяжными спусками;
- на перекрёстках и у пешеходных переходов;
- на затяжных спусках – в промежуточных точках;
- при плоском рельефе местности – в пониженных местах лотков улиц;
- внутри кварталов, дворов и парков.

Водостоки, как элемент наружной дождевой канализации необходимы для организованного и быстрого отвода выпавших осадков или талых вод. Это становится особенно

ОРГАНИЗАЦИЯ ОТВОДА ВОДЫ ПРИ ЭКСПЛУАТАЦИИ ДОЖДЕВЫХ И ЛИВНЕСТОЧНЫХ КАНАЛИЗАЦИОННЫХ СИСТЕМ

1 – решетка дождеприемника; 2 – днище колодца в форме лотка; 3 – перепускная труба из дождеприемного колодца в коллектор; 4 – дождеприемный колодец

Рисунок 4 – Дождеприемный колодец

Рисунок 5 – Дождевая ливнесточная канализация открытого типа

Рисунок 6 - Дождевая ливнесточная канализация закрытого типа

актуально при оборудовании улиц и дорожных полотен под уклоном, с уже построенными на данной территории объектами. Ситуа-

ция значительно осложняется при наличии в таких местах подвальных и находящихся ниже уровня дорожного полотна зданий и сооружений. Правильная организация системы водостоков предотвращает возможные проблемы с сезонным подъёмом вод.

Наружная дождевая ливневая канализация включает в себя следующие виды: открытую, закрытую и канализацию смешанного типа. Открытым типом являются канавы, рвы и лотки (рисунок 5).

Использование ливневой канализации закрытого типа (рисунок 6) связано с монтажом водоотводных лотков, как элементов дорожной инфраструктуры, оборудования бордюр и тротуаров. Данный тип подразумевает использование дождеприёмных колодцев, сети подземных трубопроводов, коллекторов и специальных или природных водоёмов.

Также в определённых ситуациях практикуется использование отвода вод в лесные зоны, лесопосадки и прочие малолюдные места, для её использования в систематическом орошении территории. При высоком уровне организации городской инфраструктуры, специальном проектировании населённого пункта такие водоотводы могут использоваться в гидроэнергетике.

Смешанный тип ливневой канализации представляет собой оборудование сети под-

земных закрытых трубопроводов. Этот тип используется при невозможности глубинного бурения почв и прокладки канав (рисунок 6).

Разработка дождевой и ливнесточной канализации требует учёта множества факторов – от рельефа местности и анализа баланса объёма отводимых вод и водопотребления в конкретном населённом пункте, до объёмов использования стока вод, включая интенсивность и количество осадков, площадь стока, расчётную продолжительность протекания дождевых вод.

Ключевым фактором всегда является достижение идеального соотношения затрат на монтаж системы, включая трудовые и материальные ресурсы, нормы СанПиН и пользы для региона в целом и населённого пункта в частности [3].

Нельзя обойти вниманием и материальные, бюджетные затраты на обслуживание такой системы канализации. Для её надёжной и эффективной работы необходима профессиональная разработка проекта, с учётом ограничности «вписывания» канализационной системы в общий городской проект при потенциальном росте площади заселения. Для её обслуживания необходимы специалисты с профильным высшим образованием, которые смогут наладить бесперебойную работу по профилактике системы канализаций, их техническое обслуживание и ремонт.

Этот аспект крайне важен для комплексного понимания проблем построения жилой инфраструктуры, её неизбежного развития и модернизации, необходимых для этого денежных инвестиций.

СПИСОК ЛИТЕРАТУРЫ

1. СП 129.13330.2019. Наружные сети и сооружения водоснабжения и канализации [Электронный ресурс] / Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/565256600> (дата обращения 17.02.2022).
2. ГОСТ Р 50597-2017. Дороги автомобильные и улицы. Требования к эксплуатационному состоянию, допустимому по условиям обеспечения безопасности дорожного движения. Методы контроля [Электронный ресурс] / Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/1200147085> (дата обращения 17.02.2022).
3. Методы устранения проблем при эксплуатации ливневых канализационных систем [Электронный ресурс] / Совет инженера: интернет-энциклопедия по обустройству сетей инженерно-технического обеспечения. – Режим доступа: www.sovet-ingenera.com/kanaliz/ (дата обращения 15.02.2022).

Лютова Татьяна Евстафьевна – старший преподаватель кафедры «Инженерные сети, теплотехника и гидравлика» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: lut-t@mail.ru.

УСИЛЕНИЕ РОЛИ ЯЗЫКОЗНАНИЯ, КАК ЭЛЕМЕНТ СОВЕРШЕНСТВОВАНИЯ МЕТОДИКИ ПОДГОТОВКИ ИНЖЕНЕРНЫХ КАДРОВ В ОБЛАСТИ СТРОИТЕЛЬНЫХ, ДОРОЖНЫХ, ПОДЪЕМНО-ТРАНСПОРТНЫХ И КОММУНАЛЬНЫХ МАШИН

В. В. Малиновский

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье затрагивается проблема недостаточного уровня преподавания иностранных языков в технических вузах. Обосновывается необходимость усиления роли дисциплин гуманитарного цикла в процессе обучения технических специальностей. Изложены перспективные направления развития языкоznания в целом в рамках общего направления развития технических вузов с учётом вызовов современности.

Ключевые слова: языкоznание, филология, иностранные языки в технических вузах, технический перевод, обучение студентов, подготовка инженеров, методика преподавания.

Начало XXI в. вместе с проблемой глобального потепления и увеличения численности населения выдвинуло на первый план научного дискурса проблему куда более приземлённую и имеющую значительно более простое решение, чем приведённые выше – проблему углубления определённого разлома между гуманитарным и техническим знанием. Идеологи обеих половин научного мира начали строить свои научные парадигмы и решать свои научные проблемы, не привлекая своих «братьев по науке» с другой стороны.

Между тем, обе эти «половины» могут и должны дополнять друг друга. Со стороны «гуманитариев» польза «технарея» очевидна, т.к. они создали сначала печатные машинки, а затем ЭВМ и позволили тем самым представителям гуманитарных специальностей значительно ускорить свою работу. Добавим сюда же создание Интернета и вообще всех технических достижений XX века – начала XXI века.

При таком, казалось бы, «подавляющем» преимуществе в фактологии, представители гуманитарных специальностей должны были бы развести руки в стороны и понурив голову признать своё полное поражение и свою практическую «никчёмность». Однако, они имеют полное право сказать, что всё, что было достигнуто представителями технических специальностей – было достигнуто и ими.

Все изобретения с древнейших времён и до нашего времени были названы и «продвинуты в народ» стараниями представителей гуманитарных специальностей.

Сейчас мало кто знает, что в первые десятилетия создания автомобиля, по всем странам, где он продавался была развернута активная пропаганда против его использования. Законы того времени обязывали идти перед движущимся автомобилем пешим сопровождающим и даже нести в тёмное время суток факелы, предупреждая прохожих о потенциальной опасности. Именно гуманитарии нашли нужные слова и составили понятные для пользователей инструкции по использованию того или иного технического достижения – от электрической швейной машины до холодильника и компьютера. Вся «начинка» ЭВМ грамотно описана специалистами-гуманитариями, а Интернет без их миллионов статей просто не мог бы существовать. Таким образом, «технари» создают материальный мир, а «гуманитарии» вдыхают в него жизнь.

Очевидно, что статус университета, исходя из его названия, должны получать только те вузы, в которых на равных правах сосуществуют оба полюса научной общественности. Нездоровая тенденция «очищения» вузов от «непрофильных» специальностей порочна и несёт в себе мощный деградирующий заряд. «Гуманитарии» без высококлассной технической поддержки не могут опираться в своих исследованиях на новые достижения технической науки и обрекают себя на вечную работу в текущих технических условиях.

Если кому-то кажется, что этого уровня вполне достаточно, то хочется напомнить о том, что планшеты и смартфоны появились буквально «вчера» по историческим меркам и их изобретение никем не прогнозировалось.

Это же касается и «облачного хранения» данных, включая художественные и научные тексты, статьи и монографии. Очевидно, что это не предел человеческих возможностей и, главное, потребностей. Недавно было заявлено о начале тестирования очков с выводящимся на линзу экраном. Управление, предполагается, будет осуществлять зрачок глаза, а микропроцессор будет «спрятан» в дужку.

Одновременно, технические специальности в таких условиях лишают себя «голоса». Далеко не все представители технических специальностей способны провести грамотную презентацию своих достижений, «достучаться» до инвесторов и потенциальных покупателей своих изобретений.

Возвращаясь на уровень университетов, надо отметить, что преподавание гуманитарных дисциплин для технических специальностей жизненно необходимо, даёт им не только общий кругозор и умение грамотно выражать свои мысли, но и объективные перспективы профессионального роста.

В первую очередь речь идёт о преподавании иностранных языков, которые уже стали неотъемлемой частью установления связей в глобальном мире.

Вся техническая документация изобретений, продающихся по всему миру, написана на английском языке.

В последнее время вторым важным для изучения языком становится китайский, который обслуживает повседневные потребности людей от упаковок зубочисток и иголок до бытовой химии и пластмассовой посуды.

Узкоспециализированным языком в сфере вооружений стал русский.

Весь мир IT давно и полностью перешёл на английский.

В таких условиях не имеет смысла вести разговоры о возможности ликвидации кафедры иностранных языков или сокращении кадров. Технический перевод – это не только область, в которой оба полюса научного мира пересекаются и помогают друг другу, но и источник материальной выгоды. Имея в своём штате специалистов-переводчиков, любой вуз полностью закрывает проблему хоздоговоров и обновления библиотечного фонда. Нереализованная до сих пор в большинстве вузов идея «департаментализации» структуры вуза несёт в себе огромный позитивный потенциал, давая реальную возможность «гуманитариям» и «технарям» постоянно работать вместе, обогащая друг друга.

Но как построить работу кафедр иностранных языков и отдельных специалистов в случае отсутствия такой кафедры в вузе?

В первую очередь можно руководствоваться уже описанным выше сценарием, давая филологам на перевод техническую документацию и учебные пособия, которые нужны студентам, по мнению преподавателей. Переводчики должны быть привлечены к работе в отделе / управлении по международным связям, чтобы они могли налаживать контакты с зарубежными вузами. Никто не отменял стандартов министерства образования, по которым преподаватели вузов должны публиковать свои статьи в международных цитируемых журналах систем Scopus и Web of science.

Привлечение филологов-языковедов к преподавательской работе такое же неотъемлемое условие здоровой университетской жизни, как и студенческое правительство и студенческие, например, строительные, отряды. Для их гармоничной работы необходимо создавать мультимедийные аудитории, лингафонные кабинеты. Закупать и активно использовать проекторы, мультимедийные доски. Проблемы организации обучения студентов технических вузов уже рассматривались учёными в советский период [1-5]. Современные учёные стран СНГ продолжают эту традицию, что говорит о её актуальности [6-9].

Упоминавшаяся выше идея департаментализации структуры вузов в ближайшей перспективе способна обеспечить вузы квалифицированными специалистами-переводчиками с наработанным богатым опытом по специальности. Такие преподаватели-переводчики и просто специалисты по переводу могли бы постоянно работать в своих департаментах, имея ежедневную практику перевода узкоспециализированной литературы.

Сами студенты, имея возможность получить знание иностранных языков, получают большие перспективы, чем те, кто в силу отсутствия в вузе квалифицированных преподавателей-языковедов изучают языки самостоятельно или вовсе их не изучают.

Подготовка инженерных кадров на строительных факультетах многогранна и подразумевает возможность специализации студентов не только по профилю промышленное и гражданское строительство, но и в области дорожных, подъёмно-транспортных и коммунальных машин, теплогазоснабжения и вентиляции. Поэтому строительные факультеты являются одними из наиболее востребованных среди иностранных студентов. Особенно речь идёт о странах исламского мира и Юго-Восточной Азии. Поэтому совер-

УСИЛЕНИЕ РОЛИ ЯЗЫКОЗНАНИЯ, КАК ЭЛЕМЕНТ СОВЕРШЕНСТВОВАНИЯ МЕТОДИКИ ПОДГОТОВКИ ИНЖЕНЕРНЫХ КАДРОВ В ОБЛАСТИ СТРОИТЕЛЬНЫХ, ДОРОЖНЫХ, ПОДЪЕМНО-ТРАНСПОРТНЫХ И КОММУНАЛЬНЫХ МАШИН

шенно логичным является возможность изучение в таком вузе и / или на факультете одного или нескольких восточных языков.

Всё это говорит о постоянной необходимости современного технического вуза в работе специалистов-языковедов в разных департаментах или кафедре иностранных языков. Только стабильная работа таких специалистов даст возможность вузу не только зарабатывать, сотрудничая с региональным бизнесом, но и налаживать международное сотрудничество.

СПИСОК ЛИТЕРАТУРЫ

1. Вывиорковская, З. М. Пособие по немецкому языку для технических вузов (машиностроительного профиля) / З. М. Вывиорковская. – М., 1976. – 148 с.

2. Полторацкая, Н. И. Природа и человек. Пособие по французскому языку для технических вузов / Н.И. Полторацкая. – М., 1988. – 159 с.

3. Книга для чтения по английскому языку для технических вузов (радиотехнического и энергетического профиля). – М., 1983. – 71 с.

4. Вопросы методики преподавания иностранных языков в техническом вузе. – Ростов-на-Дону, 1965. – 168 с.

5. ЭВМ в обучении иностранным языкам в вузе. – М., 1988. – 102 с.

6. Радовель, В. А. Английский язык для технических вузов / В. А. Радовель. – М., 2010. – 442 с.

7. Языкова, И. Н. Управление учебной деятельностью студентов в процессе обучения иностранному языку в техническом вузе / И. Н. Языкова. – Барнаул, 2004. – 45 с.

8. Иностранный язык как предмет, сопровождающий профессиональное образование. Опыт и перспективы обучения. – Барнаул, 2010. – 284 с.

9. Кремлева, Ю. В. Развитие иноязычной речевой деятельности студентов технического вуза на основе личностно-ориентированного подхода / Ю. В. Кремлева. – Барнаул, 2014. – 197 с.

Малиновский Вадим Владимирович – заведующий лабораторией кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: Kielanovski@gmail.com.

УДК 378.147:69

О ВОЗМОЖНОСТЯХ ИСПОЛЬЗОВАНИЯ ПРИНЦИПОВ СИНЕРГЕТИКИ В ПРОЦЕССЕ ОБУЧЕНИЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ НА ПРИМЕРЕ ПРОФИЛЯ ПОДГОТОВКИ «ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО»

В. В. Малиновский, Д. В. Тищенко

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье изложены основные принципы применения научной парадигмы синергетики в обучении студентов технических специальностей вузов. Даны общие направления развития методики преподавания дисциплин профиля «Промышленное и гражданское строительство» (ПГС) на основе синергетического подхода.

Ключевые слова: синергетика, строительство, ПГС, технические специальности, методика преподавания.

Глобальный, планетарный уровень научного знания в настоящий момент базируется на абстрактном пространственно-временном симбиозе, выдвинутом Эйнштейном и новой научной парадигме, называемой синергетикой.

Сочетание и параллельное использование теории реальных структур, фрактальной геометрии, нелинейной динамики, биохимии, социологии и ряда дополнительных дисциплин подвело человечество к новому рубежу

научного познания мира и выходу на новый виток развития.

Всё чаще пересекающиеся между собой микро- и макромирры (муравейник и подземные строения специального назначения, одна из клеток живого организма и мутировавшие клетки вируса, распространявшиеся в масштабах планеты, жизнь одного человека и перспективы жизни всего человечества, существование планеты Земля и возможное освоение дальних рубежей Вселенной и т.д.)

делают очевидным необходимость использования новых, междисциплинарных подходов и научных парадигм для познания мира и разработки теорий и гипотез развития человечества и всей планеты Земля в целом.

Начав развитие научного знания с познания окружающего мира и осознания человеком себя как его части, учёные постепенно перешли к развитию гуманитарного знания, направленного на изучение тела человека, его личности и закономерностей развития. К этому периоду принадлежат все научные достижения Древнего мира и Средневековья.

Постепенное освобождение от догмата Церкви и начало Нового времени дало новый толчок к развитию гуманитарного и технического знания, которые должны были дать ответ на вопрос о жизни городов. Происходит расцвет математики и техники, создание новых механизмов. Постепенно, но динамично меняется медицина, происходит подъём в изучении оружия и механизмов.

Сложившийся на этих основах мир жил больше двух веков (XVI – вторая половина XVIII вв.), когда постоянная работа над изучением металлов и механизмов, их применением в экономике стран дали результат в виде создания первых двигателей и новых видов транспорта. Начавшееся активное освоение земель и параллельный рост населения привёл к устойчивому развитию в этом направлении.

Не вдаваясь в подробности, важно отметить, что все технические достижения от паровой турбины до первого двигателя внутреннего сгорания относятся ко второй половине XIX в.

Концентрация научного сообщества на объектах, созданных человеческим разумом и физической силой, характерные для всего XX века и нашедшие отражение в качественном и количественном росте таких областей хозяйствственно-экономической деятельности человека и видов производственной деятельности, как энергетика, машиностроение и т.д., привели к созданию материальных благ в планетарном масштабе, индустриальному развитию планеты.

Конец XX века поставил перед мировой экономикой одновременно две проблемы – увеличение производства для удовлетворения нужд населения планеты и осознание конечности ресурсов планеты, стремление перейти на возобновляемые источники энергии.

Идея развития «зелёной» энергетики была «похоронена» климатическими вызовами 20-х годов XXI века. Снижение солнечной активности, всё более ощутимое глобальное

потепление и, одновременно, сильные морозы и обледенения в отдельных регионах планеты дали правительству стран чёткий сигнал о фактической «безальтернативности» ядерной энергетики. По крайней мере, пока человечество не получит в свои руки источники возобновляемой энергии в виде гелия и тяжёлого водорода.

Непрекращающийся процесс «облегчения» производства через развитие машиностроения и робототехники, его масштабирование посредством переноса в слаборазвитые страны, при этом постоянный поиск новых ресурсов для мировой экономики и рост населения планеты всё больше загоняют её в замкнутый круг «рост потребления – рост населения – рост промышленности – рост потребления».

В этих условиях всё мировое учёное сообщество начало задаваться вопросом о принципах регулирования общего развития, как экономики, так и человечества в целом.

Одновременно начинается новый виток развития гуманитарного знания. Он направлен не только на понимание места человека в новом и постоянно изменяющимся мире, но и на использование достижений гуманитарных наук в сложившейся ситуации.

Традиционное гуманитарное знание даёт фундаментальную базу понимания человека, его природы и механизмов его существования. Это стало особенно важно с началом планетарного карантина, когда миллионы человек были лишены возможности передвижения, впервые за долгое время столкнулись с вопросом выживания перед угрозой вируса, при этом сохраняя необходимость в росте промышленности, удовлетворения своих потребностей, в частности продолжения обучения.

Подобная неизбежная двойственность в текущей ситуации и неизвестность будущего ставят перед мировым сообществом понимание того, что всё созданное человечеством является примером искусственной организации, и оно пришло к явному упадку. Логичным в данной ситуации является изучение принципов самоорганизации, и попытка применить их к нуждам современности.

Наиболее показательными примерами самоорганизации богаты такие сферы знания, как биология, химия и созданное на их основе естествознание.

Всё созданное природой – это образец естественного и гармоничного создания и развития. События и явления в них развиваются как во времени, так и в пространстве. Природные процессы наполнены диффузи-

О ВОЗМОЖНОСТЯХ ИСПОЛЬЗОВАНИЯ ПРИНЦИПОВ СИНЕРГЕТИКИ В ПРОЦЕССЕ ОБУЧЕНИЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ НА ПРИМЕРЕ ПРОФИЛЯ ПОДГОТОВКИ «ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО»

онными, хаотично проникающими друг в друга явлениями, создающими в итоге совершенную гармонию.

Одновременно с этим учёными давно замечен стабильно воспроизводящийся принцип сохранения энергии. В природе ничего не происходит и не создаётся с излишним потреблением энергии. Так параллельно реализуется экономический т.н. «принцип Паретто», согласно которому 80% эффективности приходится на 20% энергозатрат и наоборот 80% использования энергии часто, (читай всегда), дают всего 20% эффективности. Всё это отражено в принципах синергетики, описанных впервые в 1973 г. немецким учёным Германом Хакеном [1] и продолженных в работах других учёных [2-6].

Согласно выведенным позже правилам синергетики и, конкретно, четвёртому и пятому правилам – для достижения технологических требований во взаимодействующих системах существует минимум энергии для получения наилучшего качества продукции или производственного результата, а в каждом классе материальных систем преимущественное развитие получают те, которые в соответствии с принятой совокупностью внутренних и внешних воздействий достигают минимальной энергопотребности.

В сфере строительства – это достижение максимальной производительности, долговечности и надёжности изделия, высокой экономичности и конкурентоспособности [6].

Постоянный рост производства вынуждает расти и количество специалистов, которые смогут не только работать в текущей ситуации, но и двигать индустрию дальше. Вне всяких сомнений речь в первую очередь идёт о низкоквалифицированном труде, который и выполняет большую часть работ. Однако именно инженеры способны не только руководить строительством, но и изучать, разрабатывать новые механизмы, материалы. И всё это в условиях глобальной экономики, когда строительные материалы, специальная техника и человеческие ресурсы, строительные объекты расположены по всей планете.

Всё это делает совершенно необходимым взаимное проникновение гуманитарного и технического знания.

Очевидно, что новые принципы организации производственных процессов в строительстве, неизбежно выстраиваемые в русле научной парадигмы синергетики, должны иметь прочную академическую базу. Профессорско-преподавательский состав и сами студенты должны ещё в стенах своих вузов

учиться и работать, используя синергетические принципы.

Не вдаваясь в подробное освещение процесса вступления вузов СНГ в так называемый «Болонский процесс», необходимо сказать, что чёткое следование ему даёт реальную возможность системе высшего образования любой страны выйти на новый уровень.

В текущей реальности традиционная советская система обучения показала свою уязвимость перед лицом жизни в условиях карантина.

Реальность такова, что вузы стран СНГ уже используют в своей повседневной работе принципы синергии, не отдавая себе отчёта в этом и не создавая гармоничной замкнутой структуры. Т.е., другими словами хаотичное движение частиц и инициативы отдельных преподавателей и студентов уже есть. Активно идёт диффузионный и диссипативный процесс, которые неизбежно приведут к созданию новой живой крепкой структуры.

На строительных факультетах вузов минимум с начала «нулевых» используют параллельно мультимедийные аудитории, а значит и достижения сферы ИТ и проектный подход в преподавании ряда дисциплин.

Помимо новаторских решений в виде курсов «Управление проектами в строительстве», реализующихся в формате спецсеминаров, в том числе как внеучебная работа в рамках ФГОС 3++, есть и ряд дисциплин, ведущие которые преподаватели используют проектный подход (ОПУС).

Работа в малых группах всегда приносит большую пользу, чем работа со всеми студентами сразу или работа каждого отдельного студента. Основы такой работы должны закладываться в ходе прохождения студентами такого учебного курса, как «Основы научно-исследовательской деятельности».

Выше уже говорилось о всё возрастающей роли специалистов ИТ-сектора и об устойчивом проникновении его достижений в повседневную жизнь учёных других специальностей. Действительно, сейчас уже тяжело представить учёного, который делает расчёты на деревянных счётах или калькуляторе, а результат записывает шариковой ручкой. Так же тяжело писать вручную и условному «гуманитарию», обрабатывающему источники в библиотеке или архиве.

В сфере строительства сравнительно недавно появилась идея формирования и ведения информационной модели бюджетных объектов. Прорабы на строительных площадках смогут отслеживать процесс возведения

здания, регулируя работу, объём использования стройматериалов и т.д. со своего планшета, на котором будет установлено BIM-приложение.

Одновременно на строительной площадке в круглосуточном режиме будут работать видеокамеры, фиксирующие каждую секунду производственного процесса.

В информационную модель объекта будут включены все архитектурно-конструкторские, технологические, электротехнические, экономические и многие другие характеристики. Всё это должно повысить точность принятия решения на этапах строительства, эксплуатации и реконструкции.

После завершения строительно-монтажных работ в BIM-модели будет доступна окончательная информация о спецификациях, оборудовании и материалах с их эксплуатационными характеристиками, а также о произведённых по проекту работах. Благодаря этому можно будет быстро и качественно сформировать бюджет по эксплуатации здания / сооружения.

Помимо этого стоит напомнить, что бухгалтеры компаний-застройщиков полностью перешли на работу в IT-системе 1С-Бухгалтерия. Со временем все эти программы станут обязательными к изучению в вузах.

Всё описанное выше говорит об уже начавшемся и почти необратимом процессе использования на практике в сфере строительства и подготовке инженеров в вузах принципов синергетики.

Именно научная парадигма синергетики позволяет комплексно рассматривать процесс строительства как системы, зависящей от многих параметров. Строительство – это комплекс взаимосвязанных процессов, технологического производства работ.

СПИСОК ЛИТЕРАТУРЫ

1. Хакен, Г. Синергетика. Иерархия неустойчивости в самоорганизующихся системах и устройствах / Г. Хакен. – М., 1985. – 380 с.
2. Веригин Ю. А. Синергетические основы процессов и технологий / Ю.А. Веригин, С.В. Толстенёв. – Барнаул, 2007. – 160 с.
3. Николис, Г. Самоорганизация в неравновесных системах / Г. Николис, И. Пригожин. – М., 1979. – 512 с.
4. Лоскутов, А. Ю. Введение в синергетику / А.Ю. Лоскутов, А.С. Михайлов. – М., 1990. – 272 с.
5. Лоскутов, А. Нелинейная динамика, теория динамического хаоса и синергетика (перспективы и приложения) / А. Лоскутов // Компьютерра – № 47, 1998. – С. 3-6.
6. Веригин, Ю.А. О синергетике, как новой парадигме в сферах научных исследований различной направленности / Ю.А. Веригин // Ползуновский альманах – 2016. – №4. – С.4-8.

Малиновский Вадим Владимирович – заведующий лабораторией кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: Kielanovski@gmail.com;

Тищенко Дмитрий Витальевич – магистрант ФГБОУ ВО АлтГТУ им. И.И. Ползунова, E-mail: dmitrij.tischenko2012@yandex.ru.

РАСЧЕТ СИСТЕМ ПРОТИВОПОЖАРНОЙ ВЕНТИЛЯЦИИ С МЕХАНИЧЕСКИМ ПОБУЖДЕНИЕМ ВОЗДУХА ПРИ СОЗДАНИИ ИНФОРМАЦИОННОЙ МОДЕЛИ ЖИЛОГО МНОГОКВАРТИРНОГО ЗДАНИЯ

К. В. Матвеев, И. А. Бахтина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Рассмотрена методика расчета противопожарной вентиляции с механическим побуждением воздуха при создании информационной модели жилого многоквартирного здания.

Ключевые слова: система противопожарной вентиляции, потери давления, противопожарные клапаны, расход воздуха, избыточное давление.

Расчет систем противопожарной вентиляции необходим для обеспечения безопасной эвакуации людей из зданий при возникновении пожара. Системы противопожарной вентиляции не несут в себе роли тушения очага пожара, их основная задача – это безопасная эвакуация людей, а в отдельных случаях обеспечить незадымляемость помещений и обеспечить доступ пожарных подразделений. Для обеспечения безопасной эвакуации людей при пожаре используются приточные и вытяжные системы противопожарной вентиляции.

Вытяжные системы противопожарной вентиляции предусматривают в себе нормально-закрытые противопожарные клапаны, воздуховоды, изоляцию воздуховода и вентилятор. В многоквартирных жилых домах нормально-закрытые клапаны устанавливают выше уровня дверного проема в межквартирных коридорах на каждом этаже, кроме первого при наличии прямого выхода на улицу.

В ходе расчета противопожарной вентиляции необходимо выявить требуемый расход воздуха, давление вентилятора и избыточное давление в помещении, при расчете систем приточной противодымной вентиляции для подачи воздуха в зоны безопасности или незадымляемые помещения. Для расчета системы дымоудаления можно использовать программу КВМ-Дым, составленной по методике ВНИИПО. Программа значительно упрощает расчет, за счет автоматического расчета с подробным выводом данных и алгоритмов, использованных в расчете.

Расчет любой системы вентиляции начинается с самого удаленного участка от выбросного или воздухозаборного устройства. Для начала расчета системы дымоудаления в программе КВМ-Дым необходимо выбрать тип помещения, из которого удаляются про-

дукты горения, ввести параметры горящего помещения, межквартирного коридора и продуктов горения, а также параметры внутренней и наружной среды. Параметры помещений можно взять из связи архитектурного проекта Revit при помощи спецификаций, марок помещений либо обмерки помещения вручную. Параметры наружной среды принимают из СП 131.13330.2020 «Строительная климатология» с учетом местоположения объекта и периода года: для вытяжной противодымной вентиляции это летний период года, для приточной – зимний период года. Когда все необходимые данные внесены в программу КВМ-Дым нужно нажать на кнопку «Расчет» и программа рассчитает необходимый объем удаляемого воздуха. Далее нужно подобрать сечение воздуховода магистрали так, чтобы не превысить максимальные потери давления по системе, оставив запас на подсосы воздуха через закрытые поэтажные клапаны и участки сети. После подбора сечения магистрали вытяжной системы противопожарной вентиляции определяется площадь проходного сечения нормально-закрытого клапана, таким образом, чтобы скорость в сечении клапана не превышала 11 м/с и потери давления были минимальны.

По завершению расчета сечений идет этап построения системы в проекте Revit, для проверки возможности прохождения вытяжной системы противопожарной вентиляции в здании с соблюдением монтажных требований и проверки на пересечения со смежными разделами. При обнаружении пересечений со смежными разделами или несоблюдении монтажных требований необходимо скорректировать прохождение системы в здании, либо изменить сечение магистрали на более подходящее, с соблюдением установленной скорости в сечении воздуховода.

Когда выбраны места прохождения системы вытяжной противопожарной вентиляции, расставлены нормально-закрытые поэтажные клапаны и определено место установки вентилятора, необходимо внести данные участков сети, к которым относятся длины участков, размер сечения воздуховодов и коэффициенты местных сопротивлений в программу КВМ-Дым для завершения расчета. По итогу программа КВМ-Дым рассчитывает массовый расход воздуха, потери давления, подсосы воздуха через нормально-закрытые поэтажные клапаны, горизонтальные и вертикальные воздуховоды на каждом участке. Итоговым показателем расчета являются объемный расход воздуха и давление вентилятора, приведенное к нормальным условиям, а также необходимый массовый расход воздуха для компенсации дымоудаления из межквартирного коридора. В дальнейшем данные вентилятора вносятся в таблицу ХОВС и отправляются заводу-изготовителю для подбора вентиляционного оборудования, которое после подбора будет установлено в модели Revit.

Компенсация системы дымоудаления является важнейшей системой противопожарной вентиляции, поскольку при её отсутствии с большим количеством удаляемых продуктов горения в помещениях образуется отрицательное давление, которое может способствовать блокированию дверей и невозможности эвакуации людей из горящего здания. Компенсация дымоудаления является приточной противопожарной вентиляцией, нормально-закрытые поэтажные клапаны устанавливаются в межквартирных коридорах на расстоянии 200 мм от уровня пола по нижней границе клапана. Важно соблюдать нормативное вертикальное расстояние между верхней гранью нормально-закрытых клапанов системы компенсации дымоудаления и нижней гранью нормально-закрытых клапанов системы вытяжной противодымной вентиляции. Для расчета системы компенсации дымоудаления необходимо знать массовый расход воздуха, обеспечивающий компенсацию, как было написано ранее, эти данные можно взять из расчета дымоудаления в программе КВМ-Дым [1, 2]. Массовый расход воздуха допускается принимать с дисбалансом в 30%, объемный расход воздуха при этом будет в разы ниже, чем в системе дымоудаления, ввиду разности плотностей удаляемого и приточного воздуха, поскольку удаляемый воздух имеет меньшую плотность, чем приточный за счет своей темпера-

туры и содержании продуктов горения в виде газа и дыма.

После расчета объемного расхода приточного воздуха для системы компенсации дымоудаления необходимо подобрать размеры воздуховодов и нормально-закрытого клапана, спроектировать систему в проекте Revit с соблюдением монтажных требований без пересечений смежных разделов по аналогии с системами дымоудаления. Далее идет расчет утечек через нормально-закрытые поэтажные клапаны и воздуховоды каждого участка, которые считают вручную, либо в программе Excel, таким образом получают итоговый расход на систему компенсации дымоудаления. Следующим этапом является аэродинамический расчет в ходе которого высчитываются потери давления по сети с учетом утечек воздуха на каждом участке, по его завершению становится известными итоговые потери давления в сети, которые увеличиваются на 10-20% для запаса. После чего данные заносят в таблицу ХОВС, для дальнейшего подбора вентилятора.

В многоквартирных жилых домах также используется подпор воздуха в зону безопасности МГН, при наличии лифта. Зона безопасности МГН служит для безопасного ожидания маломобильной группы населения пожарных подразделений и безопасного перемещения по ней людей при самостоятельной эвакуации. В зоны безопасности необходимо обеспечить подачу воздуха без подогрева на время эвакуации людей при открытых дверях на пути эвакуации и с подогревом воздуха при закрытых дверях [3]. При подпоре воздуха в зону безопасности помимо требуемого расхода воздуха необходимо обеспечить избыточное давление в помещении величиной от 20 Па до 150 Па. При проектировании подпора в зону безопасности МГН допускается использовать одну систему, несущую в себе две функции, расход при этом регулируется напряжением, подаваемым на вентилятор, либо две раздельных системы, работающих отдельно друг от друга.

Расчет системы подпора в зону безопасности МГН можно провести в программе КВМ-Дым. Для этого необходимо выбрать тип помещения и внести характеристики здания, параметры воздуха, параметры защищаемого помещения, потери давления до верхнего этажа и удельные потери давления вертикального участка. Характеристики здания и параметры защищаемого помещения заполняются, исходя из модели Revit связи AP, параметры воздуха должны соответствовать СП 131.13330.2020 «Строительная климато-

РАСЧЕТ СИСТЕМ ПРОТИВОПОЖАРНОЙ ВЕНТИЛЯЦИИ С МЕХАНИЧЕСКИМ ПОБУЖДЕНИЕМ ВОЗДУХА ПРИ СОЗДАНИИ ИНФОРМАЦИОННОЙ МОДЕЛИ ЖИЛОГО МНОГОКВАРТИРНОГО ЗДАНИЯ

логия» с учетом географического местоположения здания. После в программе КВМ-Дым необходимо нажать кнопку «Расчет». Программа выдаст данные необходимого массового и объемного расхода воздуха для подачи его на время эвакуации и на время ожидания пожарных подразделений, после чего идет расчет сечения воздуховода, нормально-закрытых поэтажных клапанов, определение трассировки в Revit с определением местоположения вентилятора и подсчет утечек через нормально-закрытые поэтажные клапаны и воздуховоды каждого участка. В итоге получается расход воздуха вентилятора для каждой системы. Получив данные о необходимом расходе воздуха, проводится аэродинамический расчет вертикального участка и участка от воздухозаборного устройства до клапана верхнего этажа с учетом расхода на каждом участке. Из потерь давления вертикального участка нужно вычесть удельные потери давления вертикального участка в Па/м и внести данные в программу КВМ-Дым, после чего сделать окончательный расчет и проверить избыточное давление, создаваемое вентилятором на каждом этаже. Оно должно быть в пределах от 20 Па до 150 Па.

В многоквартирных жилых домах предусматривается система приточной противодымной вентиляции в незадымляемые лестницы, её предназначение заключается в недопущении попадания дыма в лестничную клетку, для безопасной эвакуации людей из горящего здания. В таких системах могут предусматриваться рассечки, так называются места установки дополнительных систем на нижележащих этажах, когда одна система не способна обеспечить нормируемое давление по всей высоте лестничной клетки.

Расчет систем приточной противодымной вентиляции можно произвести в программе КВМ-Дым, заполнив исходные данные, состоящие из массового расхода удаляемых продуктов горения, которые можно посчитать путем сложения массовых расходов удаляемых продуктов горения из расчета систем дымоудаления типа лестничной клетки, характеристики здания, параметров воздуха, лестничной клетки, и проведя аэродинамический расчет с определением потерь от вентилятора до верхнего оголовка лестничной клетки. После заполнения данных программа автоматически рассчитывает давление и расход воздуха для вентилятора и избыточное давление на каждом этаже.

При наличии лифта в многоквартирном жилом здании необходима система приточ-

ной вентиляции в лифтовую шахту. При пожаре лифт автоматически спускается на 1 этаж и открывает двери, это предусмотрено для перевозки пожарных подразделений. Система подпора лифтовой шахты предназначена для безопасной перевозки пожарных подразделений при возникновении пожара. Расчет таких систем также можно произвести в программе КВМ-Дым аналогично расчету лестничной клетки, расчет производится автоматически, при заполнении таких исходных данных как: параметры лифтовой шахты, посадочного этажа, типового этажа, характеристики здания, величины удельных сопротивлений лифтовых дверей и дверей тамбур-шлюза которые можно посчитать по ВНИИПО. Также необходимо провести аэродинамический расчет для расчета потерь давления от вентилятора до верхнего оголовка лифтовой шахты. Результатом расчета в программе КВМ-Дым является расход вентилятора и его давление, приведенное к нормальным условиям, а также давление, создаваемое на каждом этаже лифтовой шахты.

СПИСОК ЛИТЕРАТУРЫ

1. СП 7.13330.2013. Отопление, вентиляция и кондиционирование. Требования пожарной безопасности: дата введения 2013-02-25. – Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/1200098833> (дата обращения 9.02.2022).
2. СП 60.13330.2020. Отопление, вентиляция и кондиционирование: актуализированная редакция СНиП 41-01-2003: дата введения 2021-07-01. – Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/573697256> (дата обращения 9.02.2022).
3. Матвеев, К. В. Преимущества и особенности проектирования систем вентиляции с применением BIM технологий / К. В. Матвеев, И. А. Бахтина, Н. В. Гейко Н.В. – Современная техника и технологии: проблемы, состояние и перспективы: Материалы XI Всероссийской научно-практической конференции 26-27 ноября 2021. – Рубцовск, 2021. – С. 221-226.

Матвеев Константин Владимирович – студент группы 8Соим-11 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: konstantin_99matveev@mail.ru;

Бахтина Ирина Алексеевна – к.т.н., доцент кафедры «Инженерные сети, теплотехника и гидравлика» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: bia-altai@mail.ru.

АНАЛИЗ ПРОГРАММНОГО КОМПЛЕКСА PLATEIA ДЛЯ ПРОЕКТИРОВАНИЯ, СТРОИТЕЛЬСТВА И РЕКОНСТРУКЦИИ АВТОМОБИЛЬНЫХ ДОРОГ

Н. В. Медведев, О. В. Агафонов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Уже невозможно представить современную жизнь без использования различных современных технологий, в том числе и компьютерных. Уже сложно поверить, что не так давно инженерные проекты на строительство, ремонт и реконструкцию автомобильных дорог разрабатывались вручную с минимальным применением компьютерных программ. Но в настоящее время системы автоматизированного проектирования автомобильных дорог используются не только в проектных организациях, но и во многих строительных организациях для удобства работы с различной документацией. На рынке существует огромное изобилие различных программ для проектирования автомобильных дорог, и бывает сложно выбрать, какой пользоваться. Исходя из этой задачи, был проведен анализ программного комплекса *Plateia*.

Ключевые слова: *Plateia*, САПР автомобильной дороги, трехмерная модель автомобильной дороги, поперечный профиль, продольный профиль, компьютерное моделирование.

Система автоматизированного проектирования *Plateia* была разработана в 90-х года и переводится с древнегреческого как дорога. Разработкой данного программного продукта занимается словенская фирма CGS plus. Данная фирма была основана в 1990 году и она занимается разработкой различных автоматизированных комплексов для проектирования гражданских объектов. Фирма разработала такие программные комплексы как:

- *Plateia* – программный комплекс для проектирования автомобильных дорог;
- *Ferrovia* – программный комплекс для проектирования железных дорог и железнодорожной инфраструктуры;
- *Aquaterra* – используется для проектирования различных гидрологических объектов;
- CGS Civil 3D Extensions – ряд приложений и дополнений к программному комплексу Autodesk Civil 3D.

Одним из главных плюсов программного комплекса *Plateia* является то, что он базируется на достаточно распространенном программном продукте другой фирмы Autodesk AutoCAD, которая получила свое не только в различных строительных организациях, но также изучением данного программного продукта занимаются во многих строительных и профильных вузах. Благодаря обратной совместимости программных продуктов, при необходимости провести какое-либо редактирование, не обязательно иметь программный комплекс *Plateia* и достаточно использовать только AutoCAD.

Хотя *Plateia* разрабатывается в Европе, но при приобретении продукта для России программный комплекс будет учитывать все требования наших нормативных документов, что также упрощает работу в комплексе. С помощью данной программы можно проектировать автомагистрали, городские улицы, различные проезды и примыкания, в также пересечения автомобильных дорог как в одном, так и разных уровнях.

Кроме проектирования нового строительства с помощью *Plateia* можно проектирование реконструкцию и капитальные ремонт уже существующих автомобильных дорог, тем самым расширяя ее возможности и пути применения.

САПР *Plateia* состоит из ряда модулей, которые позволяют запроектировать автомобильную дорогу с нуля до готового проектного решения для любых условий пролегания трассы. К этим модулям относятся следующие:

- модуль «Местность», позволяет проектировать места проложения будущей автомобильной дороги;
- модуль «Ось», позволяет прокладывать ось автомобильной дороги;
- «поперечные сечения», позволяют рассматривать поперечный профиль автомобильной дороги на различных участках;
- «продольный профиль», позволяет редактировать и изучать продольный профиль автомобильной дороги, для ее лучшего проектирования;

АНАЛИЗ ПРОГРАММНОГО КОМПЛЕКСА PLATEIA ДЛЯ ПРОЕКТИРОВАНИЯ, СТРОИТЕЛЬСТВА И РЕКОНСТРУКЦИИ АВТОМОБИЛЬНЫХ ДОРОГ

- модуль «Транспорт», позволяет находить опасные участки на будущей или существующей автомобильной дороги, путем моделирования транспортного потока;

- модуль «3D трафик» и «Дорожные знаки» позволяет проектировать и визуализировать дорожные знаки и транспортный поток по уже запроектированной будущей автомобильной дороге.

Каждый из вышеперечисленных модулей позволяет решать ряд задач, которые позволяют в конечном итоге сделать качественный и проработанный проект на строительство или реконструкцию автомобильной дороги.

Благодаря модулю «Местность» (Layout) можно работать с цифровыми моделями местности и картографическими объектами. С помощью данного модуля можно импортировать данные как тахеометрической съемки, сделанной с помощью геодезических тахеометров, так и из файлов различных форматов, содержащих точки рельефа местности. После загрузки данных в программу модуль их анализирует и генерирует трехмерную модель рельефа местности, которую в дальнейшем можно импортировать в различные программы визуализации, а также в геоинформационную справочную систему AutoCAD и подобные, чтобы работать с ней и в дальней, при разработки других проектов на данной территории [1].

Используя модуль «Ось» (Axes) можно трассировать основные проектные линии будущей автомобильной дороги. Прокладывание трассы осуществляется в САПР АД с помощью прямых, переходных и круговых кривых. Главным преимуществом данного модуля в программном комплексе Plateia является то, что он проводит полный контроль параметров проектируемой автомобильной дороги в соответствии с заданной технической категорией, расчетной скоростью движения и рельефа местности.

Модуль «Продольный профиль» (Longitudinal Sections) позволяет запроектировать не только продольный профиль, но также включает инструменты для проектирования водоотводных каналов и приближенного расчета будущих объемов земляных работ. Проектирование продольного профиля в программном комплексе Plateia производится по методу тангенсов.

Для точного расчета объемов земляных работ используется модуль «Поперечные сечения» (Cross Sections), благодаря которому можно отрисовать откосы и канавы будущей автомобильной дороге, а также толщину растительного слоя и слоя подсыпки. Благодаря

данному модулю удается достичь максимальной точности в расчетах объемов элементов земляного полотна автомобильной дороги.

Модули Транспорт (Traffic), «3D трафик» и «Дорожные знаки» дают пользователю ряд инструментов, с помощью которых он сможет запроектировать пересечения автомобильных дорог, а также дорожные знаки и разметку. Это позволяет в реальном времени оценить правильность принятых проектных решений и в случае необходимости можно внести корректировку в проект. Кроме того в данных модулях есть уникальная функция «Динамическая траектория» (Dynamic Vehicle Curves), которая дает возможность посмотреть как будут двигаться транспортные потоки на запроектированной автомобильной дороги с учетом их габаритов, виражей и возможных заносах на поворотах в дождливую или снежную погоду.

Все вышеперечисленные модули позволяют выполнить качественный проект на строительство и реконструкцию автомобильной дороги, который будет учитывать все особенности не только проложения автомобильной дороги, но и интенсивности и состава транспортного потока.

Кроме вышеперечисленных модулей, также можно использовать достаточно многофункциональный модуль AutoPath, который позволяет анализировать движения автотранспорта в плане и по линии продольного профиля, чтобы провести оценку конфликтных точек и возможного места, будущих дорожно-транспортных происшествий, для принятия своевременных мер по ликвидации данных точек [2].

При разработке проекта автомобильной дороги в программном комплексе Plateia главной задачей является правильность выполнения необходимых действий. Для этого существует шесть последовательных этапов, выполнение которых позволит сделать качественный проект автомобильной дороги [1].

На первом этапе необходимо задать исходные данные для проектирования будущей автомобильной дороги, которые включают в себя:

- категорию дороги;
- характеристику рельефа местности;
- ширину проезжей части;
- количество полос движения.

В зависимости от того, какие исходные данные были внесены, программа автоматически определяет расчетную скорость, придельные значения радиусов вертикальных и горизонтальных кривых, а также продольных

уклонов в соответствии с действующими нормативными документами. Помимо этого на данном этапе подключается геодезическая подснова программы.

На втором этапе создается план трассы автомобильной дороге, на основе тех данных, которые были введены и рассчитаны на первом этапе. Далее, исходя из геодезических данных, которые импортируются программой в чертеж, создается продольная ось дороги, на которую в дальнейшем наносятся поперечные сечения и пикетажные значения. В случае необходимости помимо оси можно на план трассы вынести кромки проезжей части, а также тротуары и газоны, если участок автомобильной дороги проходит в городе.

Далее на третьем этапе происходит создание трехмерной проекции оси трассы и поперечных разрезов. На данном этапе происходит построение продольного и поперечных профилей автомобильной дороги, при этом построение может быть осуществлено одним из двух способов. Первый подразумевает проецирование оси автомобильной дороги на трехмерную модель рельефа, но стоит учитывать, что при данном способе требуется большое количество исходных данных. Второй способ используют для построения линии продольного профиля путем интерполяции по точкам геодезической съемки на поперечных профилях автомобильной дороги.

На четвертом этапе происходит окончательное построение продольного профиля проектируемой дороги. Перед четвертым этапом программа автоматически отображает линию рельефа местности на продольном профиле на основе исходных данных, которые были внесены на первом и втором этапе. На этом этапе необходимо задавать данные продольных уклонов по оси проезжей части, а на продольном профиле отображаются значения рабочих отметок. Главным плюсом программного комплекса является то, что когда продольный профиль полностью готов, то возможно сразу распечатать его на требуемом формате со всеми необходимыми штампами и пояснениями и данную команду можно провести уже на четвертом этапе.

На пятом этапе проектируются поперечные профили автомобильной дороги. Для этого программа в чертежах автоматически отрисовывает таблицы с данными всех поперечных профилей с учетом рельефа местности и проезжей части в соответствии с исход-

ными данными. После этого идет создание конструкции дорожной одежды с определением толщины каждого конструктивного слоя, необходимого объема того или иного материала и формированием ведомости объемов дорожной одежды.

На заключительном шестом этапе формируются трехмерные данные, которые в будущем позволят построить трехмерную модель дороги с использованием средств Autodesk Land Desktop, а также вся рабочая документация, которая необходима для строительства или реконструкции автомобильной дороги.

Таким образом, программный комплекс Plateia достаточным комплексом функционала, чтобы подготавливать качественные проекты строительства и реконструкции автомобильных дорог с учетом всех основных особенностей места проложения будущей дороги. Данная САПР позволяет существенно сократить время на разработку рабочих чертежей, ускорить процесс создание проектной и рабочей документации, а благодаря своей простоте и удобному функционалу работать в ней может научиться любой пользователь программы AutoCAD.

СПИСОК ЛИТЕРАТУРЫ

1. Кривых, И. В. Обзор зарубежных САПР автомобильных дорог / И. В. Кривых, Н. С. Мирза. – DOI 10.17273/CADGIS.2015.2 // САПР и ГИС автомобильных дорог. – 2015. – № 2. – С. 68-77. – URL: <http://www.cadgis.ru/2015/5/11> (дата обращения 01.02.2022).

2. Соколов, Л. А. Формирование перспективных изображений средствами САПР в ландшафтном проектировании автомобильных дорог / Л. А. Соколов, И. Д. Анихимовский // Электронные системы и технологии : сборник материалов 57-й научной конф. аспирантов, магистрантов и студентов БГУИР, Минск, 19-23 апреля 2021 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Д. В. Лихаческий [и др.]. – Минск, 2021. – С. 110–112.

Медведев Никита Владимирович – старший преподаватель кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: medohat@mail.ru;

Агафонов Олег Викторович – студент группы С-84 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: ov_agafonov@mail.ru.

СТАБИЛИЗАЦИЯ ГРУНТОВ РАБОЧЕГО СЛОЯ ЗЕМЛЯНОГО ПОЛОТНА С ПРИМЕНЕНИЕМ ПОЛИМЕРНО-МИНЕРАЛЬНОЙ ДОБАВКИ «NICOFLOK»

Г. С. Меренцова, Н. В. Медведев, А. А. Добрынина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В настоящее время с учетом постоянного роста цен на строительные материалы и изделия особо остро стоит вопрос использования местных дорожно-строительных материалов, которые есть в непосредственной близости от строящейся автомобильной дороги. Зачастую местные материалы не отвечают требованиям нормативных документов, в этом случае рекомендуется использовать специальные добавки-стабилизаторы для материалов, одним из которых является добавка ПМК «Nicoфlok».

Ключевые слова: автомобильные дороги, холодный ресайклинг, полимерно-минеральная композиция, земляное полотно, рабочий слой земляного полотна.

Любая автомобильная дорога, вне зависимости от своей технической категории, должна соответствовать всем нормативным требованиям и главным условием ее долговечности является несущая способность. Для обеспечения данного условия основание автомобильной дороги должно быть выполнено из качественных дорожно-строительных материалов.

Для минимизации затрат на строительство основания автомобильной дороги стоит максимально использовать местные дорожно-строительные материалы, в том числе и грунты из которых производится насыпь земляного полотна. Но бывают случаи, когда местные дорожно-строительные материалы, в особенности грунты, не отвечают всем нормативным требованиям, в таком случае целесообразно использовать различные добавки и стабилизаторы, направленные на улучшения качества материалов.

Кроме того бывают случаи, когда необходимо провести ремонт существующей автомобильной дороги, а для минимизации затрат используют все то же земляное полотно, которое могло быть построено много лет назад по старым нормативным требованиям и за период своей эксплуатации утратило необходимые свойства. В этом случае есть смысл задуматься о том, как улучшить качество рабочего слоя земляного полотна, для того, чтобы сократить расходы на доставку новых дорожно-строительных материалов. Одним из выходов в данной ситуации является использование современных добавок-стабилизаторов, которые позволяют не только улучшить свойства грунта рабочего слоя земляного полотна, но и повысить его несущую способность.

ПОЛЗУНОВСКИЙ АЛЬМАНАХ № 1 2022

Одним из таких стабилизаторов является добавка ПМК «Nicoфlok», которая зарекомендовала себя в разных регионах России, как высококачественный стабилизатор, направленный на улучшение свойств не только грунтов земляного полотна, но также щебеночно-песчаных смесей и асфальтогранулята при использовании технологии холодной регенерации.

Опытное применение данного стабилизатора известно в следующих регионах:

- устройство верхнего слоя основания на участке Федеральной автомобильной дороги «Амур» км 1109+000 – км 1143+000;

- в Шарангском, Борском, Сокольском и Городецком Нижегородской области было строительство опытных участков на автомобильных дорогах IV и V технической категории со слоями основания из грунтов, стабилизированных ПМК «Nicoфlok»;

- строительство экспериментального участка на автомобильной дороге Адлер – Альпика – Сервис в Краснодарском крае.

Кроме того есть опыт использования добавки ПМК «Nicoфlok» в Алтайском крае на автомобильной дороге «Быканов Мост – Солоновка – Солонешное – граница Республики Алтай» в Смоленском районе Алтайского края [1]. В результате проведения опытных работ на данной автомобильной дороге было получено увеличение физико-механических характеристик полученной смеси асфальтогранулята стабилизированного добавкой «Nicoфlok», что говорит о целесообразности ее применения для стабилизации рабочего слоя земляного полотна в условиях Алтайского края.

Перед проведением внедрения стабилизатора ПМК «Nicoфlok» целесообразно проду-

мать технологию, с помощью которой будет производиться работа по стабилизации рабочего слоя земляного полотна. Для этого была разработана технологическая карта на стабилизацию рабочего слоя земляного полотна добавкой-стабилизатором ПМК «Nicoflok», которая включает следующую технологическую последовательность операций:

- распределением порошкового стабилизатора ПМК «Nicoflok» на поверхности рабочего слоя земляного полотна цементораспределителем Streumaster SW 16;
- приготовление цементноводной суспензии;
- перемешивание грунта со стабилизатором ПМК «Nicoflok» и цементно-водной суспензией ресайклером;
- прикатка стабилизированного рабочего слоя земляного полотна комбинированным вибрационным катком;
- профилировка стабилизированного рабочего слоя земляного полотна автогрейдером;
- окончательное уплотнение стабилизированного слоя комбинированным катком;
- уход за стабилизированным рабочим слоем земляного полотна.

До начала работы ресайклера по стабилизации рабочего слоя земляного полотна должны быть выполнены следующие работы:

- в лабораторных условиях подобраны оптимальные составы смесей для стабилизации рабочего слоя земляного полотна и конкретного минерального вяжущего с определением физико-механических свойств стабилизированного грунта с учетом требований нормативных документов;
- закрепление правой кромки земляного полотна колышками для определения контура движения ресайклера;
- доставка исходных материалов для производства работ (стабилизатор грунта ПМК «Nicoflok», вода, портландцемент);
- перед началом работ по стабилизации должны быть проведены мероприятия по организации движения и ограждения мест производства работ в соответствии с нормативными требованиями.

Доставку цемента целесообразно осуществлять с помощью автоцементовоза ТЦ-15 грузоподъемностью 14 т со скоростью передвижения 40 км/ч. Подвозка воды осуществляется поливомоечной машиной КО-829А1 с объемом бака для воды 7,5 м³. Распределение порошкового стабилизатора ПМК «Nicoflok» в количестве 0,7% от массы грунта на поверхности рабочего слоя земляного полотна осуществлялась цементораспредели-

телем Streumaster SW 16 на базе трактора К-700 на полосу прохода ресайклером шириной 2,0. Приготовление цементно-водной суспензии осуществляется в смесительной установке WM 1000. Количество вводимого портландцемента в воду при приготовлении суспензии должно составлять 7% от массы стабилизируемого грунта (с учетом влажности грунта и оптимального состава смеси).

При производстве работ с помощью ресайклера Wirtgen WR 200 в комплекте со смесительной установкой Wirtgen WM 1000 производится фрезерование существующего грунта рабочего слоя земляного полотна на проектную глубину (20 или 40 см), с осуществлением одновременного перемешивания всех компонентов смеси, а именно грунта, цементно-водной суспензии и добавки ПМК «Nicoflok». Проход ресайклера осуществляется на его рабочую ширину, которая составляет в данном случае 2,0 метра.

При регенерации рабочего слоя земляного полотна ресайклер Wirtgen WR 200 движется со скоростью 7 м/мин. Также для беспрерывной работы рекомендуется производить регулярных подвоз цента, воды и добавки ПСК «Nicoflok». Запасы материалов, как правило, пополняются из емкостей специализированных машин, входящий в машиноотряд потока. По завершению регенерации на одном участке ресайклер передвигается на следующий.

При проходе ресайклера двух или более полос по ширине рабочего слоя земляного полотна смежные полосы перекрывают на 10 см по схеме. Количество полос фрезерования зависит от ширины регенерируемого слоя и ширины ротора ресайклера. Движение ресайклера при фрезеровании необходимо производить полосами от краев к оси дороги.

Перед профилированием слоя автогрейдером производятся работы по прикатке стабилизированного слоя земляного полотна комбинированным вибрационным катком Hamm 3518 массой 20 тонн за два прохода по одному следу без вибрации. Прикатанная поверхность стабилизированного рабочего слоя земляного полотна профилируется автогрейдером ДЗ-98 за 4 прохода по одному следу при рабочем ходе в одном направлении с учетом требуемых поперечных уклонов.

Окончательное уплотнение рабочего слоя земляного полотна осуществляется комбинированным вибрационным катком SHANTUI SR20MP массой 20 тонн за 6 проходов по одному следу, первый проход – без вибратора, 2-6 проходы – с включенным вибратором. Уплотнение рабочего слоя земляно-

СТАБИЛИЗАЦИЯ ГРУНТОВ РАБОЧЕГО СЛОЯ ЗЕМЛЯНОГО ПОЛОТНА С ПРИМЕНЕНИЕМ ПОЛИМЕРНО-МИНЕРАЛЬНОЙ ДОБАВКИ «NICOFLOK»

го полотна производят до достижения коэффициента уплотнения не менее 0,98 от показателя максимальной плотности.

За уплотненным слоем стабилизированного грунта с использованием добавки ПМК «NicoFlok» совместно с цементом следует производить уход 7-10 суток, не допуская по нему движения автомобильного транспорта. При этом в течение 7 суток при сухой погоде необходим трехразовый полив водой.

При применении битумных эмульсий необходимо предусмотреть использование битумных эмульсий быстро- и среднераспавающихся 25-30% концентрации. Перемешивание битумной эмульсии с водой осуществляется в автогудронаторах с помощью циркуляционных насосов. При этом температура битумной эмульсии и воды для смешения не должны отличаться более, чем на 10°C. Допускается розлив эмульсии, разбавленной водой до содержания битума 30% по массе, который осуществляют в два приема: 1-й розлив – 70% от массы, 2-й розлив – 30% от массы.

Распределение пленкообразующего материала производится на поверхность стабилизированного рабочего слоя земляного полотна с помощью автогудронатора ДС-39А за два прохода по одному следу. Главным условием при этом является то, чтобы материал по поверхности слоя был распределен равномерно и без пропусков.

Общая норма розлива материала составляет 0,5-1,0 кг/м².

Также важным условием при стабилизации рабочего слоя земляного полотна с помощью добавки ПМК «NicoFlok» и цемента, является то, чтобы укрепленный грунт набрал необходимую прочность. Для этой цели необходимо ограничить движение построечного транспорта по поверхности слоя до истечения 7-10 суток, пока цементогрунт не наберет свою первичную прочность.

С учетом описанной выше технологии, при полном соблюдении всех рассмотренных пунктов можно добиться устройства высококачественного прочного основания для вышележащих слоев дорожной одежды.

Применение стабилизатора ПМК «NicoFlok» целесообразно осуществлять на

автомобильных дорогах III технической категории и в случае необходимости на IV категории, когда по существующей автомобильной дороге ежедневно происходит движение тяжелой строительной техники, таких как лесовозы, или самосвалы, которые осуществляют доставку строительных материалов, таких как щебень, песок и другие.

Благодаря тому, что есть положительный опыт применения стабилизатора ПМК «NicoFlok» в Алтайском крае при регенерации слоев дорожной одежды, то можно сделать вывод о том, что стабилизация грунтов земляного полотна тоже даст подобные результаты в связи с тем, что добавка разрабатывалась не только для регенерации асфальто-гранулята, но также в первую очередь для стабилизации грунтовых слоев дорожных одежд [1].

Все вышесказанное говорит о том, что есть смысл проводить опытные работы по апробации данного стабилизатора на автомобильных дорогах Алтайского края при стабилизации рабочих слоев земляного полотна.

СПИСОК ЛИТЕРАТУРЫ

1. Меренцова, Г. С. О целесообразности применения полимерно-минеральной композиции «NicoFlok» при устройстве основания из асфальто-гранулята методом холодного ресайклинга на автомобильных дорогах / Г. С. Меренцова, А. А. Добрынина // Ползуновский альманах. – 2021. – № 1. – С. 104-107.

Меренцова Галина Степановна – д.т.н., профессор, заведующий кафедрой «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: adio-06@mail.ru;

Медведев Никита Владимирович – старший преподаватель кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: megohat@mail.ru;

Добрынина Анастасия Андреевна – студент группы 8САД-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: nastydobryrina@mail.ru.

ЭФФЕКТИВНЫЕ МЕТОДЫ ПОВЕРХНОСТНОЙ ОБРАБОТКИ АСФАЛЬТОБЕТОННЫХ ПОКРЫТИЙ

Г. С. Меренцова, Н. В. Медведев, М. А. Кулимов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Любое покрытие автомобильных дорог изнашивается в процессе эксплуатации за счет истираемости под колесами автомобилей и воздействия погодно-климатических условий. Для несущего слоя покрытия разумно использовать поверхностные обработки, устройство которых выполняется с использованием битумов, а также битумных эмульсий, которые находят все чаще свое применение при данной технологии. В настоящей статье представлен анализ сведений по различным видам поверхностных обработок, включая новые технологии устройства слоем износа. Кроме того в данной статье выявляются эффективные способы поверхностной обработки асфальтобетонных покрытий.

Ключевые слова: автомобильные дороги, поверхностная обработка, асфальтобетонное покрытие, покрытие автомобильных дорог.

Поверхностные обработки устраивают как изолирующие слои и слои износа покрытий автомобильных дорог. Кроме того устройство поверхностной обработки обеспечивает хорошее сцепление колес автомобилей с покрытием, однако ее устройство не позволяет устранить погрешности существующего покрытия (неровности профиля), а ее качество зависит от погодных условий и всегда есть риск выброса каменного материала.

Поверхностная обработка покрытий автомобильных дорог это технологический процесс устройства шероховатых и защитных слоев износа на покрытиях автомобильных дорог путем розлива на поверхности покрытия органического вяжущего материала и распределения прочных каменных материалов с последующим их уплотнением.

Одним из наиболее распространенных материалов для устройства шероховатых покрытий является горячая асфальтобетонная смесь, которая может быть следующих видов:

- высокоплотная и плотная асфальтобетонная смесь типа А и Б I марки;
- битумоминеральная открытая смесь (БМО);
- щебено-мастичная смесь ЩМА-20.

При использовании открытых смесей вид вяжущего напрямую зависит от того на какой технической категории автомобильных дорог будет устраиваться защитный слой износа. Кроме того оптимальное количество битума в смеси необходимо определять как сумму количества битума, которая необходима для полной обработки щебня и достижения требуемых свойств полученной смеси.

К асфальтобетонным смесям для защитных и шероховатых слоев покрытия

предъявляются также требования, как и для обычных смесей и они должно соответствовать требованиям ГОСТ 9128-2013 [1].

При использовании щебено-мастичных смесей определение оптимального содержания органического вяжущего определяется с учетом требований к физико-механическим показателям смеси по ГОСТ 31015-2002 [2].

Еще одним вариантом для устройства защитных слоев является устройство тонкого защитного слоя по технологии ТОНСИЗ, который устраивается из специальных асфальтобетонных смесей с одноименным названием и типами, которые зависят от максимального размера зерен, а именно:

- АТ 10 – с размером зерен до 10 мм;
- АТ 15 – с размером зерен до 15 мм;
- АТ 20 – с размером зерен до 20 мм.

Каждая из смесей рекомендована для различных категорий автомобильных дорог. Например, на дорогах III технической категории рекомендуется использовать смеси АТ10, а на автомагистральных дорогах необходимо использовать смеси АТ 20. Таким образом, технология ТОНСИЗ позволяет устраивать защитные слои на автомобильных дорогах различных категорий, что является ее большим плюсом [3].

Главной особенностью применения тонких защитных слоев покрытия является то, что при их использовании дефекты на существующем покрытии должны быть не существенными (локальное выкрашивание щебня, шелушение, наличие небольших раковин). В ином случае устройство слоев па данной технологии является невозможным и необходимо задуматься о другом способе защиты ас-

ЭФФЕКТИВНЫЕ МЕТОДЫ ПОВЕРХНОСТНОЙ ОБРАБОТКИ АСФАЛЬТОБЕТОННЫХ ПОКРЫТИЙ

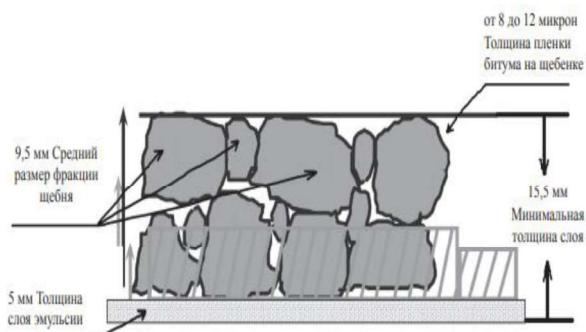


Рисунок 1 – Схема слоя ТОНСИЗ

асфальтобетонного покрытия. На рисунке 1 представлена схема защитного слоя покрытия, устроенного по технологии ТОНСИЗ.

Приготовление смесей по данной технологии производится на асфальтобетонном заводе, при этом должен быть разработан специальный технологический регламент по ее производству.

Еще одной особенностью данных смесей является то, что для их приготовления необходимо использовать модифицированные битумные вяжущие и для условий Алтайского края, который находится в III и IV дорожно-климатической зоне рекомендовано использовать ПВБ 60 по ГОСТ Р 52056 [4]. Для того, чтобы повысить адгезию вяжущего к каменному материалу, что положительно повлияет на непроницаемость защитного слоя можно использовать различные модификаторы и присадки, например адгезионные и прочие, которые соответствуют техническим условиям заводов изготовителей.

Кроме этого еще существует технология, которая позволяет защищать покрытие автомобильных дорог от износа и является данной технологией поверхностная обработка, которая может быть устроена по технологии последовательного или синхронного распределения вяжущего и щебня.

Применение данного слоя износа рекомендуется устраивать только в теплый и сухой период года с температурой воздуха не ниже +15°C и, также, важным условием является то, чтобы существующее покрытие в течение всего срока производства работ не имело тенденцию к понижению температуры. То есть данный защитный слой наиболее целесообразно начинать устраивать с конца мая и по конец августа, до того момента как начнутся сильные температурные перепады в течение суток.

Различают несколько видов поверхностных обработок, а именно:

- однослоиная, которая может быть устроена как последовательным, так и синхрон-

ным распределением компонентов, устраиваемая однократным распределением вяжущего и щебня;

- однослоиная с двойным слоем из щебня, при этом первый слой устраивается из крупной фракции щебня и после предварительной прикатки катком проводится распределение щебня мелкой фракции и окончательное уплотнение слоя. Данный способ выполняется только последовательным методом и в конечном итоге, устроенный слой служит для гидроизоляции слоя покрытия и устранения на нем мелких деформаций и неровностей;

- двухслойная обработка с двойной россыпью минерального материала (щебня) и двойным розливом вяжущего. Данный способ применяется только последовательным методом и ее рекомендуется использовать на покрытиях с недостаточной прочностью и при наличии ряда дефектов, таких как сетка трещин, выбоины и колейность;

- устройство поверхностной обработки по типу «сэндвич», которая устраивается распределением крупной фракции щебня с последующим распределением вяжущего материала и россыпью мелкой фракции щебня. Данную технологию рекомендуется использовать на автомобильных дорогах низких категорий с неоднородным по ровности покрытием;

- обработка поверхности покрытия с помощью технологии SAM, которая предусматривает распределение модифицированных вяжущих с черным щебнем для устройства мембранных, поглощающей напряжений. Данный способ преимущественно применяется для устройства тонкослойных слоев износа покрытий.

Данные способы, которые зачастую устраиваются по довольно простой технологии, являются очень качественными и способными защитить существующее покрытие от разрушений на долгий период, но главным минусом поверхностных обработок является то, что они не долговечны и некоторые из перечисленных способов могут быть эффективны только на ограниченный период времени. После того, как пройдет определенное количество времени в слое износа по полосе наката начинается образовываться колея из-за выброса каменного материала колесами большегрузных автомобилей.

Последние несколько лет все чаще для устройства защитных слоев на автомобильных дорогах применяется технология Сларри Сил. Ее особенность заключается в том, что в качестве защитного слоя укладывается ли-

тая эмульсионно-минеральная смесь с последующим ее формированием.

Чаще всего защитные слои, устроенные по технологии Сларри Сил применяются в качестве фрикционных и гидроизоляционных слоев износа с целью увеличения срока службы существующего асфальтобетонного покрытия. При этом толщина слоя может составлять от 5 до 15 мм и в некоторых случаях до 30 мм, но при этом необходимо использовать литые эмульсионно-минеральные смеси типа микросюрфейсинг.

Благодаря тому, что защитные слои, устроенные по этой технологии увеличивают сцепные качества покрытия, так благодаря гидроизоляционным свойствам удается добиться существенного роста продолжительности эксплуатационных характеристик дороги и в частности долговечности асфальтобетонных покрытий. Однако главным минус этой технологии является то, что для устройства защитного слоя методом Сларри Сил необходим специальный комплект машин, который есть не у всех обслуживающих автомобильные дороги дорожных организаций, а покупка такого комплекта может быть существенным вкладом для организации.

Еще более редким является способ устройства шероховатого тонкослойного покрытия по высокотемпературной технологии, где главная сложность заключается в том, что смесь необходимо готовить с очень высокой температурой, которая в момент укладки должна быть от 190°C до 220°C, в зависимости от разновидности применяемой смеси. Кроме того необходимо строго соблюдать рекомендации к составу смеси.

Таким образом, можно сделать выводы о том, какие именно поверхностные обработки наиболее рациональны в том или ином случае.

Главным же критерием при выборе наиболее рациональной технологии служит то, чтобы поверхностная обработка или защитный слой отвечал всем техническим требованиям и служил хорошей защитой для существующего покрытия. Для этого необходимо проводить анализ транспортного потока, а также визуальный осмотр существующего покрытия с целью выявления всех дефектов, которые на нем имеются и в случае необхо-

димости их ликвидации с помощью предварительно проведенного ремонта.

В противном случае, если не будут проведены все подготовительные работы, то есть риск того, что устройство защитного слоя не решит проблемы, которые с его помощью должны были быть устранены и в короткие сроки он будет разрушен.

При правильном выборе технологии устройства защитного слоя и поверхностной обработки мы сможем увеличить срок службы не только существующего покрытия, но и автомобильной дороги в целом, а также повысить безопасность дорожного движения.

СПИСОК ЛИТЕРАТУРЫ

1. ГОСТ 9128-2013. Смеси асфальтобетонные, полимерасфальтобетонные, асфальтобетон, полимерасфальтобетон для автомобильных дорог и аэродромов. Технические условия : дата введения 2014-14-01. – М. : Стандартинформ, 2014. – 55 с.
2. ГОСТ 31015-2002. Смеси асфальтобетонные и асфальтобетон щебеночно-мастичные. Технические условия : дата введения 2003-05-01. – М. : МНТКС, 2003. – 27 с.
3. СТО НОСТРОЙ 2.25.48-2011. Автомобильные дороги. Ремонт асфальтобетонных покрытий автомобильных дорог. Часть 2. Устройство защитных слоев и слоев износа : дата введения 2011-20-04. – М. : НП «МОД «Союздорстрой», 2011. – 137 с.
4. ГОСТ Р 52056-2003. Вяжущие полимерно-битумные дорожные на основе блок-сополимеров типа стирол-бутадиен-стирол Технические условия: дата введения 2004-01-01. – М. : ИПК Изд-во стандартов, 2003. – 8 с.

Меренцова Галина Степановна – д.т.н., профессор, заведующий кафедрой «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: adio-06@mail.ru;

Медведев Никита Владимирович – старший преподаватель кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: megohat@mail.ru;

Куликов Максим Анатольевич – студент группы 8САД-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kulimboss@mail.ru.

ОБОСНОВАНИЕ РАЦИОНАЛЬНЫХ СПОСОБОВ ПРЕДОТВРАЩЕНИЯ НАЛЕДЕОБРАЗОВАНИЙ НА АВТОМОБИЛЬНЫХ ДОРОГАХ В ГОРНЫХ УСЛОВИЯХ АЛТАЙСКОГО КРАЯ И РЕСПУБЛИКИ АЛТАЙ

Г. С. Меренцова, Н. В. Медведев, Д. А. Сураев

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

На протяжении ни одного десятка лет процесс наледеобразования и непосредственно сами наледи являются одной из главных проблем на автомобильных дорогах в предгорных и горных районах не только Алтайского края и Республики Алтай, но и других похожих регионов. Причиной данной проблемы является то, что во времена строительства горных дорог, в середине прошлого века, зачастую проводились недостаточные геологические и гидрологические изыскания в местах проложения трасс, в связи, с чем в настоящее время требуется разработка и внедрение рациональных способов по предотвращению наледеобразования в таких районах.

Ключевые слова: наледеобразование, наледь, способы борьбы с наледями, горные условия, безопасность дорожного движения, автомобильные дороги.

Для решения проблемы наледеобразования в предгорных и горных районах самым простым вариантом является своевременно проведенные инженерно-геологические и инженерно-гидрологические изыскания, которые позволяют детально рассмотреть район проложения будущей автомобильной дороги, изучить водоносные горизонты, проходящие в месте проложения трассы, а также оценить риски образования наледей в процессе эксплуатации дороги [1]. В этих условиях нужно учитывать еще такой факт, как срезка растительного слоя грунта, возможная вырубка леса, а также буровзрывные работы, которые могут повлечь изменения в текущее состояние опасного участка.

Допустим в месте проложения будущей трассы на косогоре располагается близкий к поверхности грунта водоносный горизонт, который в летнее время не будет угрожать автомобильной дороге, но в зимнее время ситуация будет кардинально меняться. Во-первых, при производстве земляных работ, будет произведена срезка растительного слоя грунта, которая в зависимости от участка дороги может составлять от 15 до 40 сантиметров, что повлечет за собой более глубокое промерзание грунта в зимний период. Во-вторых, из-за особенностей рельефа в таком месте невозможно предсказать, как поведет себя водоносный горизонт, и возможны такие случаи, что на поверхность выйдет не один ключ, а сразу несколько, которые постепенно будут спускаться к автомобильной дороге, угрожая ее затоплением. В этом случае

даже устроенная водоотводная канава или водопропускная труба в пониженной части рельефа местности не сможет защитить нашу автомобильную дорогу. В-третьих, неизвестно насколько холодной или снежной будет зима, что также может в большой степени влиять на процесс наледеобразования. Соответственно в более теплые и снежные зимы наледи зачастую образуются реже, в связи с тем, что снег является естественным утеплителем, а отсутствие критических низких температур не даст промерзнуть водоносному горизонту. Однако в этом случае достаточно проследить динами изменения зим по среднемесячным температурам на протяжении нескольких лет, что позволит выявить какую-то закономерность.

Отсюда вытекает обоснованность проложения трассы автомобильной дороги. Допустим, если есть близко расположенный к поверхности водоносный горизонт, но он проходит во первых далеко от автомобильной дороги и не сможет ее затопить в случае образования наледи, а во вторых если на протяжение нескольких лет или даже десятков лет на данной местности отсутствовали слишком низкие температуры и малоснежные зимы, то вероятность наледеобразования в таком месте тоже снижается.

При этом все равно стоит быть бдительными и заранее предусмотреть хотя бы простейшие противоналедные мероприятия в виде наледеудерживающих заборов или траншей, которые помогут сдержать возможную наледь вдали от автомобильной дороги.

Разработка и внедрение рациональных способов наледеобразования в процессе проектирования автомобильных дорог в предгорных и горных районах Алтайского края и Республики Алтай должны быть в приоритете. В некоторых случаях даже применение элементарных методов борьбы с наледями могут предотвратить катастрофу и затопление участков автомобильных дорог наледями, толщина которых может составлять от нескольких сантиметров, до нескольких метров.

К примеру на косогорных участках, где есть риск развития наледей можно предусмотреть на этапе проектирования устройства водоотводных канав на откосе, либо монтаж удерживающего забора, что позволит при минимальном удорожании строительства снизить затраты на дальнейшую эксплуатацию участка автомобильной дороги. Кроме того, в случае, когда ожидается развитие обильных наледей, то заборы с канавами можно устроить в комплексе, что позволит сохранить как конструкцию заборов и предотвратить их разрушение, а также наледная вода будет отводиться в пониженные места рельефа, где не будет угрожать насыпи или выемки автомобильной дороги и транспорту.

Но, с учетом того, что в настоящее время в горных районах редко происходит строительство новых автомобильных дорог, а чаще проводится ремонт или реконструкция уже существующих, то целесообразно рассматривать варианты по борьбе с уже имеющимися наледями.

Конечно, если мы знаем, как наледь будет себя вести в зависимости от погодных условий разных лет, то становится намного проще подобрать рациональный способ борьбы с ней. К сожалению, из-за того, что в дорожных организациях, которые отвечают за эксплуатацию автомобильных дорог, зачастую не ведутся журналы учета наледей, с помощью которых можно было бы вести тенденцию их развития, то выбор рационального способа может быть затруднен.

Отсюда вытекает целый ряд проблем, к которым можно отнести следующие:

- сложность выбора рационального способа предотвращения наледеобразования из-за недостаточного количества исходной информации;
- выбранный способ может оказаться не самым эффективным в условиях, к которым его было решено применить;
- возможно пагубное влияние наледи из-за неправильного выбора противоналедного

метода, что может привести к еще большему образованию наледи и т.д.

Для решения этих проблем в первую очередь необходимо провести обследование участков образования наледей с целью выявления причин, которые приводят к этому процессу.

Чаще всего в Алтайском крае и Республики Алтай образование наледей происходит от поверхностных источников, которыми являются небольшие реки, ручьи и прочие водотоки, но встречаются случаи образования наледей и от подземных источников, которыми зачастую являются грунтовые воды и не-глубоко расположенные водоносные горизонты [2]. При этом в зависимости от причин образования наледей производится обоснование рациональных методов по борьбе с ними и если, допустим, на участке образования наледей от грунтовых вод мы будем использовать мероприятия, которые целесообразны для предотвращения наледеобразования от поверхностных вод, то выбранное мероприятие просто может не сработать так, как мы хотим. Например, водоносный горизонт может промерзнуть на следующий год в другом месте, либо водоток просто пересохнет или даже сменит свое русло из-за внешних факторов.

Поэтому особое значение при выборе рациональных способов предотвращения наледеобразования на автомобильных дорогах играет их обоснование, с учетом всех исходных данных, начиная от дорожно-климатической зоны и заканчивая геологическим строением местности в месте проложения будущей или уже существующей автомобильной дороги.

Обоснование рациональных способов целесообразно производить в следующей последовательности:

- провести анализ района расположения автомобильной дороги с учетом количества снеговых осадков и максимальной глубины промерзания грунта в зависимости от средней температуры самого холодного месяца;
- изучить информацию по участкам образования наледей и провести визуальное обследование, по возможности в летнее время и в начале сезона наледеобразования;
- ознакомится с информацией, имеющейся в дорожных организациях, которые отвечают за содержание автомобильной дороги подверженной наледеобразованию;
- если есть возможность, то изучить инженерно-геологическое и гидрологическое строение мест образования наледей, с целью

ОБОСНОВАНИЕ РАЦИОНАЛЬНЫХ СПОСОБОВ ПРЕДОТВРАЩЕНИЯ НАЛЕДЕОБРАЗОВАНИЙ НА АВТОМОБИЛЬНЫХ ДОРОГАХ В ГОРНЫХ УСЛОВИЯХ АЛТАЙСКОГО КРАЯ И РЕСПУБЛИКИ АЛТАЙ

выявления основных причин, почему они образуются;

- изучить те способы борьбы с наледями, которые уже могут применяться на автомобильных дорогах в данном регионе, чтобы оценить их эффективность в зависимости от разных условий;

- выявить участки с одинаковыми причинами образования наледей и если на одном из таких участков применяются эффективные методы борьбы с наледями, то оценить возможность их применения на участках, где данные средства пока не применяются;

- произвести устройство выбранного способа предотвращения наледеобразования и оценить его эффективность.

Работа в данной последовательности поможет собрать большой объем полезной информации, которая в дальнейшем даст возможность определиться с более эффективными способами по борьбе с наледями на автомобильных дорогах и не только.

При любых условиях главной и первостепенной задачей является сбор всех исходных данных относительно причин образования наледей, так как без этого невозможно предсказать поведение природы, потому что она бывает очень непредсказуемой от года к году [3].

Полученная информация должна заноситься в журналы обследования наледных участков и храниться в организациях, отвечающих за содержание подобных дорог. Кроме того данные журналы могут быть полезны при проектировании новых дорог или реконструкции старых в районах с наледеобразованием, т.к. они позволяют предсказать возможные последствия проложения трассы автомобильных дорог в районах неглубокого заложения водоносных горизонтов и постоянно действующих мелких и крупных водотоков. Это позволит заранее позаботиться о проектировании противоналедных устройств, которые будут отвечать всем нормативным требованиям и работать так, как оно и задумано.

Еще одной немаловажной деталью является разработка новых способов по борьбе с наледями, причем с применением современных материалов и технологий, что может

позволить сократить расходы не только на эксплуатацию автомобильных дорог, но также сделает дороги более современными и функциональными, а повышение безопасности движения сократит количество несчастных случаев на покрытых наледью автомобильных дорогах в предгорной и горной местности.

СПИСОК ЛИТЕРАТУРЫ

1. Меренцова, Г. С. Анализ условий образования наледей на автомобильных дорогах / Г. С. Меренцова, Н. В. Медведев // Горизонты образования. Научно-образовательный журнал АлтГТУ : XII Всеросс. науч.-техн. конф. студентов, аспирантов и молодых ученых «Наука и молодежь – 2015» [Электронный ресурс]. – 2015. – Вып. 17. – Режим доступа: <http://edu.secna.ru/publication/5/release/94/attachment/30>.

2. Меренцова, Г. С. Анализ условий образования наледей на автомобильных дорогах в горных условиях Алтайского края / Г. С. Меренцова, Н. В. Медведев // Горизонты образования. Научно-образовательный журнал АлтГТУ : XIII Всеросс. науч.-техн. конф. студентов, аспирантов и молодых ученых «Наука и молодежь – 2016» [Электронный ресурс]. – 2016. – Вып. 18. – Режим доступа: <http://edu.secna.ru/media/fpi2016.pdf>.

3. Меренцова, Г. С. Условия образования наледей на автомобильных дорогах и искусственных сооружениях Западной Сибири и их устранение / Г. С. Меренцова, Н. В. Медведев // Четвертый Всероссийский Дорожный Конгресс «Перспективные технологии в строительстве и эксплуатации автомобильных дорог» : сб. науч. тр., М. : МАДИ, 2015. – С. 232-237.

Меренцова Галина Степановна – д.т.н., профессор, заведующий кафедрой «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: adio-06@mail.ru;

Медведев Никита Владимирович – старший преподаватель кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: tegohat@mail.ru;

Сураев Данил Александрович – студент группы 8САД-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: daniel-suraev@mail.ru.

РАЗРАБОТКА РАЦИОНАЛЬНЫХ СПОСОБОВ БОРЬБЫ С НАЛЕДЯМИ НА ИСКУССТВЕННЫХ СООРУЖЕНИЯХ АВТОМОБИЛЬНЫХ ДОРОГ

Г. С. Меренцова, Н. В. Медведев, И. А. Таратынов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Наледи являются одной из главных проблем на автомобильных дорогах и искусственных сооружениях в предгорных и горных районах Алтайского края и Республики Алтай. Данная проблема существует уже не один десяток лет и часто применяемые способы по ликвидации наледи на искусственных сооружениях является неэффективной, поэтому существует потребность в разработки новых рациональных способов борьбы с наледями на данных сооружениях.

Ключевые слова: наледи, наледеобразование, методы борьбы с наледями, автомобильные дороги, водопропускные трубы, искусственные сооружения.

Наледь представляет собой ледяное тело, которое было образовано в результате вытекания и последующего послойного замерзания грунтовых, снеговых, речных и прочих вод. Чаще всего наледи встречаются в предгорных и горных районах, что обусловлено особенностями рельефа, относительно неглубоким расположением грунтовых вод и распространением мелких неглубоких водотоков. В зимнее время все перечисленные выше источники воды могут перемерзнуть, в результате чего из-за невозможности прохода воды по привычному руслу. Она начинает протекать там, где ей представляется возможность, что провоцирует последующий рост наледи. Если наледь образуется на склоне в непосредственной близости от автомобильной дороги, то это приводит к тому, что наледная вода постепенно доходит до нее и выходит на ее покрытие, что влечет за собой повышение аварийности и ухудшения условий дорожного движения. Все это создает неблагоприятные условия для участников дорожного движения, кроме того в некоторых случаях наледь, вышедшая на дорогу, вообще может полностью парализовать движение по участку автомобильной дороги до ее ликвидации, либо устройства объезда.

Но еще одной сложностью горных районов является то, что не всегда есть возможность построить объездную дорогу из-за стесненных условий и прочих особенностей.

В Солонешенском районе бывали случаи, когда наледь от грунтовых вод, вышедшая на поверхность автомобильной дороги полностью парализовала движение на участке, из-за чего некоторые села оставались без контакта с внешним миром.

Образование наледей на искусственных сооружениях, таких как мосты и водопропускные трубы происходит в первом случае из-за неглубоких водотоков, которые перемерзают в осенне-зимний период времени, а во втором из-за большого числа мелких ручьев, которые, чаще всего, пропускаются под автомобильными дорогами через водопропускные трубы и замерзают в зимнее время.

В любом случае происходит перемерзание водотоков, в связи, с чем вода, которая не может пройти по привычному ей руслу, начинает искать новые места выхода, что приводит к тому, что она выходит на поверхность льда и мгновенно замерзает. Такая наледь постепенно может заполнить все отверстие не только водопропускной трубы, но и моста, что негативно скажется на его конструкции (рисунок 1).

Помимо того, что наледь в отверстии моста может выйти через определенное

Рисунок 1 – Отверстие моста, заполненное речной наледью в Солонешенском районе Алтайского края

РАЗРАБОТКА РАЦИОНАЛЬНЫХ СПОСОБОВ БОРЬБЫ С НАЛЕДЯМИ НА ИСКУССТВЕННЫХ СООРУЖЕНИЯХ АВТОМОБИЛЬНЫХ ДОРОГ

время на поверхность автомобильной дороги и проезжую часть самого моста, так негативное влияние оказывается и на пролетные строения и опоры мостов из-за давления, которые вызывается при расширении наледи.

Можно выделить ряд негативных факторов, которая оказывает наледь на искусственные сооружения, а именно:

- закупорка наледной водой отверстие малых искусственных сооружений, что затрудняет пропуск весенних вод;
- затопление проезжей части и подходы к искусственным сооружениям наледным льдом;
- деформация малых и средних искусственных сооружений в результате образования на подходах к ним и непосредственно в их отверстиях наледей;
- создание условий для размытия насыпи земляного полотна, а также русел водотоков при весеннем таянии наледи.

Для избегания многих из этих факторов необходимо еще на этапе проектирования проводить тщательное обследование места проложения автомобильной дороги в горной местности, особенно в пониженных местах и участках с небольшими ручьями и водотоками.

К сожалению, многие автомобильные дороги были запроектированы и построены еще в 60–80-е, когда не проводилось достаточно геологического обследования участков проложения дороги и главным показателем служила скорость строительства и прокладывания новых дорог. Это привело к тому, что есть ряд участков автомобильных дорог и искусственных сооружений на них, которые ежегодно подвержены негативному влиянию наледей. В связи с этим имеется необходимость в разработке рациональных методов по борьбе с наледями на искусственных сооружениях, так как именно они чаще всего подвержены негативному влиянию этого природного процесса.

Так как строительство новых дорог в горной и предгорной местности проектируется в настоящее время достаточно редко, то необходимо при борьбе с наледями большее внимание уделить именно методом и средствам с уже имеющимися наледями на характерных участках.

К счастью данные, которые ежегодно собираются с автомобильных дорог, позволяют выделять характерные участки наледеобразования и для более успешной борьбы с ними остается только изучить факторы, которые влияют на их образование [1].

После выбора главных факторов необходимо правильно выбрать рациональные противоаледные мероприятия. Для этого можно провести оценку эффективности уже применяемых мероприятиях на похожих характерных участках автомобильных дорог для выбора наиболее рационального метода [2].

Помимо этого успешная борьба с наледеобразованием во многом зависит от поставленной на участке автомобильной дороги службы содержания и ремонта, которая своевременно обнаружит начало образования наледи и примет требуемые меры по ее локализации вдали от автомобильной дороги. Это связано с тем, что только при эксплуатации автомобильных дорог и искусственных сооружений есть возможность выявить все особенности развития наледей, для чего рекомендуется вести Наледный журнал, где отмечаются участки образования наледей и их особенности, а также возможные или точные причины их образования.

В связи с этим можно выделить ряд задач, которые должны выполнять служба содержания автомобильных дорог и искусственных сооружений в местах образования наледей, а именно:

- учитывать все наледи, которые образуются в непосредственной близости от автомобильной дороги, даже если они не подходят к ней;
- вести соответствующую инженерно-техническую документацию по каждому участку образования наледей с описание их особенностей и основных характеристик;
- разрабатывать ежегодные планы по борьбе с наледями на различных участках;
- обязательно проводить подготовительные работы в весенне-летний и осенне-зимний период, что максимально снизить негативное влияние наледей на искусственные сооружения;
- проводить систематический осмотр противоаледных мероприятий и устройств для оценки их эффективности и, в случае необходимости, их ремонта, либо устройства дополнительных мероприятий;
- на участках, где произошло образование новых наледей необходимо производить срочные работы по их локализации и устранения с проезжей части автомобильной дороги, либо из отверстий искусственных сооружений;
- выполнения в весенний период работ по ликвидации образовавшихся наледей для предотвращения негативного влияния павод-

ковых вод на автомобильную дорогу и недопущения разрушения мостов.

При выполнении всех описанных выше задач можно максимально минимизировать негативное воздействие наледей на искусственные сооружения, тем самым повысить безопасность движения транспортных средств по автомобильным дорогам.

Еще одним немаловажным фактором, который необходимо учитывать при назначении постоянных способов по борьбе с наледями, так это то, что некоторые наледи способны к миграции и смене своего местоположения в зависимости от года, количества осадков и средней температуры воздуха в зимнее время. Данная особенность проявляется в том, что в некоторых местах наледи могут то пропадать, то вновь появляться и в связи с этим необходимо назначать соответствующие методы по борьбе с ними.

В данных условиях большое значение имеет проведение геологических исследований, особенно в местах образования средних у крупных наледей, которые способно затопить не только искусственное сооружение, но и проходящую в этом месте автомобильную дорогу. Примером образования такой наледи может служить участок автомобильной дороги «Быканов мост – Солоновка – Солонешное – граница Республики Алтай» (рисунок 2).

В ходе проведения обследования данной наледи было установлено, что она образуется от грунтовых вод, которые выходят на поверхность косогора, расположенного слева. Это происходит из-за того, что водоносный горизонт на косогорном участке расположен относительно близко к поверхности земли и в зимний период времени происходит его перемезание, которое влечет за собой выход ключевой воды на поверхность откоса и постепенного образования наледи, которая на данном участке может иметь толщину до шести метров. Ниже на данном участке расположена деревянная водопропускная труба, которая тоже впоследствии затапливается наледными водами, выходящими на этом участке (рисунок 3). Чтобы минимизировать влияние наледи на данном участке в первую очередь необходимо провести геологическое обследование местности, чтобы в последствии было легче предусмотреть наиболее рациональные методы по борьбе с ней.

К тому же немаловажное значение имеет цена мероприятий, которые можно предусмотреть в этом месте и в этом плане необходимо провести детальную оценку всех факторов, начиная от места выхода грунтовых вод на поверхность земли и заканчивая

особенностями рельефа местности и как эти особенности можно будет максимально использовать при назначении рациональных способов борьбы с наледью.

Помимо геологических обследований важно проводить подготовительные работы в весенне-летний и осенне-зимний периоды. В эти работы входит подготовка и ремонт существующих противоаледных мероприятий и устройств, заготовка теплоизоляционных материалов, в том числе и веток хвойных деревьев для укрытия русел небольших ручьев.

Не маловажной операцией является установка льдомерных вех на участках образования средних и крупных опасных наледей, чтобы проследить тенденцию их образования во времени и в зависимости от погодных факторов. На небольших водотоках в местах их перехода мостовыми сооружениями необходимо предусматривать способы безналедного пропуска водотоков под мостами.

Рисунок 2 – Образование наледи на автомобильной дороге «Быканов мост – Солоновка – Солонешное – граница Республики Алтай»

Рисунок 3 – Деревянная водопропускная труба, через которую осуществляется пропуск наледной воды

РАЗРАБОТКА РАЦИОНАЛЬНЫХ СПОСОБОВ БОРЬБЫ С НАЛЕДЯМИ НА ИСКУССТВЕННЫХ СООРУЖЕНИЯХ АВТОМОБИЛЬНЫХ ДОРОГ

Рисунок 4 – Углубление на реке Черная автомобильной дороге Р-256 «Чуйский тракт» км 889+522

Для этого необходимо в осенний период проводить работы по углублению водотоков, так как в период весеннего паводка и летом под мостами зачастую образуются перекаты и отмели из камней, которые принесло бурное весеннеев течение. Эти факторы способствуют быстрому развитию наледей на небольших водотоках в период их промерзания и чтобы это избежать необходимо, проводить работы по расчистке и углублению русла реки.

В Республике Алтай есть опыт проведения таких работ и он дает положительный эффект, так как удалось избежать образования наледи благодаря углублению водотока на участке автомобильной дороги Р-256 «Чуйский тракт» км 889+522 (рисунок 4).

На участках расположения водопропускных труб в зимний период в Республике Алтай применяются такие мероприятия по борьбе с наледями, как:

- устройство противоналедных заборов, для остановки наледи выше по косогору;
- прогрев отверстий водопропускных труб с помощью горячей воды и пара;
- закрытие отверстий водопропускных труб специальными щитами.

Данные мероприятия позволяют существенно упростить задачи по борьбе с наледями на малых искусственных сооружениях и предохраняют их от разрушения и деформации.

Кроме того существует необходимость в разработке новых методов по борьбе с наледями, так как многие противоналедные мероприятия хоть и выполняют свою непосредственную задачу, но не всегда настолько эффективно работают как хотелось бы. К тому же большинство из них были разработаны и применяются на автомобильных дорогах еще с середины прошлого столетия.

В связи с этим имеется необходимость в разработке новых, более рациональных методов по борьбе с наледями, которые будут использовать помимо традиционных материалов, также новые материалы и технологии, которые были разработаны и внедрены в дорожную промышленность за последние несколько десятков лет.

Это позволит значительно сократить негативное влияние наледей на автомобильные дороги в горной местности и повысить безопасность движения по ним.

СПИСОК ЛИТЕРАТУРЫ

1. Меренцова, Г. С. Анализ причин образования наледей и рекомендуемые методы борьбы с ними на автомобильных дорогах и искусственных сооружениях / Г. С. Меренцова, Н. В. Медведев // Ползуновский альманах. – 2017. – Т. 1. – № 2. – С. 182-185.

2. Рябов, В. К. Методические рекомендации для борьбы с наледями на автомобильных дорогах: методические рекомендации / В. К. Рябов, Ю. К. Полин, Е. В. Шушаков. – Хабаровск, 1974. – 60 с.

Меренцова Галина Степановна – д.т.н., профессор, заведующий кафедрой «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: adio-06@mail.ru;

Медведев Никита Владимирович – старший преподаватель кафедры «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: tepochat@mail.ru;

Таратынов Иван Александрович – студент группы 8САД-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: tara22rus@gmail.com.

СТАБИЛИЗИРУЮЩИЕ ДОБАВКИ ДЛЯ СТАБИЛИЗАЦИИ РАБОЧЕГО СЛОЯ ЗЕМЛЯНОГО ПОЛОТНА ПРИ СТРОИТЕЛЬСТВЕ, РЕКОНСТРУКЦИИ АВТОМОБИЛЬНЫХ ДОРОГ

Г. С. Меренцова, К. С. Перевалов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В настоящее время устойчивость оснований автомобильных дорог является одной из самых актуальных задач в дорожном строительстве не только в Алтайском крае, но и в России целом. Для решения данной задачи необходимо внедрение в процессе устройства оснований дорожных одежд новых, современных технологий и материалов. Таким примером является использование стабилизирующих добавок для стабилизации рабочего слоя земляного полотна при строительстве, реконструкции и ремонте автомобильных дорог. Анализ опыта их применения поможет найти наиболее оптимальные стабилизаторы для условий Алтайского края.

Ключевые слова: стабилизация грунта, стабилизаторы, полимер, вяжущее, технология стабилизации и укрепления, добавка, автомобильные дороги.

Под стабилизацией рабочего слоя земляного полотна понимается процесс введения в грунт добавок-стабилизаторов, которые будут способствовать повышению как физико-механических характеристик грунта, так и повышают несущую способность автомобильной дороги в целом [1]. Применение стабилизаторов позволяет использовать мало-пригодные грунты, расположенные непосредственно в месте устройства дороги, для строительства дорожной одежды, отвечающей всем современным нормативным требованиям. Применение стабилизированных грунтов в качестве рабочего слоя земляного полотна и оснований дорожных одежд целесообразно на автомобильных дорогах III-IV категорий, также возможно применение таких грунтов на дорогах V технической категории, если по ней ездит тяжелая техника (например, лесовозы или сельскохозяйственные машины).

Технология стабилизации грунтов позволяет существенно снизить затраты на устройство дорожной одежды, благодаря тому, что:

- при стабилизации широкое применение находят местные грунты, даже малопригодные;
- применением местных материалов позволяет сократить расходы на их доставку до минимума;
- при капитальном ремонте автомобильных дорог нет необходимости в разборке и вывозке существующего земляного полотна, устроенного из малопригодных грунтов.

При стабилизации рабочих слоев земляного полотна главной задачей является вы-

бор правильной добавки-стабилизатора, которая позволит улучшить целый комплекс показателей свойств грунта, а также увеличит его несущую способность.

Стабилизатор должен повысить целый ряд показателей, к которым относится прочность, растяжимость, водонепроницаемость, морозоустойчивость, водостойкость и прочее.

Самый простой способ при определении эффективности стабилизатора является его лабораторная апробация, которая позволяет сделать вывод о том, как поведет себя стабилизатор на автомобильной дороге.

В настоящее время самыми распространенными стабилизаторами на территории России являются следующие:

- стабилизатор ANT, производства ООО «АНТ-Инжиниринг» в Волгоградской области;
- «Стабилар Е95», производства ООО «Новые дороги» в городе Воронеж;
- стабилизатор Underbold, производства ООО «АНДЕРБОЛД-СИБИРЬ» в г. Заринске Алтайского края.

Для дальнейшего анализа были выбраны добавки-стабилизаторы «Стабилар Е-95» и Underbold, которые имеют опытное применение на территории Алтайского края.

Анализ применения стабилизатора «Стабилар Е-95» для стабилизации грунта земляного полотна при ремонте а/д К-03 Змеиногорск – Рубцовск – Волчиха – Михайловское – Кулунда - Бурла – граница Новосибирской области, на участке км 154+245 - км 155+245 в Волчихинском районе Алтайского края (2020 г.), IV категория.

Стабилар – это полимер, который выглядит как растворимая в воде молочно-

СТАБИЛИЗИРУЮЩИЕ ДОБАВКИ ДЛЯ СТАБИЛИЗАЦИИ РАБОЧЕГО СЛОЯ ЗЕМЛЯНОГО ПОЛОТНА ПРИ СТРОИТЕЛЬСТВЕ, РЕКОНСТРУКЦИИ АВТОМОБИЛЬНЫХ ДОРОГ

белая густая жидкость, нетоксичная и нейтральная к окружающей среде. Стабилизация полимером Стабилар может использоваться практически во всех грунтах: как во всех видах песчаных грунтов, так и в глинистых, а также при ремонте автомобильных дорог с разрушенным покрытием, а именно при холодной регенерации сферезированного покрытия смешанного с заиленным щебеночным основанием. Грунты, обработанные одновременно стабилизатором и неорганическим вяжущим, можно использовать практически в любых климатических зонах, с любым типом местности по увлажнению.

По данным КГКУ «Алтайавтодор» применение стабилизирующей добавки «Стабилар Е-95» в Алтайском крае было осуществлено на автомобильной дороге «Змеиногорск – Рубцовск – Волчиха – Михайловское – Кулуңда – Бурла – граница Новосибирской области», км 154+245 – 155+245 в Волчихинском районе с целью ознакомления с технологией применения добавки «Стабилар Е-95» для грунтов, укрепленных неорганическими вяжущими.

Перед производством работ по укреплению грунта цементом, грунт, без добавления органического вяжущего, был послойно отсыпан до проектных отметок и уплотнен.

Распределение цемента, в количестве 37,8 кг на 1 м² осуществлялось цементораспределителем. Перемешивание грунта с цементом производилось ресайклером на глубину 20 см. Вода с добавкой «Стабилар Е-95» были смешаны в 10-и кубовой цистерне в соотношении 4/6, соответственно (из расчета 2% добавки «Стабилар Е-95» на 200 м дороги при ширине 3,7 м) и подавалась в смесительную камеру ресайклера по гибкому шлангу. При этом количество воды уменьшено на количество введенной добавки. Из-за отсутствия данных по оптимальной влажности грунта, увлажнение производилось визуально. Применялся следующий режим уплотнения:

- 2 прохода по одному следу гладковальцового катка «PACCAT RV-19DT» массой 19 тонн;
- профилирование основания автогрейдером;
- окончательное уплотнение гладковальцовым катком «PACCAT RV-19DT» за 8 проходов по одному следу.

Установлено, что технология стабилизации грунтов с применением добавки «Стабилар Е-95» отличается от классической только тем, что происходит замещение воды на количество вводимой добавки.

В апреле 2021 года, через 8 месяцев эксплуатации опытного участка автомобильной дороги «Змеиногорск – Рубцовск – Волчиха – Михайловское – Кулуңда – Бурла – граница Новосибирской области», км 154+245 – 155+245 в Волчихинском районе устроенно-го с использованием добавки стабилизатора «Стабилар» было проведено обследование состояния покрытия дорожной одежды.

В результате обследования было отмечено, что на локальном участке км 154+350, протяженностью до 25 м, образовалась продольная трещина с шириной раскрытия до 20-25 мм по оси полосы движения и продольная трещина по оси проезжей части, а также диагональные трещины.

Дефекты в виде трещин связаны с дефектами ровности покрытия в виде колейности и неравномерного поднятия конструкции дорожной одежды, которые возникли из-за морозного пучения грунта земляного полотна.

На остальной протяженности участка ремонта (с традиционной технологией работ без использования добавки «Стабилар») имеются также поперечные температурные трещины с шагом 10-12 м, единичная продольная трещина в полосе наката. На локальных участках отмечены бугры пучения со значительным поднятием конструкции, визуально до 8-10 см, без видимых разрушений конструкции дорожной одежды.

Ввиду вышесказанного положительных эффектов применения добавки «Стабилар» отмечено не было, и она не рекомендуется для использования в Алтайском крае.

Анализ применения стабилизатора Underbold для стабилизации грунта земляного полотна при ремонте а/д Буланиха – ст. Буланиха – Боровлянка – Уткино – Клепиково – р. Обь, км 40+000 – км 97+000 в Троицком районе, в Усть-Пристанском районе Алтайского края, IV категория (2021 г.).

Underbold – восковая эмульсия связывающая почву и обладающая водоотталкивающими свойствами. Положительным свойством Underbold является его морозостойкость и жаростойкость, что гарантирует высокий уровень прочности конструкции. Связность материалов в земле, в частности связь между почвой и вяжущим веществом, значительно увеличивается, и создается стабильная структура.

Оптимальное соотношение смешивания добавки с цементом и минеральной смесью (почвой или горной породой) определяется с использованием параметров грунта, которые

должны быть протестированы и адаптированы к техническим условиям.

Грунты, обработанные добавкой Underbold совместно с портландцементом, характеризуются высокой прочностью, водоне- и морозостойкостью, в связи с чем их следует преимущественно применять в слоях оснований и дополнительных слоях оснований дорожных одежд.

По данным КГКУ «Алтайавтодор» применение стабилизирующей добавки Underbold в Алтайском крае было осуществлено на автомобильной дороге «Буланиха – ст. Буланиха – Боровлянка – Уткино – Клепиково – р. Обь», км 40+000 – км 97+000 в Троицком районе, в Усть-Пристанском районе с целью ознакомления с технологией применения добавки Underbold для грунтов, укрепленных неорганическими вяжущими.

Для устройства рабочего слоя была применена следующая технологическая последовательность операций, а именно:

- предварительное измельчение грунта с одновременным введением водного раствора стабилизатора Underbold и увлажнением с учетом оптимальной влажности грунта с использованием ресайклера WR 200;
- прикатка слоя грунта комбинированным вибрационным катком HAMM 3518;
- распределение по поверхности слоя неорганического вяжущего (портландцемента) цементораспределителем Streumaster SW 16;
- перемешивание грунта с цементом ресайклером WR 200;
- предварительное уплотнение стабилизированного слоя комбинированным вибрационным катком HAMM 3518;
- профилирование рабочего слоя земляного полотна со стабилизатором Underbold и цементом автогрейдером ДЗ-98;
- окончательное уплотнение стабилизированного слоя комбинированным вибрационным катком SHANTUI SR20MP.

Расход стабилизирующей добавки был равен 0,4 л/м³ при толщине укрепляемого слоя 0,4 м с соотношением воды при приготовлении раствора 1:50.

В ходе применения добавки Underbold было установлено, что технология данной технологии стабилизации грунтов повышает прочность и морозостойкость рабочего слоя в несколько раз больше в отличии от классической.

В результате дальнейшего обследования было отмечено, что под воздействием колес автомобилей происходит износ поверхности конструктивного слоя из-за шелушения и выкрашивания частиц, в результате чего нарушение целостности материала покрытия.

Учитывая интенсивное шелушение и выкрашивание частиц материала верхнего конструктивного слоя земляного полотна грунта, укрепленного цементом с добавкой Underbold, возникает необходимость в устройстве защитного слоя из горячей асфальтобетонной смеси.

Данная добавка рекомендуется к применению в качестве стабилизатора слоя грунта, однако следует предусматривать устройство защитных слоев дорожной одежды.

Таким образом, предложенные к рассмотрению стабилизирующие добавки могут оказаться весьма эффективными при устройстве слоев земляного полотна автомобильных дорог. Однако приведенные минусы применения, такие как высокая стоимость данных добавок, а так же требуемые корректировки технологии устройства слоев грунта с добавлением стабилизаторов, относительно конкретных условий места производства работ, существенно останавливают повсеместное внедрение данного типа материалов в дорожном строительстве.

СПИСОК ЛИТЕРАТУРЫ

1. ПНСТ 322-2019. Дороги автомобильные общего пользования. Грунты стабилизированные и укрепленные неорганическими вяжущими. Технические условия : срок действия с 2019-07-01 до 200-07-01. – М. : Стандартинформ, 2019. – 23 с.
2. ГОСТ 23558-94. Смеси щебеночно-гравийно-песчаные и грунты, обработанные неорганическими вяжущими материалами, для дорожного и аэродромного строительства. Технические условия: дата введения 195-01-01. – М. : Стандартинформ, 2005. – 12 с.

Меренцова Галина Степановна – д.т.н., профессор, заведующий кафедрой «Строительство автомобильных дорог и аэродромов» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: adio-06@mail.ru;

Перевалов Константин Сергеевич – студент группы 8САД-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова», E-mail: perewal.1998@mail.ru.

АНАЛИЗ ОТЛИЧИТЕЛЬНЫХ ОСОБЕННОСТЕЙ ИМПУЛЬСНЫХ ГИДРООБЪЕМНЫХ ПРИВОДОВ

А. В. Митусов, А. А. Митусов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Необходимость установить положения, определяющие понятие и содержание термина «импульсные гидроприводы» (ИГП), их виды и место в структуре общей системы, гидроприводов, обусловлена тем, что классификация ГОСТ 17752-81 охватывает лишь гидроприводы непрерывного действия. В работе отличительные от приводов непрерывного действия признаки и свойства ИГП рассмотрены в иерархическом порядке. Установлено, что наиболее важным свойством ИГП следует считать возможность создавать силовые воздействия на объект обработки, превышающие реактивные воздействия на несущее устройство машины. Наиболее интенсивное развитие и широкое внедрение ИГП пришлось на середину 20 века, что обусловлено возросшими возможностями технологии машиностроения

Ключевые слова: гидроприводы непрерывного действия, импульсные гидроприводы, силовые воздействия, реактивные воздействия, несущее устройство машины, импульс мощности, ведомое звено.

Технические объекты по способу передачи управляющих сигналов или управляющих воздействий подразделяются на непрерывные и дискретные.

Дискретные гидроприводы, обеспечивающие импульсные нагрузки на объект обработки, известны под общим названием импульсных гидроприводов (ИГП).

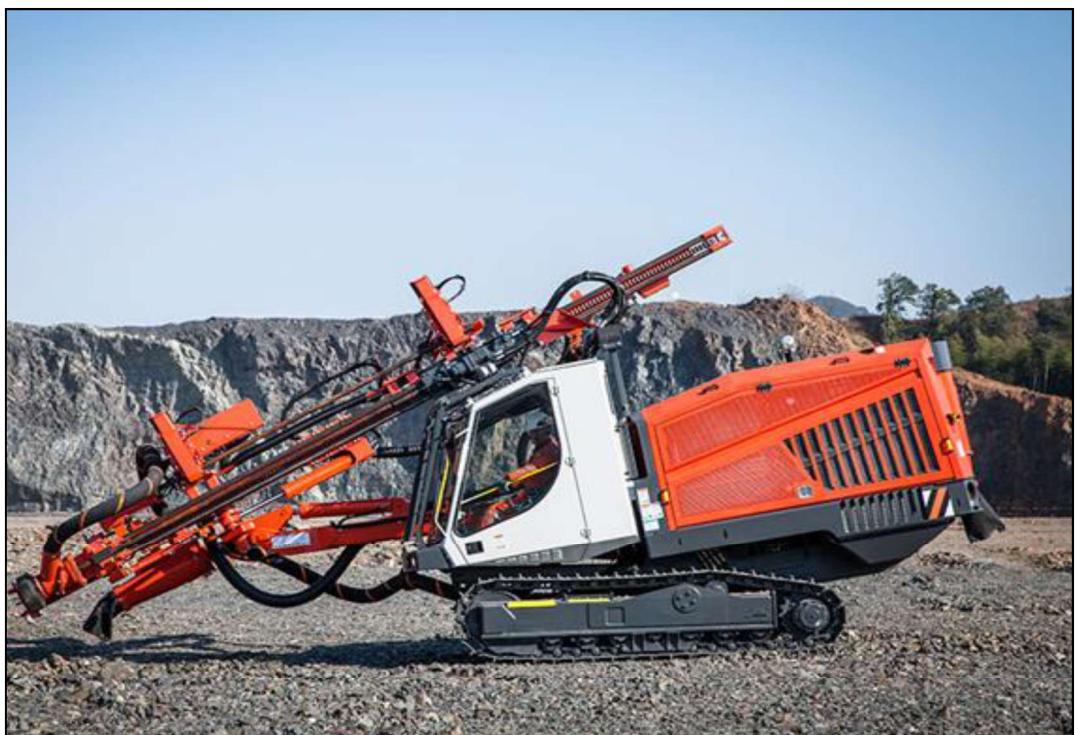
Термин впервые использован Т. М. Башта в работе [1] применительно к устройствам, обеспечивающим мгновенное повышение мощности за счет сжимаемости жидкости.

Анализ современных гидравлических устройств импульсного действия позволяет считать это определение довольно обобщенным, недостаточно точным в части отмеченного эффекта только за счет сжимаемости жидкости.

Это обстоятельство, а также тот факт, что классификация ГОСТ 17752-81 охватывает лишь гидроприводы непрерывного действия, обуславливает необходимость в настоящей работе установить положения, определяющие понятие и содержание термина «импульсные гидроприводы» [2], их виды и место в структуре системы, определяемой общим термином «гидроприводы».

Соответственно, вместо термина в работе [3, с.14] «гидравлическая, виброударная, инерционно-импульсная система» будем использовать здесь «импульсный гидропривод» (далее краткая аббревиатура «ИГП») с классификационными признаками, соответствующими ГОСТ 17752-81 и использованными в классификации [3, с. 36], однако, с оригинальной, как отмечалось, терминологией.

Следуя иерархическому принципу описания технических объектов, предложенному в работе [4, с. 13], первым отличительным признаком следует считать «потребность», т.е. назначение или область применения ИГП. В этом отношении наиболее важным свойством ИГП следует считать возможность создавать силовые воздействия на объект обработки, превышающие реактивные воздействия на несущее устройство машины.


В ряде случаев сниженная реакция делает механизмы ударного действия незаменимыми. Это ручные механизмы – отбойные молотки, грунтопроходчики, ударные механизмы на длинных манипуляторах с невысокой, соответственно, жесткостью. В строительстве и горной промышленности это отбойка, рыхление грунтов, оборка кровли, бурение шпуров и скважин, ремонт горных выработок.

В качестве примеров на рисунке 1 представлены машины, широко применяемые при ведении строительных, дорожных, ремонтных и горных работ.

Следующим по иерархии описанием предлагается считать техническую функцию объекта, определяемую физической операцией, обеспечивающей энергопреобразование. Из списка операций Коллера [4, с. 78] это «преобразование», применительно к ИГП специфического вида: квантование непрерывного потока энергии источника (насоса) в силовые импульсы повышенной по отношению к установленной мощности.

а)

б)

Рисунок 3 – Машины с импульсными рабочими органами: а) экскаватор с гидромолотом; б) буровая машина с гидроперфоратором

Отмеченные особенности первых двух уровней описаний относятся ко всем возможным видам ИГП и позволяют характеризовать их как гидроприводы дискретного действия, обеспечивающие передачу энергии ведомому звену импульсами мощности

большой, чем используемая мощность источника питания .

Принцип дедукции при постановке настоящего исследования обуславливает целесообразность при рассмотрении существующих ИГП на уровне «технической функции» учета подразделения их по следующим при-

АНАЛИЗ ОТЛИЧИТЕЛЬНЫХ ОСОБЕННОСТЕЙ ИМПУЛЬСНЫХ ГИДРООБЪЕМНЫХ ПРИВОДОВ

знакам, рассматриваемым в большинстве известных работ:

- по виду и используемой энергии потока, ИГП подпадают под известное подразделение гидроприводов на *гидродинамические и объемные*;
- по способу реализации генерируемых импульсов мощности возможны варианты создания гидродвигателями ИГП силовых импульсов на инструменте или объекте обработки либо непосредственно (*вибраторы*), через импульс давления жидкости на инструмент, либо через промежуточное звено-боек (*гидромолоты*), преобразующий импульс давления в силовой импульс.

Примером импульсного гидродинамического привода могут служить импульсные гидромониторы для воздействия на объект струями высокого скоростного напора, а примером гидродинамических приводов ударного действия — буровые головки с гидрофугой [5, с.73], а также некоторые авторы сюда же относят механизмы, использующие эффект гидравлического удара [3].

Импульсные гидрообъемные приводы безударного действия используются в конструкциях вибраторов – трамбовки, бетономешалки.

Наибольшее применение в строительстве и горной промышленности имеют гидрообъемные приводы ударного действия – гидромолоты, гидроперфораторы.

Преимущества импульсных воздействий на обрабатываемые материалы известны с незапамятных времен, еще от ручных инструментов. Развитие шло соответственно совершенствованию приводов с отставанием

освоения машин дискретного действия от машин непрерывного действия, как технологически более сложных. С середины 20 века интенсивное развитие и широкое внедрение ИГП обусловлено возросшими возможностями технологии машиностроения. Это машины паровые, дизельные, пневматические, гидравлические, электрические.

СПИСОК ЛИТЕРАТУРЫ

1. Башта, Т. М. Гидропривод и гидропневмоматика / Т. М. Башта. - М. : Изд-во Машиностроение, 1972. – 320 с.
2. Митусов, А. А. Автоматизированное проектирование гидродвигателей ударного действия: учебное пособие / А. А. Митусов. – Караганда : КарагТУ, 2002. – 109 с.
3. Алимов, О. Д. Гидравлические виброударные системы / О. Д. Алимов, С. А. Басов. – М. : Наука, 1990. – 352 с.
4. Половинкин, А. И. Основы инженерного творчества / А. И. Половинкин. – М. : Машиносение, 1998. – 368 с.
5. Митусов, А. А. Анализ параметров и конструкций современных гидромолотов / А. А. Митусов, О. С. Решетникова // Труды университета. – Караганда : КарагТУ, 2015. – № 1 – С. 32-35.

Алексей Викторович Митусов – студент группы С-03 ФГБОУ ВО АлтГТУ им. И. И. Ползунова;

Анатолий Алексеевич Митусов –
д.т.н., профессор кафедры «Инженерные
сети, теплотехники и гидравлики» ФГБОУ
ВО АлтГТУ им. И. И. Ползунова, E-mail:
anatmitusov@mail.ru.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ АВТОСТОЯНОК ВДОЛЬ ПРОЕЗЖЕЙ ЧАСТИ ДОРОГ НА АВАРИЙНОСТЬ ДОРОГ В БАРНАУЛЕ

И. М. Михаилиди, И. А. Зайцев

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Транспортная система современного мегаполиса является основой социально-экономического развития города и представляет собой сложную систему взаимодействия различных сфер деятельности, обеспечивающих комфортность и удобство для жителей и гостей города в соответствии с современными стандартами. Анализ современного состояния транспортной инфраструктуры городов, системы организации дорожного движения и научных исследований в этой области показывает высокую актуальность научного направления, связанного с развитием парковочных систем. Дефицит парковочного пространства в городах ставит задачу управления парковками на одно из центральных мест в решении транспортных проблем городов. В настоящей работе для анализа размещения парковок используется геоинформационная система. В качестве модельного участка выбран 5-ти километровый участок главной улицы г. Барнаула. Результатом работы является предложенный метод выявления парковок вдоль проезжей части и получение статистических показателей их размещения и вместимости. Также предложены пути решения проблемы уличных парковок, размещенных вдоль проезжей части дорог и улиц.

Ключевые слова: парковка, транспортное средство (т.с.), машиноместо, дорожно-транспортное происшествие (ДТП), улично-дорожная-сеть, аварийность, проезжая часть, геоинформационная система, ГИС, пространственный анализ.

Парковка – неотъемлемая часть жилого, офисного, административного комплексов, а также торгово-развлекательных центров.

Сегодня практически для каждого объекта строительства, так или иначе, решается вопрос размещения автомобилей его посетителей.

Для обеспечения хранения автомобилей постоянного населения и паркования автомобилей гостей в зонах жилой застройки в границах земельного участка многоквартирных жилых домов предусматриваются специальные места и объекты, соответствующие требуемому количеству машиномест. В случае комплексного развития территории, при наличии утвержденного проекта планировки территории – допускается размещение гаражно-стояночных объектов на специально выделенных земельных участках в пределах пешеходной доступности не более 800 м.

На территориях жилых кварталов, жилых комплексов, групп жилых домов, отдельных жилых зданий количество машиномест для легковых автомобилей населения следует определять исходя из нормативных требований СП 42.13330.2016. 6.1.3. Гостевые автомобили размещаются, как правило, на открытых автостоянках на расстоянии не более 150 м от входов в здания [3].

По существующей классификации парковки подразделяются на подземные, назем-

ные и надземные; по способу оплаты – на платные и бесплатные; по способу использования – на общедоступные и частные [4]. Однако, несмотря на разнообразие видов парковок, в России наибольшей популярностью пользуются бесплатные общедоступные открытые наземные парковки, которые располагаются в «карманах» вдоль проезжей части улиц, в специально выделенных зонах на площадях, перед магазинами и организациями, где водители могут оставлять свое транспортное средство. Зачастую на этих парковках отсутствует должная разметка, и водители ставят на них свои машины как попало.

Во дворах дополнительные парковочные места часто организуют за счет сокращения зеленых зон, газонов, детских площадок. При этом используются незаасфальтированные территории, что вызывает грязь в весенне-осенний период, портит внешний вид двора, создает дискомфорт для жителей и делает двор небезопасным для детей. Также скопление машин во дворах мешает подъезду к домам транспорта специального назначения, не говоря уже о загрязнении воздуха выхлопными газами и ухудшении экологии.

Другой источник проблем – автомобили, припаркованные по обочинам дороги. Они уменьшают проезжую часть, создавая аварийно-опасные участки и вызывая транспортные заторы на улицах.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ АВТОСТОЯНОК ВДОЛЬ ПРОЕЗЖЕЙ ЧАСТИ ДОРОГ НА АВАРИЙНОСТЬ ДОРОГ В БАРНАУЛЕ

Из всего перечисленного можно сделать вывод, что в городах России преобладают бесплатные наземные парковки, создающие массу проблем, требующих решения.

Стоящий на обочине автомобиль даже при малой загрузке дороги превращает в зону повышенной опасности значительный её отрезок (до 200-00 м).

Увеличение числа конфликтных ситуаций в зоне стоящего на обочине автомобиля обуславливается несколькими причинами, основными из которых являются:

- возникновение необходимости изменения траектории движущегося автомобиля при объезде автомобиля, стоящего на обочине;
- внезапное открытие дверей и выход пассажиров в сторону проезжей части;
- ухудшение видимости дороги;
- необходимость маневрирования и изменения скорости при въезде и выезде с обочины.

Транспортное средство на краю проезжей части тем опаснее, чем выше скорость едущих мимо него автомобилей.

Анализируя дорожно-транспортные происшествия с наездом на стоящее транспортное средство (данные с сайта stat.gibdd.ru за период с января по ноябрь 2021 года [2]), мы получаем обобщенные данные (таблица 1).

Статистика показывает, что виновными в таких авариях, как правило, становятся проезжающие мимо машины, т.к. сотрудники ГИБДД в таких вопросах обычно обращаются к пункту 10.1 ПДД, который гласит, что «при возникновении опасности для движения, которую водитель в состоянии обнаружить, он должен принять возможные меры к снижению скорости вплоть до остановки транспортного средства» [1]. Однако вовремя снизить скорость часто оказывается невозможным, если стоящие вдоль проезжей части автомобили внезапно для других водителей выезжают на дорогу, что приводит к столкновению транспортных средств.

К нежелательным последствиям также можно отнести нахождение машин, в непосредственной близости к пешеходам, так как машины на парковке могут быть направлены прямо на проходящих мимо людей и при неправильном старте или остановке водитель может по неосторожности наехать на пешеходов.

Наиболее остро стоит вопрос при отрицательных температурах на улице, когда водитель также может не справиться с манев-

ром, но уже по причинам гололедицы или обильного снежного покрова.

Не стоит забывать и о ледяных и снежных наносах на скатах крыш, из-за чего пешеходам приходится обходить места с повышенной угрозой схода льда и снега, что может помешать автовладельцам при парковании машин и привести к наезду на пешехода.

В условиях города Барнаула из-за переполнения города машинами и ограниченности числа парковочных мест нередки случаи, когда водители автомобилей «продолжают» парковку там, где ее фактически нет. Такое переполнение и парковка в неподходящих местах напрямую влияют на аварийность. Водители, проезжающие по дороге, не подозревают о нахождении транспортного средства в неподходящем месте, и не берут его в расчет при планировании маневров, не говоря уже о том случае, когда такой припаркованный с нарушениями правил автомобиль, тоже начинает совершать свое передвижение.

Одной из задач настоящей работы являлась оценка числа парковок вдоль проезжей части улиц и количества паркующихся на них автомобилей. Для этого использовалась геоинформационная система и цифровая карта города Барнаула. В качестве модельного участка был выбран 5-ти километровый участок проспекта Ленина, главной улицы города Барнаула, для которого при помощи операций пространственного анализа в ГИС были выделены все парковки на обочинах и вычислена их общая и средняя вместимость.

Таблица 1 – Статистика ДТП с января по ноябрь 2021 года в Алтайском крае и городе Барнауле

Место	ДТП с наездом на стоящее транспортное средство	Число пострадавших
Алтайский край	42	63
Барнаул	11	14

Таблица 2 – Результаты анализа парковок на обочинах на проспекте Ленина г. Барнаула.

Количество парковок на обочинах	83
Общее количество машиномест	605
Среднее количество машиномест на парковке	7,3
Среднее расстояние между парковками с каждой стороны проспекта, м	119

Рисунок 1 – Парковки вдоль обочин на проспекте Ленина г. Барнаула

В Таблице 2 приведены полученные результаты, откуда видно, что парковки вдоль обочин встречаются в среднем через каждые 119 м на каждой из двух разделенных полос проспекта и на каждой такой парковке в среднем может находиться около 7 автомобилей, что очень много. На рисунке 1 показано размещение парковок вдоль обочин.

Проблема требует срочного принятия мер. В частности:

1. Ужесточение правил пользования бесплатными парковками, для снижения числа нарушений при парковании автомобилей.

2. Введение повременной платы за стоянку на уличных парковках.

3. Отказ от части парковочных мест вдоль проезжей части в пользу современных парковочных комплексов, а именно: надземных, наземно-подземных, а также и механизированных парковок которые уже используются в ряде городов России. Подземные парковочные комплексы можно сооружать при перестройке города, а тех местах, где перестройка не планируется, необходимо прибегать к радикально новым способам, таким, как механизированные парковки. Это поможет уменьшить аварийность на дорогах и увеличить пропускную способность улично-дорожной сети города.

СПИСОК ЛИТЕРАТУРЫ:

1. О правилах дорожного движения : Постановление Правительства РФ № 1090 от 23.10.1993 (ред. от 31.12.2020) (с изм. и доп., вступ. в силу с 01.01.2022). – Электронный фонд правовых и нормативно-технических документов: АО Кодекс. – Москва, 2022. – URL: <https://docs.cntd.ru/document/9004835> (дата обращения 27.02.2022).

2. Показатели безопасности дорожного движения: официальный сайт Госавтоинспекции / ГУ-ОБДД МВД России. – Москва, 2022. – URL: <http://stat.gibdd.ru/> (дата обращения 27.02.2022).

3. СП 42.13330.2016. Свод правил. Градостроительство. Планировка и застройка городских и сельских поселений: актуализир. редакция СНиП 2.07.01-89* : дата введения 01.07.2017. – М. : Минстрой России, 2017. – 60 с.

4. СП 113.13330.2016. Свод правил. Стоянки автомобилей: актуализир. редакция СНиП 21-02-99* : дата введения 08.05.2017. – М. : Минстрой России, 2017. – 24 с.

Михаилиди Ирина Михайловна – к.т.н., доцент кафедры «Архитектура и дизайн» Института архитектуры и дизайна ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: ingem@mail.ru;

Зайцев Илья Алексеевич – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: zajcev0612@mail.ru.

ОСНОВНЫЕ СПОСОБЫ БОРЬБЫ С ПЛЫВУНАМИ ПРИ СТРОИТЕЛЬСТВЕ ЗДАНИЙ И СООРУЖЕНИЙ

И. В. Носков, С. А. Ананьев, К. И. Носков

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В начале текущего столетия считалось, что плывучесть пород является почти непреодолимым препятствием при строительстве зданий и сооружений. По мере развития строительной техники и познания природы плывунов совершенствовались и меры борьбы с этим неблагоприятным геологическим явлением. В настоящее время широко применяются способы улучшения свойств плывунов, выбор которых определяется инженерно-геологическими условиями района расположения строительного объекта, типом и конструктивными особенностями сооружения, технологическими особенностями способа, экономическими расчетами.

Ключевые слова: плывун, грунт, вода, метод, осушение, крепление, замораживание, силикатизация, кессонные способы, коэффициент фильтрации, уровень грунтовых вод.

В настоящее время для борьбы с плывунами применяются различные мероприятия и способы, которые можно разделить на 5 основных групп [1, 2].

1 группа. Искусственное осушение водонасыщенных грунтов, которое носит временный характер, так как производится на период производства работ при возведении зданий и сооружений.

К этой группе относятся:

1). понижение уровня грунтовых вод с помощью откачки воды из скважин; способ дает надлежащий эффект в породах с коэффициентом фильтрации не менее 1 м/сут.;

2). установка забивных и опускных фильтров, успешно применялась в Подмосковном каменноугольном бассейне при борьбе с плывунами, имеющими коэффициент фильтрации менее 1 м/сут.;

3). установка иглофильтров, позволяющая осушать породы с коэффициентом фильтрации не менее 0,2 м/сут.; этот способ весьма прост, дает очень хороший эффект, применим для пород, обладающих малой водопроницаемостью, и в настоящее время весьма широко распространен.

Эти способы применяются в основном при борьбе с ложными плывунами, проявление которых определяется гидродинамическим давлением. Однако в сочетании с другими методами они дают эффект и при борьбе с истинными плывунами. Например, сочетание установки иглофильтров с проведением электродренажа позволяет осушать породы с коэффициентом фильтрации менее 0,2 м/сут. Способ понижения уровня грунтовых вод широко используется при проходке котлованов для гидротехнических сооружений,

фундаментов зданий, т.к. обеспечивает достаточно хорошее осушение оплывающих пород и устойчивость стенок котлованов.

При проходке подземных выработок в плывунах часто осушают породы с помощью забивных и опускных фильтров. Но не все породы можно осушить путем понижения уровня грунтовых вод. Например, водонасыщенные суглинки, супеси, пылевато-глинистые и иловатые тонкозернистые пески, а также истинные плывуны с малой водопроницаемостью и малой водоотдачей и не поддаются осушению. При откачке из них воды создаются незначительные радиусы осушения и крутые воронки депрессий, не позволяющие получить необходимые результаты.

Если высота капиллярного поднятия воды в мелкозернистых песках больше величины необходимого понижения, то для осушения достаточно снизить напор, чтобы удалить гравитационную воду; в этом случае в песках останется только капиллярная вода. Капиллярная вода связывает пески и придает им большую устойчивость. Напор можно снизить путем откачки воды из скважин, причем дебит этих скважин будет невелик, поэтому такие откачки называют водоотливом с малым дебитом.

Эффективность осушения плывунов способом искусственного понижения уровня грунтовых вод зависит как от типа сооружения, так и от природных условий: состава, водопроницаемости и водоотдачи пород; степени однородности осушаемой толщи пород в горизонтальном и вертикальном направлениях; положения водоупоров.

2 группа. Ко второй группе относятся способы сдерживания движения плывунов в

грунтовых массивах. Для этого применяются такие способы как устройство сплошных шпунтовых ограждений, устройством опускных колодцев. Эффективность этих способов становится наиболее целесообразной при прогружении шпунта и колодца с помощью вибрации. За счет выбрасывания происходит дополнительное уплотнение грунтов (особенно песчаных за счет эффекта разжижения) и соответственно уменьшается подвижность плавунов в грунтовом массиве.

Однако способы сдерживания развития и перемещения плавунов в грунтовом массиве применимы при сравнительно небольшой глубине их залегания, так как погружение шпунтовых конструкций (деревянных, железобетонных, металлических) и опускных колодцев на большие глубины (25 и более метров) представляет значительные технические трудности при производстве работ. Шпунтовое ограждение для сдерживания движения плавунов применяют в основном при обнаружении плавунов при разработке котлованов, траншей и т.п. Шпунт погружают до прочных грунтов и обычно их заглубляют в водоупор, чтобы не происходило подпывания породы под шпунтовый ряд в котлован или траншее. Для этой цели вокруг котлована или траншеи выполняют сплошное шпунтовое ограждение глубиной до 5 м при использовании деревянных и железобетонных шпунтингов. Но чаще выполняют металлический шпунт «Ларсена» из прокатного металла, который образует сплошную стенку глубиной, в некоторых случаях, более 20 м, защищающий выемку (котлован, траншее и т.п.) от движения и негативного влияния плавунов.

При определении возможности применения шпунтового ограждения изучают следующие инженерно-геологические условия площадки строительства:

1) состав пород и их чередование в разрезе, так как в некоторые породы, например, в породы, содержащие большое количество валунов, в крупные галечники, плотные мергели и т.п., забить шпунт очень трудно, а иногда и невозможно, поэтому в процессе исследования иногда проводят опытную забивку шпунтов;

2) мощность плавунов, определяющую глубину забивки шпунта;

3) положение и физико-технические свойства водоупорных пород, обуславливающих глубину забивки шпунта; при этом необходимо иметь в виду, что шпунт следует забивать в плотные глины пластической или полутвердой консистенции, т.к. рыхлые и пе-

реувлажненные глинистые породы не обеспечивают устойчивости шпунтовой стенки.

3 группа. Способы замораживания плавунов широко применяются для временного придания прочности породам, этот способ требует постоянного расхода энергии для поддержания пород в замороженном состоянии. Для замораживания плавуна бурят скважины, в которые нагнетают чаще всего концентрированный раствор хлористого кальция, охлажденный с помощью специальных установок. В результате вокруг скважины создается зона охлаждения пород с температурой до $-20\ldots-40^{\circ}\text{C}$. Замороженные породы становятся водонепроницаемыми и приобретают значительные прочностные характеристики. Так, временное сопротивление сжатию замороженных песков при температуре минус 15°C колеблется от 60 до $150 \text{ кг}/\text{см}^2$, а глин – от 20 до $60 \text{ кг}/\text{см}^2$. Такой способ изменения физико-механических свойств плавунов требует довольно сложного оборудования и проходки значительного количества скважин, расположенных в один или несколько рядов. Способ замораживания плавунов имеет ряд преимуществ: возможность закрепления грунтов разных типов, создание прочных водонепроницаемых завес, не требующих дополнительного крепления. К основным недостаткам способа относятся: временный характер закрепления плавунов и длительность процесса замораживания (иногда более 45 дней).

4 группа. Применение сжатого воздуха (с давлением до 2,5 атм.) также применяется при проходке плавунов. Кессонные способы проходки плавунов иногда сочетаются с искусственным водопонижением. Нагнетаемый в подземные выработки сжатый воздух уравновешивает давление воды, тем самым нейтрализуя одну из причин образования плавунов. Чем больше давление воды, тем большее давление воздуха необходимо поддерживать в подземной выработке, для чего требуются мощные компрессорные установки. Такой способ борьбы с плавунами часто применяется при проходке подземных выработок (тоннелей, штолен и т.д.) и при сооружении мостовых опор, колонн глубоких фундаментов и т.д.

5 группа. Силикатизация пород одно- или двухрастворным способами увеличивает механическую прочность породы и делает ее более устойчивой.

Двухрастворный способ закрепления пород применяется, например, для увеличения несущей способности пород под фундаментами сооружений, для устранения притока

ОСНОВНЫЕ СПОСОБЫ БОРЬБЫ С ПЛЫВУНАМИ ПРИ СТРОИТЕЛЬСТВЕ ЗДАНИЙ И СООРУЖЕНИЙ

воды при проходке горных выработок (шахт, штолен и др.) и создания водонепроницаемых завес, предупреждающих утечку воды в обходе плотин и под ними. Описанный способ применим для пород, имеющих коэффициент фильтрации от 2 до 80 м/сутки; радиус закрепления в этом случае колеблется от 0,4 до 0,7 м. Метод двухрастворной силикатизации неприменим в склонных к плывучести мелко-зернистых породах. Растворы, вследствие своей вязкости, не могут в них проникать и равномерно, заполнять мелкие поры, вследствие чего получаются незначительные радиусы закрепления. Кроме того, мелкозернистые породы обладают большой суммарной поверхностью частиц и при взаимодействии их с жидким стеклом и хлористым кальцием выделяются продукты, снижающие прочность закрепления (хлористый натрий, хлористый кальций и др.). Метод неприменим также в крупнозернистых песчано-гравелистых породах с коэффициентом фильтрации 80 м/сут., в которых не все поры заполняются силикатом, в результате чего получается неплотная цементация. Кроме того, малая суммарная поверхность частиц таких крупнозернистых пород понижает прочность закрепления. Не удается достигнуть удовлетворительного эффекта и при силикатизации пород, частицы которых покрыты глинистыми продуктами выветривания, снижающими прочность цементации.

Преимущества двухрастворного способа – быстрая и высокая прочность закрепления (временное сопротивление раздавливанию закрепленных, пород достигает 15-60 кг/см²), обеспечение водонепроницаемости и устойчивости закрепленных пород при воздействии на них агрессивных подземных вод.

Однорастворный способ силикатизации пород придает породе водонепроницаемость и несколько увеличивает прочность, что является достаточным для обеспечения устойчивости не очень тяжелых сооружений. Этот способ применяется при закреплении песчаных пород, коэффициент фильтрации которых менее 2 м/сут., но не менее 0,5 м/сут.

Эффективность закрепления пород описанными методами силикатизации определяется следующими основными инженерно-геологическими условиями, которые необходимо тщательно изучить:

- а) гранулометрическим составом пород;
- б) их химико-минеральным составом;
- в) текстурой и структурой пород, включая размер и объем пор;

- г) водопроницаемостью пород;
- д) их естественной влажностью;
- е) скоростью движения подземных вод;
- ж) химическим составом подземных вод.

Были предложены и другие способы борьбы с плывунами, например электрохимические способы закрепления пород, но их еще нельзя считать внедренными в производство.

Наконец, надо отметить способы борьбы с плывунами при проходке скважин и шурфов. При проходке плывунов скважинами рекомендуется производить работу непрерывно (в три смены), чтобы избежать образования «пробок». Забой скважины не должен опережать обсадку, диаметр бурового наконечника должен быть значительно меньше внутреннего диаметра обсадной трубы, чтобы при подъеме он не работал в качестве поршня и не создавал в скважине вакуум, способствующий подсосу (разжижению) породы и образованию «пробок». В некоторых случаях для успешной проходки плывуна в скважину наливают воду, которая снижает гидростатический напор подземных вод и уменьшает степень плывучести пород. Проходка плывунов шурфами успешно осуществляется с помощью забивной крепи.

Приведенные выше группы методов позволяют в настоящее время эффективно бороться с этим неблагоприятным геологическим явлением, каким являются плывуны, при строительстве зданий и сооружений.

СПИСОК ЛИТЕРАТУРЫ

1. Горшков, Г. П. Общая геология / Г. П. Горшков, А. Ф. Якушева. – М. : Изд-во МГУ, 1973. – 591 с.

2. Абелев, Ю. М. Основы проектировав и строительства на просадочных макропористых грунтах / Ю. М. Абелев, М. Ю. Абелев. – М. : Госстройиздат, 1968. – 430 с.

Носков Игорь Владиславович – к.т.н., заведующий кафедрой «Основания, фундаменты, инженерная геология и геодезия» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: noskov.56@mail.ru;

Ананьев Сергей Анатольевич – старший преподаватель кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: ananda_hasita@mail.ru;

Носков Кирилл Игоревич – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: nki88@yandex.ru.

ПЛЫВУНЫ КАК ОПАСНЫЕ ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ

И. В. Носков, С. А. Ананьев, К. И. Носков

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Явление плывучести возникает при особом состоянии горных пород. Современная инженерная геология называет плывуном «насыщенный водой грунт, который при вскрытии его приходит в движение и принимает характер текучего тела». В плывунное состояние могут переходить пески, глинистые пески, супеси. Известны случаи перехода в плывунное состояние и суглинков, а также озерного ила. Таким образом, плывун – это не какой-либо определенный тип породы, а особое состояние породы, насыщенной водой.

Ключевые слова: плывун, грунт, вода, свойства, разжижение, сотрясение, «пробка», «прихват», плывучесть горных пород, вымывание частиц грунта, взвешенное состояние.

Плывуны являются опасными геологическими явлениями, которые очень часто осложняют процессы разработки котлованов и траншей при строительстве зданий и сооружений. При разработке котлованов, траншей и т.п. могут происходить обвалы их стенок, разжижение грунтов при сотрясении (динамических воздействиях), выполаживание откосов до минимальной крутизны, заплывание и заиливание грунтом [1, 2].

В качестве примера можно привести строительство Химкинской плотины, в котловане которой начали плыть верхневолжские супеси, образуя угол откоса около 4°. Интересно отметить, что в этом случае оплывание возникло в результате сотрясений, создаваемых бетономешалками, которые к началу строительства были установлены на левом берегу р. Химки. В дальнейшем бетонный завод пришлось перенести в другое место.

Заплывание грунтом строительных котлованов и других горных выработок может принять угрожающие размеры. Например, при проходке разведочного шурфа на трассе первой очереди Московского метрополитена (на Краснопрудной улице) объем вынутого плывуна был в 3,5 раза больше того объема, который он занимал в горной выработке.

Значительные негативные моменты вызывает появление плывунов в буровых скважинах при проведении инженерно-геологических изысканий. В обсадных трубах, применяемых при бурении скважин, могут образоваться так называемые «пробки». Они возникают вследствие того, что плывун из забоя скважины устремляется вверх по обсадной трубе, обволакивает буровой наконечник и штанги и прочно их схватывает. Чаще всего такие «пробки» образуются при значительной разнице между уровнями воды в затрубном пространстве и внутри обсадных труб, что

происходит в процессе бурения скважин, когда значительная часть воды удаляется вместе с извлекаемым на поверхность грунтом. «Пробки» в буровых скважинах иногда достигают высоты 10-20 м, часто образование их приводит к «прихвату» инструмента и необходимости извлекать его вместе с обсадными трубами.

Нередко «прихват» оказывается таким сильным, что не удается извлечь инструмент из скважины, приходится его бросать, а рядом бурить новую скважину. Давление, вызываемое действием плывунов, часто вызывает нарушение вертикальности стволов шахт, разрушает крепление подземных горных выработок. Если не предпринять соответствующих контрмер, то проявления плывучести грунтов может привести к значительным деформациям оснований зданий и сооружений и даже к их разрушению.

Ярким примером является случай, произошедший при строительстве в Москве 100 метрового лыжного трамплина. Когда трамплин был уже построен, строители приступили к подрезке склона, с устройством выемки, которая придавала необходимую кривизну, обеспечивающую безопасное приземление лыжников. Подрезкой были вскрыты плывуны, которые устремились в выемку так интенсивно, что рабочие не успели даже вывести из нее экскаватор, и он был заполнен плывунами за считанные минуты. Поверхность откоса, на которой находились опорные конструкции построенного трамплина, стала оседать и только своевременное и быстрое осуществленные противоплывунные мероприятия предотвратили развитие деформаций и разрушение этого крупного спортивного сооружения.

При появлении плывунов вместе с откачиваемой водой из котлованов, траншей или

ПЛЫВУНЫ КАК ОПАСНЫЕ ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ

при извлечении их во время откаек воды из буровых скважин, или при проведении работ по водоотливу из котлованов может возникнуть целый ряд негативных последствий и опасных недопустимых деформаций грунтов оснований рядом стоящих зданий и сооружений. На первый взгляд ничтожное по размерам вымывание частиц с течением времени может привести к удалению значительного объема пород. Так, например, при откачке из шахты 20 л/сек. воды, имеющей мутность всего 0,1%, в течение года было вынесено 600 м³ породы.

В основаниях гидротехнических сооружений, особенно в песчаных основаниях (плотин, дамб и др.), также могут возникнуть, плытуны в результате гидродинамического давления фильтрующейся через них воды. В каждом таком случае, если (согласно расчету) имеется опасность вымывания частиц, предпринимаются конструктивные мероприятия по удлинению подземного контура плотины, для того, чтобы увеличить путь фильтрации воды и уменьшить гидродинамическое давление путем устройства понуров, шпунтовых стенок, нефильтрующих зубьев и т.п.

Анализируя строительную практику можно прийти к выводу, что в природе могут существовать два рода плытунов: псевдоплытуны (ложные плытуны) и истинные плытуны. Псевдоплытуны называют рыхлые горные породы (песчаные и супесчаные грунты), движение которых происходит лишь при наличии гидродинамического давления грунтовых (подземных) вод. Псевдоплытуны обычно представляют собой тонкозернистые пески, находящиеся во взвешенном состоянии в результате наличия некоторого гидравлического или напорного градиента.

Действительно, если пропускать через столб песка воду снизу вверх и все время увеличивать напор (при постоянной длине пути фильтрации воды, равной высоте столба песка, мы будем в этом случае увеличивать гидравлический градиент), то наступит такой момент, когда гидродинамическое давление на зерна песка достигнет веса частиц песка и переведет их во взвешенное, подвижное состояние.

Гидравлический градиент фильтрации, при котором грунт переходит в состояние плытуна (пытучее состояние), называется критическим. Критический градиент может создаться, например, при выходе артезианских вод на поверхность в виде восходящего источника.

Фильтрующаяся под напором вода может перевести частицы породы во взвешен-

ное состояние, что нередко наблюдается в очаге восходящего источника, где песок выбивается из дна вместе с водой.

В лаборатории можно воспроизвести такие условия при помощи весьма несложного опыта. Если через песок, находящийся в цилиндре, пустить снизу вверх ток воды, увеличивая напор последней, то при достижении критического градиента песчинки перейдут во взвешенное состояние, песок взрыхлится, а гирька или монета, помещенная перед опытом на поверхности песка, опустится на дно цилиндра. Если же направить ток воды сверху вниз, то гидродинамическое давление будет уплотнять песок, помещенный в цилиндр.

Ложные плытуны активно отдают грунтовую воду, а при искусственном или естественном уменьшении напорного или гидравлического давления, легко переходят в устойчивое состояние.

Истинными плытунами называют рыхлые горные породы, которые оплывают не только под воздействием гидродинамического давления, но главным образом вследствие наличия в составе породы органоминеральных коллоидов.

Результаты исследований позволяют считать установленным, что истинные плытуны иногда оплывают при наличии небольшого гидродинамического давления, но в основном их плытучесть обусловливают органоминеральные коллоиды.

Эти коллоиды – высокомолекулярные органические соединения, содержащиеся в рыхлых горных породах (грунтах), обуславливают целый ряд свойств, характерных для таких грунтов: малое удельное сцепление грунта, малая вязкость, низкая водопроницаемость, очень низкое сопротивление сдвигу, высокая деформируемость, текучесть; постепенное уменьшение прочности при увеличении влажности.

Эти породы обладают также тиксотропностью (способность грунта при динамических воздействиях разжигаться и полностью терять свои прочностные свойства, а после завершения воздействия на них, возвращаться в исходное состояние). Такие породы легко переходят в пытучее состояние вследствие нарушения их естественной структуры при возникновении вибрации или гидростатического давления, при увлажнении или образовании сдвигающего усилия, деформирующего породу.

Особенно важно, что свойства истинных плытунов существенно изменяются в зависимости от свойств окружающей среды.

Изменение концентрации водородных ионов (рН) или емкости поглощения так же, как и высушивание плывунов на воздухе, приводит к образованию нетиксотропных, наиболее прочных и водостойких структур.

Чувствительность истинных плывунов к изменению среды, во-первых, позволяет намечать правильные пути разработки, методов борьбы с плывучестью истинных плывунов, во-вторых, показывает, что одни и те же породы, но находящиеся в различных условиях, могут вести себя совершенно различно: в одних, случаях – обладать плывучестью, а в других – не обладать ею.

В истинных плывунах большая часть воды находится в связном состоянии, вследствие чего удалить ее бывает трудно, свойство плывучести в таких породах удерживается более стойко, а борьба с ними труднее, чем с ложными плывунами.

Истинные плывуны обладают следующими характерными для них свойствами: присутствие в граносоставе грунта фракции частиц менее 5 мм в количестве не менее 3%; тиксотропность; высокая пористость (более 40%); зависимостью угла естественного откоса от влажности; способностью изменять свойства при высушивании; величина максимальной молекулярной влагоемкости более 4%; малая величина водопроницаемости и водоотдачи; наличием органо-минеральных коллоидов;

Необходимо иметь в виду, что многие из перечисленных выше признаков вообще свойственны глинистым породам, а поэтому ту или иную породу можно отнести к истинным лывунам лишь в том случае, если будет обнаружено несколько характерных признаков.

Наконец, рыхлые горные породы могут образовать истинные плывуны только при определенной естественной влажности, близкой, как показали наблюдения, к влажности на границе текучести этих грунтов.

Описанные выше свойства двух типов плывунов определяют и способы их изучения.

При изучении плывунов в процессе инженерно-геологических исследований производится:

1) инженерно-геологическая съемка, при проведении которой изучают геологическое строение, геоморфологические и гидрогеологические условия района, литологический состав пород, условия их залегания и т.п.;

2) по данным инженерно-геологической съемки и по проектным предположениям составляют заключение о возможности проявления плывучести пород;

3) разведочные работы, уточняющие данные о геологическом строении района и о гидрогеологических условиях, в процессе производства которых ведут наблюдения за появлением буровых пробок и их величиной, а также отбирают пробы пород для производства лабораторных анализов;

4) лабораторное изучение физико-механических свойств пород, которое сводится в основном к определению показателей, являющихся признаками плывучести пород;

5) вследствие того что истинные плывуны при высыхании могут изменить свои свойства, образцы таких пород отбирают и упаковывают так, чтобы они не потеряли естественной влажности;

6) механические свойства пород (углы естественного откоса, сжимаемость и т.п.) определяются для образцов плывучих пород при естественной влажности.

СПИСОК ЛИТЕРАТУРЫ

1. Маслов, Н. Н. Основы инженерной геологии и механики грунтов / Н. Н. Маслов. – М. : Высш. школа, 1982. – 511 с.
2. Иванов, П. Л. Разжижение песчаных грунтов / П. Л. Иванов – М. : Стройиздат, 1962. – 260 с.

Носков Игорь Владиславович – к.т.н., заведующий кафедрой «Основания, фундаменты, инженерная геология и геодезия» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: noskov.56@mail.ru;

Ананьев Сергей Анатольевич – старший преподаватель кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: ananda_hasita@mail.ru;

Носков Кирилл Игоревич – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: nki88@yandex.ru.

ЗИМНИЕ РАСТВОРЫ ДЛЯ МОНТАЖА ПАНЕЛЕЙ ЗДАНИЙ КПД

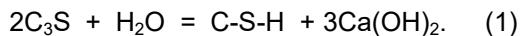
Г. И. Овчаренко, А. В. Викторов, А. И. Зверев, В. А. Швец

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

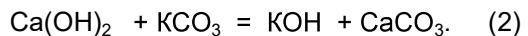
Показано, что практическая работа по монтажу конструкций зданий КПД в Сибири продолжается до минус 25°C. Это требует высоких дозировок противоморозных добавок для обеспечения прочности раствора. Однако такие высокие дозировки не могут быть введены на БРУ, т.к. это не позволит доставить готовый раствор на объект и тем более длительно работать с ним по причине быстрой потери подвижности. Поэтому предложена и опробована технология ввода сухих противоморозных добавок на объекте в готовый доставляемый раствор. Это, при работе малыми порциями, позволяет обеспечить требуемые условия.

Ключевые слова зимние растворы, монтаж зданий КПД, противоморозные добавки, поташ и нитрит натрия, сохраняемость подвижности, обеспечение требуемых условий.

В зимний период работы по монтажу конструкций зданий КПД в Сибири продолжаются до минус 25°C.


Действующим СП 82-101-98 «Приготовление и применение растворов строительных» в этом случае предусматривается применение противоморозных добавок, обеспечивающих твердение цемента на морозе и достижение прочности камнем. В соответствии с данными таблицы 7 указанного СП, целесообразно применять безхлоридные поташ или нитрит натрия в количестве 10-15 и 8-10% соответственно. Однако введение таких дозировок этих добавок непосредственно на растворном узле не представляется возможным, т.к. доставка таких растворных смесей и их применение проблематично из-за быстрой потери подвижности, существенному ухудшению адгезии (прилипаемости) растворной смеси к конструкциям, требованию постоянного перемешивания смеси (рисунки 1-3). Поэтому заводское приготовление монтажных растворов сводится к не большому (1,5-2,5%) введению противоморозных добавок и подогреву растворной смеси. Это позволяет доставить смесь на объект и работать с ней в течение 3-4 часов, что технологически достаточно.

Однако такая смесь не позволяет набирать прочность растворного камня на морозе, что не соответствует требованиям проекта, особенно при высотном строительстве зданий КПД. С таким количеством противоморозных добавок раствор набирает прочность от 1,0 до 3,5 МПа при требовании проекта 10 МПа.


Многократная проверка добавки поташа в построенных условиях подтвердила трудность работы с ней. Если заводской состав

позволяет работать в течение 3-4 часов с приемлемой подвижностью смеси и её прилипаемостью (адгезией), то добавление поташа не только приводит к потере подвижности, загущению смеси, но и потере адгезии.

Это обусловлено тем, что в процессе гидратации цемента выделяется известь (портландит) $\text{Ca}(\text{OH})_2$, которая пластифицирует цементные композиции. На примере гидратации алита клинкера реакция выглядит следующим образом

Поташ реагирует с известью, связывает её и вместо пластичных кристаллов коллоидных размеров образуются снижающие пластичность кубические кристаллы кальцита CaCO_3

Образовавшийся КОН является сильным ускорителем твердения цемента, а связавшаяся известь снижает пластичность и адгезию (прилипание) строительного раствора.

Кроме этого, отмечается водоотделение, т.к. коллоидные частицы портландита, связавшие большое количество воды, при их расходовании высвобождают эту воду.

Попытки увеличить пластичность раствора добавкой извести $\text{Ca}(\text{OH})_2$ привели к еще более быстрому его схватыванию, т.к. реакция (2) протекает очень быстро в отличие от того, когда известь выделяется малыми порциями при гидратации цемента.

Так же мы не добились существенного замедления схватывания растворов добавками лимонной и винной кислот.

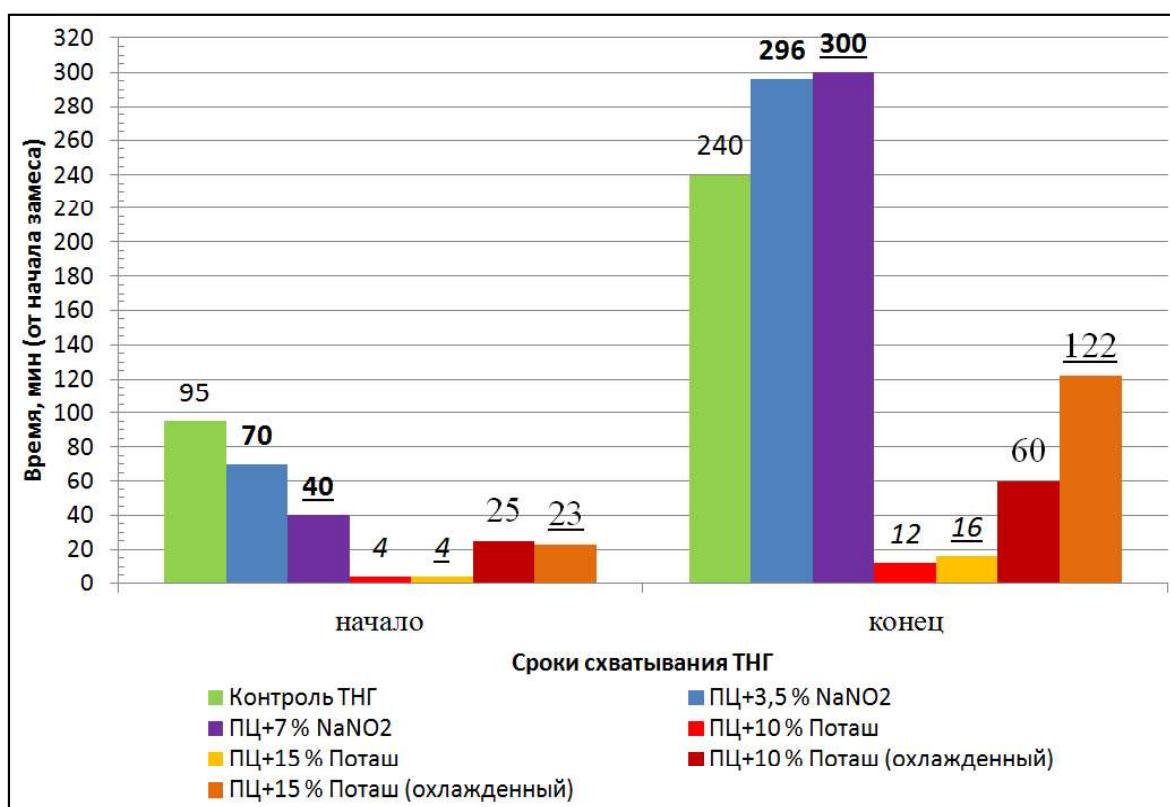


Рисунок 1 – Сроки схватывания исходного портландцемента ЦЕМ II 32,5 и его с противоморозными добавками при нормальной температуре



Рисунок 2 – Сохраняемость подвижности растворов при +20°C

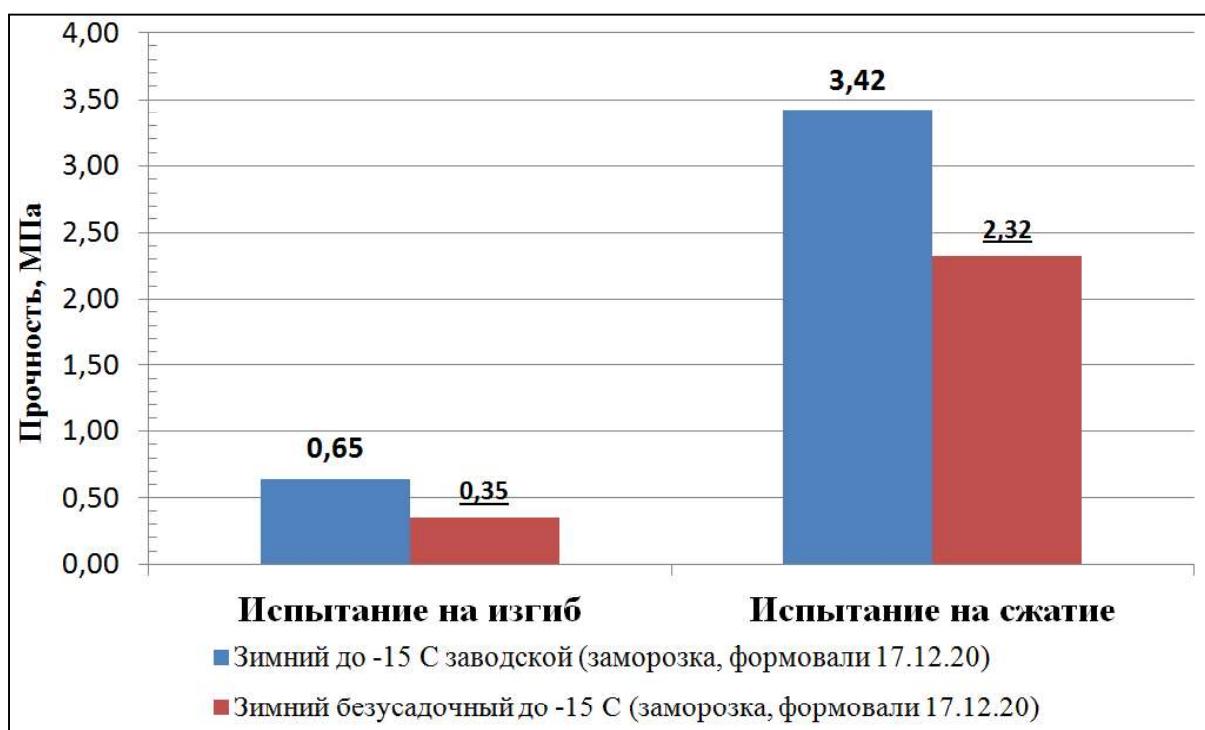


Рисунок 3 – Прочностные характеристики заводского зимнего раствора М200 после заморозки 28 суток при температуре -22°C

Водоудерживающая добавка MasterAir так же не решила главные проблемы по срокам схватывания, потере подвижности, адгезии, снизив только водоотделение. Поэтому работа с поташом на объекте возможна только при замешивании строительного раствора с добавкой малыми порциями с быстрой выработкой раствора, что было продемонстрировано в реальной работе. Нитрит натрия, в отличие от поташа, не так значительно снижает начало схватывания и обеспечивает приемлемую сохранность подвижности.

СПИСОК ЛИТЕРАТУРЫ

1. СП 82-101-98. Приготовление и применение растворов строительных. – М. : Госстрой России, 1999. – С.33.

Овчаренко Геннадий Иванович – д.т.н., профессор кафедры «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: egogo1980@mail.ru;

Викторов Артем Владимирович – старший преподаватель кафедры «Строительные материалы» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: artem.viktorov2011@yandex.ru;

Зверев Андрей Игоревич – студент ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: zwerew.andrej2018@mail.ru;

Швец Виктор Алексеевич – студент ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: shvtsvitia@mail.ru.

ПРИМЕНЕНИЕ МАТЕРИАЛОВ ПО ШУМОИЗОЛЯЦИИ ПРИ СТРОИТЕЛЬСТВЕ АЭРОВОКЗАЛОВ

М. А. Осипова, М. Ю. Королев

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассматриваются вопросы касающиеся применения эффективных звуко- и вибропоглощающих материалов, которые позволяют аэропортам обеспечить благоприятные условия нахождения пассажиров и сотрудников авиационной сферы в аэровокзальных комплексах. Приведены примеры использования современных строительных материалов в области защиты от авиационных шумов на примере недавно построенных и реконструированных аэровокзалов на территории РФ.

Ключевые слова: аэровокзальный комплекс, авиационный шум, звуко- и вибропоглощающие материалы, уровень звука, «плавающий» пол.

Строительство и реконструкция аэропортов в России стало набирать все большие темпы. Так, начиная с 2014 года, когда был введен аэропорт в г. Сочи, при подготовке к проведению Олимпиады, и до настоящего времени построены и реконструированы следующие аэровокзалы: Толмачево – 2014-2015 гг., Саббета – 2014 г., Самара (Курумоч) – 2015 г., Уфа – 2015 г., Калининград (Храброво) – 2018 г., Тюмень (Роцкино) – 2017 г., Ростов-на-Дону – 2017 г., Симферополь – 2018 г. Приоритетными направлениями в решении вопросов авиаперелетов являются не только вопросы повышения комфорта в период полета, но и улучшение условий ожидания авиапассажирами рейсов.

Анализируя официальные данные, представленные компанией «АВИА АДВ», пассажиропоток в крупнейших аэропортах России составил:

- в 2019 г.: Москва (Шереметьево) – 49,9 млн. чел., Москва (Домодедово) – 28,3 млн. чел., Москва (Внуково) – 24 млн. чел., Санкт-Петербург (Пулково) – 19,6 млн. чел.
- в 2021 г.: Москва (Шереметьево) – 30,6 млн. чел., Москва (Домодедово) – 25,1 млн. чел., Москва (Внуково) – 17,99 млн. чел., Санкт-Петербург (Пулково) – 18,0 млн. чел.

Несмотря на снижение пассажирского потока с марта 2020г, вызванное эпидемиологической ситуацией во всем мире, одной из основных задач природоохранной деятельности в гражданской авиации (ГА), решение которой позволит аэропортам обеспечить благоприятные условия нахождения пассажиров и сотрудников авиационной сферы в аэровокзальных комплексах, подвергающихся воздействию авиационного шума, является применение эффективных звуко- и вибропоглощающих материалов.

Пассажирам, ожидающим своего рейса, важно четко слышать объявления о посадке, отправлении и об изменениях расписания. Поэтому, помимо шумоизоляции, важно продумать акустику залов, чтобы слова диктора звучали ясно и разборчиво, не требуя уточнений. Для достижения этого необходимо решить следующие задачи:

- проанализировать применяемые в РФ и за ее пределами вибро и звукопоглащающие материалы;

- проанализировать результаты инструментальных измерений эффективности звукоизоляции конструкций, применяемых на территориях повышенного авиационного шума, в отечественных аэропортах;

- обосновать критерии оценки авиационного шума в аэровокзалах;

- разработать методические рекомендации по определению числовых значений нормативов авиационного шума для дальнейшего функционального применения материалов с обоснованием требуемых шумозащитных мероприятий объектов строительства.

Отдельного внимания также требует акустика помещений, поэтому на этапе проектирования практикуется акустическое моделирование, позволяющее скорректировать акустическую среду и подобрать специализированные материалы и конструкции для отделки стен и потолков. Отделка акустическими материалами должна вписываться в общую дизайнерскую концепцию и способствовать созданию интерьера, комфорtnого для всех пассажиров и сотрудников.

Специальным архитектурно-планировочным решением зданий-экранов (рисунок 1) является ориентирование вспомогательных помещений в сторону источника

Рисунок 1 – Международный аэропорт Сочи (Адлер)

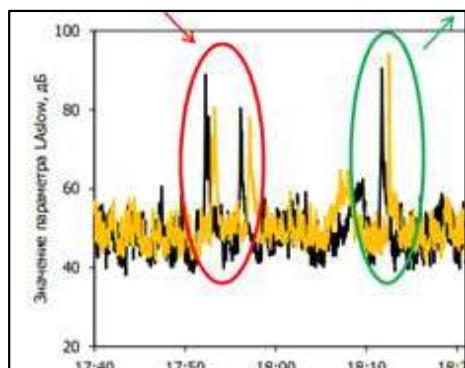


Рисунок 2 – Мониторинг авиационного шума у взлетно-посадочной полосы при посадке и взлете воздушного судна

Рисунок 3 – Устройство «плавающего пола»

Рисунок 4 – Устройство неразъемного фальшпола

шума, использование звукозащитных окон на «зашумленном» фасаде. Шумозащитные окна должны иметь специальные вентиляционные устройства, которые должны быть совмещены с глушителями шума. Шумозащитные здания обладают отличной шумоизоляционной системой, включающей в себя не только использование специальных окон, но и многослойной звукоизоляцией «шумного» фасада, которая обеспечивает комфортный акустический фон внутри здания. Следовательно, можно применять подобное решение и при планировке помещений аэропорта, размещать вспомогательные помещения ближе к источнику шума (взлет и посадка самолета), а залы ожиданий с противоположной стороны, не забывая при этом о шумозащитных конструкциях.

Для наиболее эффективного решения поставленных задач проанализируем виды шумов от воздушного судна (ВС), а именно шумы во время:

- стоянки ВС, работы силовой вспомогательной установки (ВСУ) или внешнего источника питания;
- запуска двигателей ВС;
- руление ВС;
- взлета и посадки ВС.

Данные (рисунок 2) представлены компанией «Акустик Групп». Анализируя рисунок 2, можно отметить, что наибольших значений авиационный шум достигает в период взлета и посадки ВС.

В настоящее время наиболее распространёнными конструкциями и материалами для вибро- и звукопоглощения являются: шумозащитные полы «плавающего» типа, шумоизоляционные потолки; акустические стеновые панели.

Система звукоизоляции пола предназначена для изоляции от воздушного и ударного шума. Конструкция «плавающего пола» (рисунок 3), направлена на изоляцию ударного шума, передающегося по несущим конструкциям здания. «Плавающий пол» является одной из самых эффективных систем изоляции пола от ударного шума. Для повышения звукоизоляционных свойств «плавающего пола» на полимерный слой устраивают пробковую подложку либо инновационную шумоизоляционную мембрану «Тексаунд», на нее кладывают слой фанеры, а только после этого монтируют конечное напольное покрытие.

Помимо полов «плавающего» типа при строительстве аэропортов применяется современное решение – неразъемный фальшпол (рисунок 4), простой и эффективный способ создания приподнятого над основным

полом здания прочного настила. Обладая невысоким собственным весом, фальшполы не оказывают существенной нагрузки на существующее основание или перекрытие, но позволяют размещать внутри этого настила разнообразные коммуникации, обеспечивают дополнительную шумоизоляцию к уже имеющейся конструкции.

Звукоизоляция потолков аэровокзалов позволяет значительно улучшить акустический комфорт. Звукоизоляционные мероприятия позволяют изолировать распространение звука как в вертикальном, так и в горизонтальном направлении. Специальная акустическая подложка и различные виды перфорации увеличивают коэффициент звукопоглощения и создают благоприятную акустическую среду в помещении.

Для создания комфортной акустической среды необходимо рассматривать и многослойную звукоизоляцию ограждающих конструкций. Прекрасно впишутся в эту многослойную систему акустические панели для стеновой облицовки (рисунок 5), в конструкции которых используется мат из звукопоглощающего материала, акустическая подложка, наполнитель из минеральной ваты и перфорированный алюминий.

В последние годы в строительстве аэропортов также стали актуальны инновационные мембранные материалы, обладающие высокими показателями звукопоглощения и при этом низкой толщиной (3-4мм). Теперь толщина конструкции – не всегда залог грамотной звукоизоляции.

В качестве примера использования современных эффективных звуко- и вибропоглощающих материалов при строительстве аэровокзалов можно назвать введенный недавно в эксплуатацию новый терминал аэропорта Храброво. При постройке терминала использовалось напыляемое покрытие Sonaspray K13 (рисунок 6) и акустические подвесные панели Саундлюкс Баффл (рисунок 7).

Акустическое огнезащитное напыляемое покрытие, предназначенное для коррекции акустики, снижения шума и гулкости в помещениях различного рода и назначения. Наносится на любые поверхности без ограничений к их форме и высоте. Не требует предварительной подготовки поверхности перед нанесением. Основной состав покрытия: Целлюлозное волокно, клеевое связующее, антиприрены, антисептики.

Нельзя не отметить, что применение акустических подвесных панелей Саундлюкс Баффл обусловлено следующими их свойст-

вами: возможность монтажа в помещениях со сложными конструкциями потолка и смешанной высоты, авантажный внешний вид, необходимый класс пожароопасности, простой по технологии монтаж – две точки крепления, возможность покрытия огнестойкими красками, кроме того (при необходимости) различного цвета.

Состав таких панелей: минеральная плита из базальтового волокна, акустическая ткань и каркас из оцинкованной стали.

Простота и универсальность данных материалов позволяет эффективно применять

Рисунок 5 – Акустические панели для стеновой облицовки

Рисунок 6 – Работы по выполнению напыляемого покрытия Sonaspray K13

Рисунок 7 – Подвесные панели Саундлюкс Баффл

их в помещениях с высоким уровнем шума в любой точке мира без ограничений на климатические условия. Достоинством данных материалов является относительно низкая стоимость, простой монтаж и установка. Так же несомненный плюс использования таких решений – это возможность использовать нестандартные дизайнерские решения, органично вписывая акустические элементы и покрытия в существующий интерьер.

Таким образом, учитывая негативное влияние авиационного и структурного шума на организм человека в принципе, шумоизоляция здания аэропорта является одним из важнейших аспектов строительства зданий такого типа.

Заключение

В настоящий момент рынок строительных звукоизоляционных материалов предлагает множество эффективных решений проблемы шумоизоляции. Например: акустические стеновые и потолочные панели с применением мембранных материалов, шумозащитные окна с вентилируемыми вставками, многослойные «плавающие полы», шумоизграждающие экраны, вентилируемые фасады, вибропоглощающие подвесные потолки. Использование этих инновационных решений позволит создать внутри здания аэропорта комфортную акустическую среду не только для пассажиров, но и для персонала. Кроме того, все эти решения привлекательны как по отдельности, так и в совокупности, они обладают не только полезными акустическими

свойствами, но и определенной архитектурной эстетикой.

СПИСОК ЛИТЕРАТУРЫ

1. СНиП 23-03-2003. Защита от шума: нормативно-технический материал. – М., 2003. – 30 с.
2. Министерство гражданской авиации пособие по проектированию аэропортов ГА (ВНТП 1-85) МГА. Часть IX. Защита от авиационного шума акустическое благоустройство зданий аэропортов гражданской авиации. – М., 1988. – 92 с.
3. Иванов, Н. И. Инженерная акустика. Теория и практика борьбы с шумом / Н. И. Иванов. – М. : Логос, 2008. – 424 с.
4. Бобылев, В. Н. Резервы повышения звукоизоляции однослойных ограждающих конструкций / В. Н. Бобылев [и др.]. – Н. Новгород : ННГАСУ, 2014. – 67 с.
5. Ананьев, М. Ю. Расчеты звукоизоляции ограждающими конструкциями зданий / М. Ю. Ананьев, Д. В. Кремлева; [науч. ред. И. Н. Мальцева]. – Урал. федер. ун-т. – Екатеринбург : Изд-во Урал. ун-та, 2014. – 92 с.
6. Кочкин, А. А. О звукоизоляции ограждающих конструкций с вибропоглощением А. А. Кочкин // Строительные материалы, оборудование технологии XXI века. – 2006. – №10. – С 20-21.

Осипова Марина Александровна – к.г.-м.н., доцент кафедры «Основания, фундаменты, инженерная геология и геодезия» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: stf-ofigig@mail.ru;

Королев Максим Юрьевич – студент группы 8С(з)-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: air.korolev.999@gmail.com.

ДЕРЕВЯННЫЕ МОСТЫ. МОСТОСТРОЕНИЕ С ИСПОЛЬЗОВАНИЕМ ДРЕВЕСИНЫ В ПРОШЛОМ И СЕЙЧАС

М. А. Подъяпольская, И. О. Вербицкий, Е. В. Вербицкая

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассмотрены способы применения древесины в качестве материала для строительства мостов, история развития деревянного мостостроения, а также содержатся рассуждения относительно целесообразности использования данного материала в современном строительстве. Древесина в качестве строительного материала довольно широко используется при возведении зданий и сооружений, вследствие наличия ряда положительных свойств, к которым относятся достаточно высокая прочность, легкость, сравнительная простота обработки. При благоприятных условиях эксплуатации деревянные конструкции способны прослужить достаточно долгое время. Наряду с преимуществами древесины перед другими материалами, существуют также и существенные недостатки, осложняющие работу и требующие особого внимания. В эпоху индустриализации на первый план в строительстве вышли такие материалы как железо и бетон, а дерево оказалось практически забыто и применялось лишь в качестве декоративного элемента. В настоящее же время человечество стало искать помимо способов упрощения технологических процессов способы минимизировать пагубное воздействие использования тех или иных материалов на окружающую среду. Древесина представляет собой довольно экологичный материал, поэтому сегодня снова набирает популярность. Современные материалы из древесины, такие как клееный массив и брус, модифицированная древесина используются в многоэтажном деревянном домостроении и в деревянном мостостроении.

Ключевые слова: дерево, мост, деревянное мостостроение, дерево в строительстве, древесина как строительный материал, деревянные мосты.

Дерево на протяжение тысячелетий является одним из популярных строительных материалов для людей. Металл и железобетон, начиная с 50-х гг. прошлого века, начали было заменять древесину, занимая ведущие роли в строительных конструкциях. Но с начала XXI в. получили нарастающий отпор – за 13 лет доля деревянного домостроения в России выросла с 10% до 40%.

Однако, что же следует понимать под конструкционной (инженерной) древесиной? В нашем случае мы сосредоточимся на тех областях, где древесина несет нагрузку в масштабе мостовой конструкции.

Деревянные мосты представляют собой искусственные сооружения, основные несущие элементы которых частично или полностью выполнены из деревянных элементов. Дерево – материал, который может быть быстро заготовлен и обработан, так как распространен повсеместно [3]. Малый вес и легкость обработки, а также возможность изготовления конструкций без сложного оборудования – все это способствует применению древесины для постройки мостов. По прочности дерево уступает таким материалам, как железо и бетон, однако вполне может использоваться для постройки сложных конст-

рукций. Древесина характеризуется множеством пороков, одними из которых являются опасность загнивания и неоднородность строения. Древесина естественным образом разлагается под действием микроорганизмов и разрушающих факторов внешней среды, существенная часть строений была разрушена огнем. По данным причинам большинство деревянных мостов прошлого не дожили до современности и сохранились лишь как историческое достояние в картинах и чертежах. Тем не менее, располагая документами и материальными остатками можно восстановить тонкости возведения и поддержания срока службы деревянных мостов.

Первое упоминание о наведении мостов возникло в русских летописях к концу X века. Основным строительным материалом являлась сосна благодаря прямизне ствола, отличительными механическими свойствами, устойчивости к загниванию, широкой распространенности. Строители такого рода сооружений носили особое название «мостники» [3]. Первые мосты представляли собой переброшенные с одного берега на другой бревна, на больших реках использовали несколько связанных между собой плотов с бревенчатым настилом. Такого рода балочные мос-

ДЕРЕВЯННЫЕ МОСТЫ. МОСТОСТРОЕНИЕ С ИСПОЛЬЗОВАНИЕМ ДРЕВЕСИНЫ В ПРОШЛОМ И СЕЙЧАС

ты (рисунок 1) впоследствии стали прототипом для усовершенствования конструкции.

Технические характеристики, такие как грузоподъемность, определяются способностью материала выдерживать критически важные нагрузки. Деревянные балки хорошо противостоят данным нагрузкам, и пролет такого моста может соединить две опоры на расстоянии в десяток метров. В качестве опор используются подготовленные площадки, если же преграда широка, то устанавливаются дополнительные промежуточные опоры. До изобретения таких материалов, как цемент и бетон, материалами для опор служили камень и дерево. Стенки для опор могли изготавливаться из древесины как срубы с засыпкой пустот камнями. Такого рода сооружение было способно противостоять многим природным явлениям.

Простой деревянный балочный мост невозможно масштабировать до больших размеров. Во-первых, в природе просто не находится бревен слишком большой длины и диаметра, во-вторых, собственный вес конструкции будет значительно выше ее несущей способности. В конце концов, конструкция разрушится под собственным весом даже в отсутствии нагрузки. Требуемую прочность можно обеспечить, заменив деревянную конструкцию коробкой или фермой. Такой вариант позволил бы строить деревянные мосты достаточно больших размеров без потери прочности [2].

О предполагаемых размерах такого сооружения можно судить исходя из известного проекта Ивана Петровича Кулибина, представляющий собой деревянный мост через Неву (рисунок 2). Проект был представлен ученым Академии наук несколько раз, но так и не нашел одобрения со стороны ученых, и остался нереализованным.

Деревянные мосты лишены оболочки, которая скрывала бы несущую конструкцию, поэтому архитектурная выразительность достигается через особые конструктивные решения, различными приемами обработки дерева. Одним из примеров достигнутой архитектурной ценности является мост через реку Кемь в Вытегорском районе Вологодской области (рисунок 3). Одна из его особенностей – бревенчатая треугольная ферма.

Деревянные мосты на Руси стали предшественниками более современных сооружений из стали и бетона. Несмотря на усовершенствование технологии постройки, народные мосты все еще представляют собой пример устойчивости архитектурной формы, отработанной поколениями мастеров.

В настоящее время древесина редко рассматривается в качестве материала для строительства мостов. Наряду со своими

Рисунок 1 – Консольно – балочный мост с арочным пролетом на р. Сие Архангельской обл. (снимок 1920 г. Фототека ГНИМА им. Щусева)

Рисунок 2 – Предполагаемый вид моста по проекту Кулибина

Рисунок 3 – Ряжевой мост с треугольной формой на р. Кемь (Вологодская область)

достоинствами материал имеет существенные недостатки. В связи с подверженностью гниению деревянные мосты в условиях переменной влажности подгнивают уже через 5-7 лет.

Зависимость сопротивления усилиями от их распределения относительно волокон дерева затрудняет устройство сопряжения элементов конструкции. Сокращение размеров при усушке приводит к обмятию врубок и расстройству соединений. В свою очередь несовершенство соединений требует тщательного наблюдения при эксплуатации и как следствие больших затрат на содержание и ремонт. Древесина также пожароопасный материал. Подверженность гниению у древесины является не естественным процессом старения, а болезнью, вызванную грибками.

При эксплуатации деревянных мостов в условиях, исключающих жизнедеятельность грибков, древесина сохраняет свои качества долгое время. К химическим средствам защиты древесины относится антисептирование веществами, убивающими грибки. Антисептирование позволяет увеличить срок службы, однако сопровождается некоторыми трудностями. Наиболее устойчивыми являются масляные антисептики, но они плохо проникают в древесину и достаточно дорого. Помимо этого, глубокая пропитка древесины осуществляется в автоклавах под давлением, данный способ обработки неудобен для длинных элементов мостов [1].

Современные мостовые конструкции отличаются простотой изготовления, применением местных ресурсов, грузоподъемностью и долговечностью железобетонных мостов, способностью перекрывать равные с ними пролеты при небольшой строительной высоте; более низкой стоимостью по отношению к аналогам на 35-40% [1].

На практике деревянные мосты строятся достаточно редко и применяются лишь как временные сооружения. Основной причиной такой низкой популярности являются недолговечность, необходимость частого ремонта и постоянного контроля. Полный процесс изго-

тования деревянных конструкций, включающий в себя химическую обработку, должен осуществляться на специальных заводах, что связано с большими затратами и, как следствие, увеличение стоимости деревянных мостов.

Однако дерево подходит для изготовления нетиповых единичных сооружений, где делается акцент на архитектурную ценность и внешний вид. Мост из современных материалов, покрытый защитными составами, является хорошим решением для мостов с небольшими пролетами и низкой проходимостью, в таком случае сооружение может прослужить до ста лет. Такой мост отлично впишется в окружающую среду, особенно в «старую» часть города и будет играть роль функционального ландшафта.

СПИСОК ЛИТЕРАТУРЫ

1. Владимирский, С. Р. Современные методы проектирования мостов / С. Р. Владимирский. – СПб. : Папирус, 1998. – 493 с.
2. Уткин, В. А. Пролетные строения из клееной древесины / В. А. Уткин // Теоретические исследования свойств многослойной деревоплиты из перекрестных досок. Проблемы оптимального проектирования сооружений: доклады I Всероссийской конф., 2008. – С. 404-412.
3. Деревянный мост [Электронный ресурс]: Википедия. Свободная энциклопедия. – URL: https://ru.wikipedia.org/wiki/деревянный_мост (дата обращения 25.02.22).

Подъяпольская Мария Александровна – студент группы СУЗ-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: mariapodyapolskaya@mail.ru;

Вербицкий Иван Олегович – старший преподаватель кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: vaneK_007-89@list.ru;

Вербицкая Елена Васильевна – старший преподаватель кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: alenapantushina@mail.ru.

О ПРИЧИНАХ ОБРУШЕНИЯ АНГАРА ИЗ СТАЛЬНЫХ ХОЛОДНОГНУТЫХ АРОК

Т. И. Саурина, И. В. Харламов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье проанализированы основные причины обрушения ангара. Приведены рекомендации по предотвращению возможных обрушений зданий подобной конструктивной системы

Ключевые слова: Металлические конструкции, холодногнутые тонкостенные арки, конструктивные решения узловых соединений.

Обследуемое здание расположено в Тальменском районе Алтайского края. Климат района резко континентальный с холодной продолжительной зимой и коротким теплым летом. Среднегодовая температура воздуха составляет $+2,4^{\circ}\text{C}$, самого тёплого месяца июля $+18,8^{\circ}\text{C}$, самого холодного месяца января $-19,5^{\circ}\text{C}$. Минимальная температура -53°C , максимальная $+37^{\circ}\text{C}$. Среднегодовое количество осадков 360 мм. Преобладающее направление ветров южное. Сейсмичность площадки – 6 баллов.

Арочное покрытие бескаркасное, выполнено из стальных арочных профилей шириной 0,65 метров и высотой 236 миллиметров, соединенных друг с другом с помощью одиночного фальца. Профиль выполнен по ТУ 24.33.11-002-82913322-2017. По результатам испытаний стали арочного профиля, предел текучести образцов составил 280-375 МПа

В уровне цоколя арочное покрытие крепится к горизонтальному стальному обвязочному поясу из горячекатаного уголка 125×8 с помощью болтов М10 и самосверлящих винтов диаметром 5,5 мм. Стык каждого второго профиля усилен односторонней накладкой из листового проката сечением $5 \times 50 \times 240$ мм. Стальной обвязочный пояс (расположен на высоте 1,0-1,1 м от уровня земли) с помощью ручной дуговой сварки крепится угловыми сварными швами к стальным стойкам из трубы 108×4 , замоноличенных в фундаменты.

Несущими конструкциями торцов здания являются стальные стойки фахверка из профильной трубы 100×4 и 80×4 , расположенные с шагом 3,0 м, и прогоны из трубы 40×3 с шагом 1,5 м. Ограждающие конструкции торцов здания выполнены из стального профилированного настила.

В январе 2022 года произошло обрушение здания (рисунок 1). Обрушение произошло с односторонним отклонением арочного покрытия, что говорит о начале обрушения в

месте наибольшего бокового перемещения вызванного несимметричной снеговой нагрузкой (рисунок 2).

В ходе обследования обнаружены следующие дефекты и повреждения:

- потеря прочности арочного покрытия;
- отрыв арочного профиля от горизонтального пояса;
- разрушение стыкового сварного шва обвязочного пояса;
- разрушение сварного шва, прикрепляющего пояс к стойке;
- потеря прочности обвязочного пояса;
- потеря прочности стоек торцевого фахверка.

Характер обнаруженных повреждений в арочном покрытии свидетельствует о том, что снеговая нагрузка в момент обрушения была распределена неравномерно по поперечному сечению покрытия (несимметричная эпюра загружения) [1]. Анализ принятого конструктивного решения здания выявил значительные отклонения от требований СТО 97217441-002-2017 [2].

Хорошо известно [3], что в конструкциях арочного типа возникает распорное усилие, которое должно восприниматься или затяжками, или фундаментом специальной конструкции. СТО [2] рекомендует устраивать фундамент ленточным. К ленточному фундаменту непрерывно крепят обвязочный уголок, располагающийся под углом к верхней горизонтальной плоскости фундамента. Наклонное расположение уголка не создает угрозы изгиба (перелома) арки в месте крепления к направляющему уголку. Для восприятия распорных усилий в уровне крепления обвязочного уголка необходимы затяжки.

После монтажа и надежного соединения арочной конструкции с обвязочным уголком должно быть выполнено обетонирование этого узла, что обеспечит надежную антакоррозионную защиту и предотвратит самопроизвольное раскручивание болтовых соедине-

Рисунок 1 – Общий вид здания после обрушения

Рисунок 2 – При обрушении арочное покрытие получило одностороннее боковое перемещение

Рисунок 3 – Обвязочный уголок приварен угловыми сварными швами к стальным стойкам из трубы 108 × 4

Рисунок 4 – Узел крепления арки к опорным уголкам

Рисунок 5 – Разрушение обвязочного уголка и сварного шва, прикрепляющего уголок к стойкам

ний, что особенно важно для самосверлящих винтов. Описанное [2] конструктивное решение позволяет получить расчетную схему однопролетной арки с шарнирно неподвижными опорами. Все вертикальные нагрузки с арки передаются на обвязочные уголки, непрерывно опертые на фундамент, а, с них, непосредственно на фундамент. При таком решении уголки не работают на изгиб от вертикальных внутренних усилий. Горизонтальные внутренние усилия в узле сопряжения арки с фундаментом будут восприняты затяжками.

Действительное исполнение опирания арки на фундамент выполнено следующим образом (рисунки 3, 4).

В принятом конструктивном решении обвязочный уголок работает как многопролетная неразрезная конструкция. Вертикальные усилия передаются по цепочке арка-болты-обвязочный уголок. Горизонтальные усилия передаются по такой же цепочке, но только болты работают не на срез, а на растяжение. Обвязочный уголок испытывает косой изгиб.

В результате уголок получил прогибы в вертикальной и горизонтальной плоскости (рисунок 5). Сварной угловой шов, прикрепляющий обвязочный уголок к трубчатым стойкам разрушился из-за среза.

Стойки из труб 108 × 4 из-за отсутствия затяжек имеют консольную расчетную схему. Они вынуждены воспринимать вертикальные и горизонтальные усилия, передаваемые обвязочным уголком. В результате действия несимметричной снеговой нагрузки стойки получили изгиб, что очень хорошо видно на рисунке 3. Именно эти деформации и привели к обрушению здания.

Сопряжение арочного покрытия из оцинкованной стали с неокрашенным металлом обвязочного уголка и прижимных пластин

Рисунок 6 – Контакт оцинкованного металла с черным неокрашенным металлом создает гальваническую пару

создает благоприятные условия для возникновения электрохимической коррозии, а это будет способствовать быстрому развитию электрохимической коррозии (рисунок 6).

Анализируя результаты обследования, следует сделать вывод, что разрушение здания произошло по совокупности следующих причин:

- отсутствие затяжек в основании арочного покрытия и распор, возникающий в основании арочного покрытия, пришлось воспринимать обвязочному поясу и стойкам;
- отсутствие ленточного фундамента в основании арочного покрытия коренным образом изменило расчетную схему обвязочного пояса.

Несущую способность арочного покрытия резко ухудшило большое колебание толщин металла оцинкованного профиля. Проектная толщина металла должна быть 1,2 мм, а средняя замеренная толщина составила 1,16 мм.

Поперечное сечение обвязочного пояса оказалось недостаточным для восприятия расчетных усилий. Превышение напряжений в поясе достигает 226% от допустимого значения.

В результате отсутствия затяжек и ростверка в основании арочного покрытия возникли большие горизонтальные усилия и деформации в обвязочном поясе, что увеличило внутренние усилия в арочном покрытии.

Несущей способности арочного покрытия, при существующей толщине стали, по результатам проверочных расчетов оказалось недостаточно для восприятия расчетных усилий. Дефицит несущей способности арок составил 22%. Дефицит несущей способности стоек составил 163%.

Расчет арочного покрытия показал, что даже при проектных характеристиках стали (толщина 1,2 мм и расчетное сопротивление) превышение напряжений составляет 13%. Следовательно, толщина металла арочного профиля в проектной документации принята недостаточной для восприятия расчетных нагрузок.

СПИСОК ЛИТЕРАТУРЫ

1. СП 20.13330.2016. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* / Электронный фонд правовых и нормативно-технических документов [электронный ресурс]. – URL: <https://docs.cntd.ru/document/456044318> (дата обращения: 2.03.2022).

2. СТО 97217441-002-2017. Конструкции стальные из тонкостенных холодногнутых профилей повышенной несущей способности для бескаркасных арочных однопролетных зданий. Проектирование, изготовление, монтаж. М. : ЦИИ «Проектстройконструкции», 2017. – 64 с.

3. Дарков, А. В. Строительная механика: учебник для строит. спец. вузов / А. В. Дарков, Н. Н. Шапошников. – 8-е изд., перераб. и доп. – М. : Высшая школа, 1986. – 607 с.

Харламов Иван Викентьевич – к.т.н., заведующий кафедрой «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kharlamov-1948@mail.ru;

Саурина Татьяна Ивановна – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: kharlamovat@mail.ru.

ИССЛЕДОВАНИЕ СОБЛЮДЕНИЯ ТЕХНОЛОГИИ МОНТАЖА НЕСУЩИХ КОНСТРУКЦИЙ ПРИ ВОЗВЕДЕНИИ КРУПНОПАНЕЛЬНОГО ЗДАНИЯ

А. А. Соболев, Д. А. Реутов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье затрагивается проблема соблюдения технологии монтажа сборных железобетонных конструкций многоэтажных крупнопанельных зданий, исследуются основные недостатки производства строительно-монтажных работ, оценивается степень существенности допущенных дефектов и необходимость их устранения.

Ключевые слова: крупнопанельные здания, технология производства работ, монтаж конструкций, деформации, осадка, дефекты монтажа.

В 2021 году в рамках хозяйственного договора между АлтГТУ им. И. И. Ползунова и ООО «СЗ ИСК «Союз» на выполнение научно-исследовательской работы, была поставлена задача определения соответствия производства строительно-монтажных работ действующим строительным нормам.

Причиной необходимости данного исследования послужил негативный опыт возведения аналогичного объекта, построенного ранее, на котором наблюдалось некоторое отклонение фактических высотных отметок этажей и лифтовых шахт от проектных.

В качестве объекта исследования был выбран 17-этажный крупнопанельный много квартирный жилой дом по ул. Власихинская дом 65а в г. Барнауле (корпус 2, секция 5). Наружные и внутренние стеновые панели сборные железобетонные толщиной 150 мм. Междуэтажные перекрытия из сборных железобетонных плит толщиной 160 мм. Лестницы из сборных железобетонных лестничных маршей и площадок. Лифтовые и вентиляционные шахты сборные железобетонные.

Наблюдение производилось с января по май 2021 года в период возведения стен и перекрытий с первого до последнего 17-го этажа. Исследование включало в себя следующие виды работ:

- обследование фундамента и ростверка лифтовых шахт;
- контроль качества монтажа лифтовых шахт (обмеры габаритов лифтовых шахт, толщины монтажных швов);
- наблюдение за осадками лифтовых шахт относительно междуэтажных перекрытий по всем этажам с периодическим снятием показаний и занесением в журнал наблюдений;
- контроль монтажа стеновых панелей и плит перекрытия (выявление отклонений стен

от вертикали, плит перекрытий от горизонтали, высоты этажей, обмеры толщины растворных швов);

- поэтажные обмеры высот помещений;
- изучение проектной документации, определение соответствия фактически выполненных работ проектной документации;
- определение соответствия фактически выполненных работ действующим строительным нормам и правилам.

В результате обследования установлено следующее:

1. Фундамент лифтовых шахт выполнен из сборных бетонных блоков, установленных на монолитный железобетонный ростверк. Фактическое конструктивное исполнение фундаментов под лифтовые шахты соответствует проектному решению.

2. В здании жилого дома используются два типа лифтовых шахт:

- 1) для пассажирского лифта (малые лифтовые шахты размером в плане $1,9 \times 1,98$ м, толщиной стенок 100 мм);
- 2) для грузопассажирского лифта (большие лифтовые шахты, размером в плане $2,02 \times 3,01$ м, толщиной стенок 120 мм). Обмерами установлено соответствие фактических размеров лифтовых шахт проектным размерам.

Лифтовые шахты устанавливаются на металлические пластины размером 60×130 мм, толщиной 7 мм, размещенные по четырем углам и вблизи дверного проема (6 опорных точек).

Согласно проекта, необходимо «лифтовые шахты устанавливать на слой ц. п. раствора марки М 200 или на металлические пластины». Величина горизонтальных монтажных швов между шахтами колеблется в диапазоне от 26 до 60 мм (рисунок 1).

ИССЛЕДОВАНИЕ СОБЛЮДЕНИЯ ТЕХНОЛОГИИ МОНТАЖА НЕСУЩИХ КОНСТРУКЦИЙ ПРИ ВОЗВЕДЕНИИ КРУПНОПАНЕЛЬНОГО ЗДАНИЯ

Рисунок 1 – 12 этаж. Толщина шва между лифтовыми шахтами по высоте составляет до 60 мм

Рисунок 4 – 2 этаж. Толщина шва до 32 мм

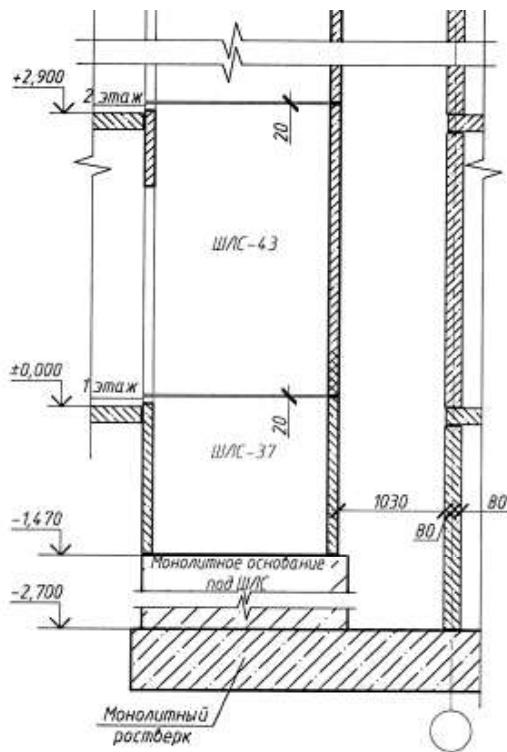


Рисунок 2 – Разрез лифтовой шахты 1-го этажа согласно проекта

Рисунок 3 – Неравномерное заполнение монтажного шва цементно-песчаным раствором (11 этаж). Отсутствие опорных пластин вблизи проема

Согласно проекта, величина монтажных швов между лифтовыми шахтами должна составлять 20 мм (рисунок 2). Металлические пластины вблизи дверных проемов лифтовых шахт установлены не везде (рисунок 3).

Имеет место смещение лифтовых шахт 16 и 17 этажей друг относительно друга на величину до 3,5 мм. Согласно СП 70.13330.2012 «Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87» [1] п. 5.18.3 (таблица 5.12) отклонение от соосности вертикальных конструкций не должно превышать 15 мм. Данное отклонение лежит в допустимых пределах

3. Швы между лифтовыми шахтами заделываются цементно-песчаным раствором, что соответствует проектной документации.

4. Наблюдение за осадками лифтовых шахт относительно плит перекрытия за текущий период не показала заметных осадок лифтовых шахт относительно междуэтажных перекрытий и составило в период с 21.02.2021 по 22.05.2021 г. (за 3 месяца) диапазон от 1 до 7 мм. На отдельных этажах высота дверного проема увеличилась на 8 мм (8 этаж), что может свидетельствовать о естественных осадках самого здания.

5. Величины швов между плитами перекрытия и стеновыми панелями находится в диапазоне от 5 до 42 мм, что не соответствует требованию п. 6.4.4 СП 70.13330.2012 «Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87» (с Изменениями № 1, 3) [1] согласно которому «плиты перекрытий необходимо укладывать на слой раствора толщиной не более 20 мм» (рисунок 4). В среднем толщина швов по блок-секции составляет 28 мм.

6. Обнаружена диагональная трещина в плите междуэтажного перекрытия величиной

Рисунок 5 – Общий вид дворового и торцевого фасадов корпуса 2, блок-секции 5 жилого дома по ул. Власихинская, 65а в г. Барнауле на 22.05.2021 г. (на момент возведения)

1 мм на всю ширину плиты над 10 этажом. Наиболее вероятной причиной образования трещины является ее неравномерное опирание по периметру стен.

7. Высоты помещений исследуемой блок-секции лежат в диапазоне от 2743 мм до 2763 мм. Проектная высота типового этажа (от пола до потолка) составляет 2,74 м (2,9-0,16 м толщины плиты перекрытия). Таким образом, превышение высот помещений находится в диапазоне от 3 до 23 мм. Такие данные обусловлены превышением толщины швов между стеновыми панелями и плитами перекрытия и являются отклонением от проекта, но не являются дефектом строительной продукции. В ходе эксплуатации здания и естественной осадки конструкции здания от собственного веса (уплотнение монтажных швов от веса вышележащих конструкций), высоты помещений могут немного уменьшиться, что не ухудшает качество и не влияет на использование.

Таким образом, обследованием блок-секции 5 корпуса 2 обнаружены следующие дефекты монтажа:

- превышение толщины горизонтальных швов лифтовых шахт на величину до 62 мм при требуемом по проекту 20 мм;
- опорные металлические пластины лифтовых шахт местами отсутствуют (вблизи дверных проемов);
- некоторые пластины не сварены между собой, как требуется по проекту;

- смещение лифтовых шахт друг относительно друга в горизонтальной плоскости на величину до 3,5 мм;

- толщины монтажных растворных швов между стеновыми панелями и плитами перекрытия на отдельных этажах и участках составляют до 42 мм (средняя толщина 28 мм) и превышает требуемую по СП 70.13330.2012 [1] нормативную толщину 20 мм;

- трещина в плите междуэтажного перекрытия величиной 1 мм над 10 этажом.

Обнаруженные дефекты монтажа железобетонных конструкций стен, перекрытий и лифтовых шахт по своему характеру относятся к малозначительным неустойчивым дефектам, которые существенно не влияют на использование продукции по назначению (рисунок 5).

Согласно ГОСТ 15467-79 [2] малозначительный дефект существенно не влияет на использование продукции и её долговечность. Его устранение не требуется, т.к. это технически невозможно и экономически нецелесообразно.

Отсутствие осадочных деформаций лифтовых шахт свидетельствует о достаточной несущей способности устройства горизонтальных швов между лифтовыми шахтами, несмотря на то что она превышает нормативные пределы.

СПИСОК ЛИТЕРАТУРЫ

1. СП 70.13330.2012. Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87. – Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/1200097510> (дата обращения 18.02.2022).

2. ГОСТ 15467-79. Управление качеством продукции. Основные понятия. Термины и определения. – Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/1200001719> (дата обращения 18.02.2022).

Соболев Андрей Андреевич – к.т.н., доцент кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: asoblv@mail.ru;

Реутов Данил Андреевич – студент группы 8Соим-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: danreu@mail.ru.

АНАЛИЗ СРЕДСТВ АВТОМАТИЗАЦИИ РАСЧЕТА ОБЪЕМОВ РАБОТ ДЛЯ СМЕТНЫХ РАСЧЕТОВ С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ НА БАЗЕ REVIT-5D СМЕТА

В. В. Соколова, Д. Д. Шершнева

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул.

В статье рассматривается задание объемов в Revit с помощью параметров и процесс передачи данной информации в 5D Смета. Выявлены особенности при работе с параметрами при подсчете объемов. Рассмотрены требования, предъявляемые к элементам цифровой информационной модели, предъявляемые на этапе проектирования.

Ключевые слова: Revit, параметры, семейства, типоразмеры, объем работ, цифровая информационная модель, сметная стоимость.

Для определения сметной стоимости строительства ключевым является задание объема строительных работ и используемых материалов. Данный процесс является достаточно трудозатратным для сметчика, поскольку, зачастую подсчет недостающих объемов приходится выполнять вручную.

Использование информационной модели упрощает процесс определения сметной стоимости строительства и ускоряет работу сметчика благодаря автоматизированному подсчету объемов.

Цифровая информационная модель используется на различных этапах жизненного цикла, и каждому этапу соответствуют определенный набор требований. Определение сметной стоимости осуществляется после этапа проектирования, когда уже готовы архитектурные, технические и технологические проектные решения. Данные требования изложены в СП 333.1325800.2020 «Правила формирования информационной модели объектов на различных стадиях жизненного цикла» [1].

Помимо этого при использовании информационной модели для определения сметной стоимости наряду с требованиями по созданию семейств [2] нужно предусмотреть дополнительные требования. В настоящее время эти требования начали разрабатывать создатели программного обеспечения модулей для интеграции средств информационного моделирования и сметных программ [3].

Рассмотрим средства для автоматического определения объемов работ с использованием информационного моделирования на базе Revit-5D смета.

Передача информации из Revit в 5D смета происходит следующим образом. В информационной модели осуществляется выбор конструктивных элементов, для которых будет определяться сметная стоимость. Выбор можно выполнить инструментами Revit или воспользоваться средствами плагина 5D Смета. Затем осуществляется выгрузка свойств конструктивных элементов из Autodesk Revit в модуль 5D Смета «Привязка сметных норм».

Схема взаимодействия Revit и 5D смета представлена на рисунке 1. Для выгрузки информации из Revit можно воспользоваться одним из способов, представленных на рисунке 2.

Если модуль привязки сметных норм и Revit установлены на одном компьютере, то модуль может быть запущен автоматически. При этом данные информационной модели сразу загружаются в проект. Если модуль и Revit установлены на разных компьютерах, то необходимо выгрузить данные информационной модели в файл формата XML, который впоследствии передается на компьютер с соответствующим модулем. Назначение сметных норм в отдельном модуле на основании информации об информационной модели, выгруженной из Revit, обеспечивает разделение рабочих мест проектировщика и сметчика. Сметчик работает в привычной для себя среде, но использует необходимую для составления смет информацию о проекте, выгруженную из цифровой модели, в том числе и данные об объемах работ.

Результаты работы модуля возвращаются назад в Revit.

Рисунок 1 – Схема взаимодействия Revit и 5D смета

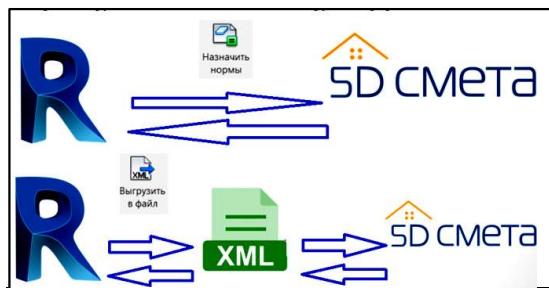


Рисунок 2 – Способы выгрузки информации из Revit в 5D смета

После того, как осуществилась выгрузка элементов из Revit в 5D Смету, можно приступить к назначению норм.

В 5D смета для всех норм нормативной базы определены имена параметров, задающих объем работы.

Для каждого элемента, выгруженного в 5D Смету, передается весь набор параметров, которые были ему назначены в Revit. Набор обязательно должен включать параметры, обеспечивающие автоматическое вычисление объемов работ, необходимых для привязки сметных норм к элементам модели. Такими параметрами являются: длина, площадь и объем. Именно эти параметры будут использоваться в качестве исходных данных для вычисления объемов работ. Также по ним можно выполнить поиск сметных норм, которые включают в себя ограничения по площади, объему и высоте.

Элементы модели Revit содержат достаточно большое количество информации, это напрямую зависит от степени проработки цифровой модели и чем больше содержится в ней информации, тем больше степень автоматизации при составлении смет.

Каждый элемент модели должен быть однозначно идентифицирован, для этого данные о назначении элемента, описания

свойств и размеры указываются либо в наименовании типоразмера экземпляра семейства, либо в параметрах семейства. Полнота проработки элемента BIM-модели определяется с помощью уровня проработки, который задает минимальный объем геометрической, пространственной, количественной, а также любой атрибутивной информации, необходимой для решения задач моделирования на конкретном этапе жизненного цикла объекта строительства с учетом требований к БИМ-модели для определения сметной стоимости [3].

При создании модели в Revit автоматически вычисляется объем элементов модели. Так, например, для элементов несущих конструкций модели в окне свойств указываются следующие параметры: длина и объем, а для стен и перекрытий дополнительно считается площадь. Для архитектурных элементов, таких как двери и окна указываются размеры. Также каждому элементу модели должен быть присвоен соответствующий материал. В описании материала должны быть указаны: наименование материала, класс, марки. Осуществить данное требование можно путем ввода дополнительных параметров.

Набор параметров в создаваемом элементе информационной модели определяется используемым семейством.

При этом возможны 2 варианта:

- элемент модели содержит параметры, определяющие объемы работ для норм, привязываемых к элементу;

- элемент содержит параметры, на основании которых может быть определен требуемый объем.

Во втором случае в Revit можно создать семейство, содержащее нужный параметр.

При создании семейств в Revit указываются типоразмеры. То, какие параметры будут включены в типоразмеры, решает поль-

АНАЛИЗ СРЕДСТВ АВТОМАТИЗАЦИИ РАСЧЕТА ОБЪЕМОВ РАБОТ ДЛЯ СМЕТНЫХ РАСЧЕТОВ С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ НА БАЗЕ REVIT-5D СМЕТА

зователь, который создает семейство. В Revit существует достаточно большое количество параметров, которые можно добавить к элементу. Однако, для определения геометрических и количественных характеристик, потребуются следующие общие параметры: длина, площадь и объем. Для параметров этого типа в текстовом поле можно вводить формулы. После создания семейства их параметры будут отображаться в окне свойств. Например, семейство окон не содержит параметр Площадь, и его необходимо добавить.

Используя редактор семейств Revit, по команде «Создать параметр» нужно указать имя параметра, используемое в норме для задания объема, выбрать категорию, тип, группирование параметров, ввести формулу для его расчета. На рисунке 3 представлено окно Revit для задания свойств параметра.

После загрузки семейства в проект созданный параметр будет отображаться в свойствах типа.

Какие нужны параметры для определения сметной стоимости определяет сметчик, а проектировщик должен предоставить эти параметры при создании информационной модели. Поэтому, чтобы не возникло ситуаций, когда недостаточно параметров, не указан материал или непонятное наименование конструкции, сметчик должен четко выделить, какая конкретно информация по каждой конструкции ему необходима.

При назначении нормы элементу в модуле 5D Смета «Привязка сметных норм» необходимый параметр для подсчета объемов работы может выбираться автоматически, если среди параметров элементов присутствует параметр с именем параметра нормы, используемого для задания объема работы. В этом случае необходимо только проконтролировать, нужный ли параметр выбрала программа и, если возникла необходимость, выбрать другой. Возможно, что объем определяется параметром модели с другим именем или необходимо скорректировать значение параметра модели.

Для этих случаев и для случая отсутствия в списке параметров параметра, используемого для автоматического определения объема работы, 5D смета включает средства для привязки сметных норм с использованием настраиваемых формул расчета объемов работ. Все необходимые настройки можно выполнить с помощью команды «Коррекция нормы».

В случае несовпадения имени параметра в модели и в норме в 5D смета можно выполнить настройку соответствия параметров.

Соответствие параметров настраивается для каждой категории элементов модели.

Например, имеется многослойная стена со следующими слоями: штукатурный слой, кирпичная кладка, теплоизоляция, облицовка фасадным кирпичом. Соответственно для каждого слоя будет свой объем и соответствующая идентификация. Чтобы программа распознавала не только общий объем стены, но и объем отдельных слоев, необходимо установить следующие соответствие: параметру «объем» из 5D сметы будут соответствовать следующие параметры из Revit, представленные на рисунке 4.

При отсутствии в списке параметров элемента, задающего объем, его можно вычислить, используя имеющиеся параметры. Например, известны длина и ширина окна, но нет параметра, задающего площадь, его просто не определили на этапе создания семейства. В данном случае необходимо добавить расчетный параметр, который будет соответствовать параметру 5D сметы для определения площади. На рисунке 5 представлено окно 5D Смета для задания формулы вычисления площади окна как произведения параметров Высота и Ширина.

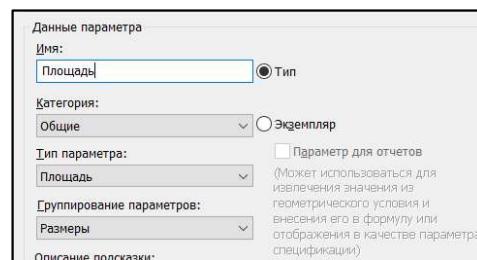


Рисунок 3 – Окно «Свойства параметра»

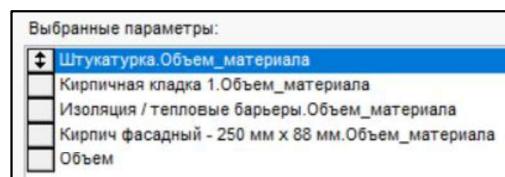


Рисунок 4 – Параметры из Revit

Соответствие параметров элементов	
Категория:	Окна
Параметр формул	Параметр элементов
Длина	Длина Высота
Масса	Масса
Мощность	Мощность
Объем	Объем
Площадь	{Высота} * {Ширина}

Рисунок 5 – Окно «Соответствие параметров элементов»

После подсчета объемов работ нужно назначить неучтеным ресурсам материалы по проекту и вычислить их объем. Материал элементу в Revit назначается автоматически в зависимости от типа конструкции и отображается в окне «Свойства типа», вкладка «Материалы и отделка». При необходимости конструктор может выполнить замену материала на материал, соответствующий проекту. Кроме того, он может добавить дополнительную информацию необходимую сметчику. У материала обязательно должно быть наименование, класс и марка, при необходимости можно также указать дополнительную информацию о производителе и физических характеристиках, таких как объем и плотность. Объем материалов вычисляется по его расходу. Однако, зачастую у многих материалов, может отсутствовать расход. В таком случае объем материала может быть вычислен по формуле на основе имеющихся параметров элемента.

В 5D Смета имеется возможность создания шаблонов типовых проектов. В них хранится вся информация о назначенных сметных нормах различным видам конструктивных элементов. В данном случае все пользовательские настройки, включая параметры и формулы, будут сохранены и впоследствии могут применяться в других проектах.

5D Смета обеспечивает также использование объемов из спецификаций. В программе имеется несколько вариантов работы с информацией из спецификаций проектов Revit:

- с помощью надстройки «Спецификации»;
- с помощью надстройки «Сметная информация».

Рассмотрим работу с помощью надстройки «Сметная информация», поскольку данный режим работы со спецификациями считается более технологичным по сравнению с работой с помощью надстройки «Спецификации» и рекомендуется разработчиками 5D Смета в качестве основного. Пользователем выбирается перечень спецификаций из проекта Revit, для конструктивных элементов которых требуется назначить сметные

нормы. После чего необходимые спецификации будут автоматически добавляться как отдельные секции в файлы в формате 5D XML и будут использоваться для обмена данными между надстройкой Revit «Сметная информация» и модулем назначения сметных норм. Спецификации, создаваемые в Revit и используемые в 5D Смета должны соответствовать требованиям, изложенным в [5].

5D смета значительно упрощает работу сметчика с помощью автоматического расчета объемов, автоматизированного выбора элементов и норм, создания шаблонов типовых проектов. Но для успешной работы сметчика информационные модели должны создаваться с учетом требований и рекомендаций, предъявляемых к информации для создания сметной документации.

СПИСОК ЛИТЕРАТУРЫ

1. СП 333.1325800.2020. Информационное моделирование в строительстве. Правила формирования информационной модели объектов на различных стадиях жизненного цикла: дата введения 2021-07-01. – Москва: Минстрой России, 2021. – 219 с.
2. CSD: официальный сайт компании CSD / Руководство по созданию семейств в Autodesk Revit: [сайт] – URL: <https://bimpf.csd.ru/upload/pdf/Guide%20to%20creating%20Autodesk%20Revit.pdf> (дата обращения: 26.02.2022)
3. CSD: официальный сайт компании CSD / Требования и рекомендации по подготовке BIM-моделей в Autodesk Revit для осмечивания в программе 5D Смета: [сайт] – URL: https://5dsmeta.ru/knowledge_base/ (дата обращения: 26.02.2022).
4. Autodesk: Официальный сайт Autodesk / Поддержка и обучение: [сайт]. – URL: <https://knowledge.autodesk.com/ru/support/revit?sort=score> (дата обращения 27.02.2022).
5. CSD: официальный сайт компании CSD / Программа Гектор: 5D Смета. Руководство пользователя: [сайт] – URL: https://csd.ru/upload/img/Spravka_5dsmeta.pdf (дата обращения: 28.02.2022).

Соколова Валентина Васильевна – к.т.н., доцент кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: vvsok@rambler.ru;

Шершнеева Диана Дмитриевна – студент ФГБОУ ВО АлтГТУ им. И. И. Ползунова; E-mail: sasori.0811@gmail.com.

ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ ПОЛИМЕРНЫХ СОСТАВОВ ПРИ РЕКОНСТРУКЦИИ ДЕРЕВЯННЫХ ЗДАНИЙ ИСТОРИКО-АРХИТЕКТУРНОЙ ЦЕННОСТИ

И. А. Спирин, Л. Н. Пантишина, Е. В. Вербицкая

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Статья посвящается возможности применения полимерных составов на основе эпоксидных смол для восстановления несущей способности поврежденных деревянных элементов несущих конструкций зданий историко-архитектурной ценности.

Ключевые слова: древесина, трещины, дефект, реставрация, балка, полимерный состав, эпоксидная смола, пластификатор, инъектирование, восстановление несущей способности.

Одним из основных дефектов деревянных конструкций являются трещины, возникающие в результате усушки материала при меняющемся влажностном режиме эксплуатации. В настоящее время применяют различные способы восстановления и усиления деревянных элементов несущих конструкций, базирующиеся в основном на выборочной замене поврежденных участков конструкций на цельную древесину или металлом, устройством накладок, протезов, усиление конструкций или элементов установкой добавочной конструктивной системы, без изменения работы усиливаемых конструкций. Такое решение не пригодно при реставрации зданий, имеющих историческую или архитектурную ценность, так как при переустройстве таких зданий должен быть сохранен исходный облик реконструируемого здания. Замена поврежденной деревянной конструкции на новую сопряжена с большими материальными затратами и сложными технологическими решениями. Мы предлагаем использовать при реставрации прием инъектирования трещин полимерными составами.

Современные высокопрочные полимерные материалы обладают хорошей проницаемостью, обеспечивают достаточную термо-, огне- и морозостойкость усиливаемых элементов, повышают их биостойкость.

Анализ литературных данных показал, что метод инъектирования растворами использовался только при ремонте каменных и бетонных конструкций, а для деревянных конструкций ранее не применялся. Предлагаемый метод ремонта нацелен на восстановления несущей способности деревянных балок, поврежденных в средней части и заключается в инъектировании в поврежденную часть элемента полимерной композиции на основе эпоксидно-диановой смолы.

ПОЛЗУНОВСКИЙ АЛЬМАНАХ № 1 2022

Отверженные эпоксидные смолы обладают высокими физико-механическими показателями. Введение пластификаторов в состав инъецируемой смеси существенно улучшает свойства полимеров. Пластификаторы уменьшают хрупкость, увеличивают гибкость, эластичность и относительное удлинение, а также повышают морозостойкость материала. Многими исследованиями было доказано, что введение малого количества пластификатора приводит к повышению механической прочности. Для придания лучшей текучести в состав смеси добавляют в малых количествах разбавитель, что способствует лучшему проникновению инъецируемой смеси в поры и трещины древесины.

В данной работе был предложен следующий состав полимерной композиции: эпоксидно-диановая смола – 100% (ЭД-20 ГОСТ 10587-84), разбавитель – 5% (Ацетон ГОСТ 2768-84), пластификатор – 15% (Дибутилфталат ГОСТ 8728-88) и отвердитель – 10% (Полиэтиленполиамин ТУ 2413-357-00203447-99). Эта полимерная смесь была нами применена для инъектирования опытных образцов древесины с целью оценки прочностных характеристик материала после усиления.

Образцы для проведения исследований были выполнены из строганных брусков сосновы 1 сорта. В заготовленных образцах (рисунок 1), для имитации повреждений (трещин), были сделаны пропилы на глубину 12 мм, шириной 2 мм, с последующим заполнением полученных пустот полимерным составом с помощью медицинских шприцов. Такой прием позволит разработать конструкцию инъекторов, применяемых при ремонте полноразмерных конструкций. Размеры экспериментальных образцов приняты в соответствии с ГОСТ 16483.10-73, ГОСТ 16483-84.

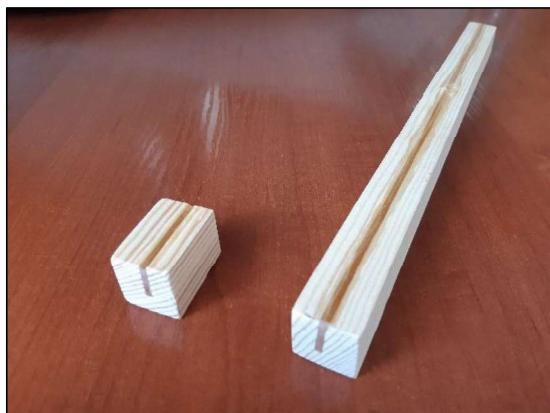


Рисунок 1 – Образцы, заполненные полимерным составом

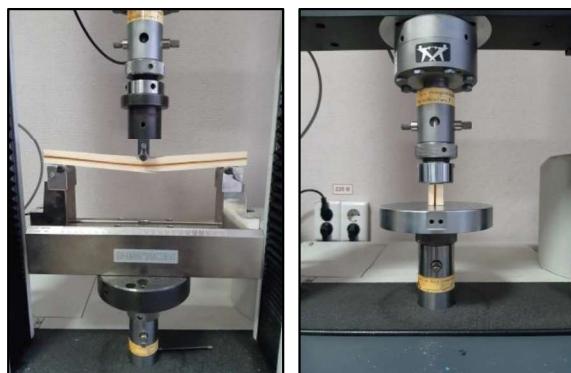


Рисунок 2 – Испытание образцов

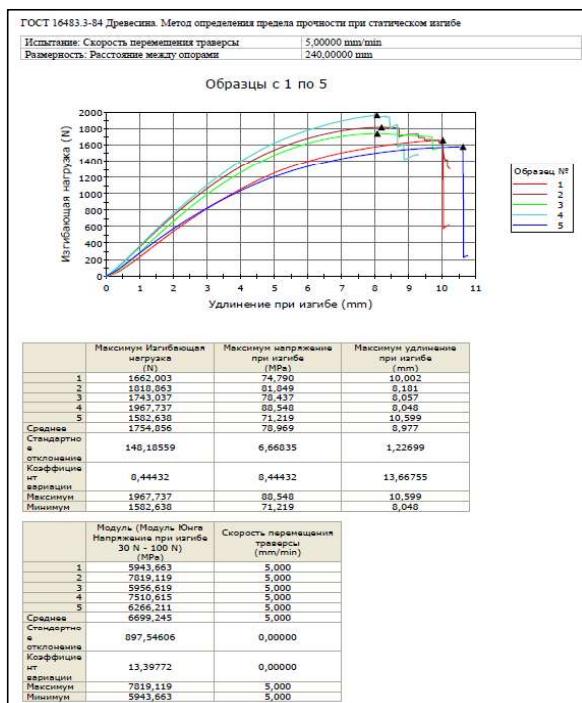


Рисунок 3 – Отчет результатов испытаний при статическом изгибе

Способ приготовления полимерной композиции состоит из дозирования и перемешивания необходимых компонентов в заданных пропорциях и последовательности. В эпоксидно-диановую смолу добавляли необходимое количество отвердителя и перемешивали вручную в течение 1-2 мин. Затем добавляли разбавитель и пластификатор и снова тщательно перемешивали в течение 1-2 мин. Перемешивание компонентов выполняли механическим способом. Затем полученную смесь инъецировали в пустоты заготовленных образцах. Дальнейшее отверждение композиции происходило при комнатной температуре.

Испытания деревянных образцов на действие нагрузки проводились в лаборатории кафедры «Современные специальные материалы» АлтГТУ им. И. И. Ползунова, на испытательной машине INSTRON модель 3369 с автоматическим графопостроителем, который позволяет фиксировать значения деформации образца при увеличении прикладываемой нагрузки (рисунок 2).

Всего было проведено 8 серий испытаний по пять образцов в каждой серии из них:

– при сжатии вдоль волокон для целых, поврежденных и восстановленных образцов;

– при статическом изгибе для целых, с повреждениями в вертикальной и горизонтальной плоскости (отдельно для каждого вида повреждения) и восстановленных полимерной композицией.

Результатом испытаний является определение максимальной нагрузки, при которой происходит разрушение образцов. Для наглядности приводим сформированный отчет результатов испытаний одной из серий модифицированных образцов при статическом изгибе (рисунок 3). Максимальную нагрузку определяли по результатам испытаний 5 образцов в каждой серии испытаний. Для сравнения брали среднее арифметическое значение разрушающей нагрузки для каждой серии испытаний образцов. Усредненные результаты испытаний всех серий образцов сведены в таблице.

Таблица – Сравнение экспериментальных результатов испытаний образцов древесины

Наименование	P _{max} при сжатии, кН	P _{max} при изгибе, кН
Целые	26,8	1,9
Поврежденные	19,8	1,4
Восстановленные	22,1	1,8

ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ ПОЛИМЕРНЫХ СОСТАВОВ ПРИ РЕКОНСТРУКЦИИ ДЕРЕВЯННЫХ ЗДАНИЙ ИСТОРИКО-АРХИТЕКТУРНОЙ ЦЕННОСТИ

Экспериментально установлено, что прочностные показатели при сжатии вдоль волокон и статическом изгибе поврежденной древесины по сравнению с целой снижены. Однако после восстановления поврежденной древесины полимерным составом прочностные показатели возросли практически до состояния целой древесины, особенно это характерно при работе на изгиб, что немало важно для деревянных конструкций таких как: балки, стропила, прогоны, обрешетки, настилы.

На основе экспериментальных исследований можно сделать заключение, что прочностные показатели восстановленной древесины полимерным составом на основе эпоксидной смолы возрастают и сопоставимы с показателями цельной древесины.

Способ восстановления деревянных конструкций, а именно таких как балки, стропила, прогоны, методом инъектирования в поврежденную часть полимерной композиции дает возможность восстанавливать несущую способность элемента, не используя дополнительные элементы (накладки) или добавочную конструктивную систему, что приводит к нарушению изначального облика восстановленной конструкции, и это не мало важно при проведении реставрационных работ деревянных зданий историко-архитектурной ценности.

Применяемые в полимерной композиции материалы не являются дефицитными и дорогостоящими, отсутствуют проблемы с покупкой или доставкой в любом регионе и выпускаются отечественной промышленностью.

Однако для использования данной модели восстановления поврежденных деревянных элементов на конкретном объекте необходима более точная оценка эксплуатационных свойств древесины, с учетом вида и объемов повреждений, предъявляемым требованиям и предполагает проведение ряда

дополнительных исследований, в том числе по разработке конструкций инъекторов.

СПИСОК ЛИТЕРАТУРЫ

1. ГОСТ Р 57790-2017. Конструкции деревянные несущие. Методы испытаний на прочность и деформативность. – введен от 12 октября 2017 г. № 1400 – ст: дата введения 2018-02-01. – М. : Стандартинформ, 2019. – 15 с. – Текст: электронный – URL: <https://docs.cntd.ru/document/1200156980>.
2. ГОСТ 16483.3-84. Древесина. Метод определения предела прочности при статическом изгибе. – введен от 13 апреля 1984 г. № 1276 – М. : Изд-во стандартов, 1984. – 6 с. – Текст: электронный – URL: <https://docs.cntd.ru/document/1200008473>.
3. ГОСТ 16483.10-73. Древесина. Методы определения предела прочности при сжатии вдоль волокон: межгосударственный стандарт: издание официальное. – введен от 23.10.73 № 2364 – М. : ИПК Изд-во стандартов, 1999. – 8 с. – Текст: электронный – URL: <https://docs.cntd.ru/document/1200014949>.
4. ГОСТ 16483.21-72*. Древесина. Методы отбора образцов для определения физико-механических свойств после технологической обработки. – введен от 21.12.72 № 2301 – М. : ИПК Изд-во стандартов, 1999. – 5 с. – Текст: электронный. – URL: <https://docs.cntd.ru/document/1200014960>.

Спирин Иван Александрович – магистрант ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: gelezyaka1977@mail.ru;

Пантиюшина Лариса Николаевна – к.т.н., доцент кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: pantushinalarisa@mail.ru;

Вербицкая Елена Васильевна – старший преподаватель кафедры «Строительные конструкции» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: alenapantushina@mail.ru.

СОЗДАНИЕ СПЕЦИФИКАЦИИ ДЛЯ СИСТЕМ ВЕНТИЛЯЦИИ В REVIT

Д. К. Стариченко, И. А. Бахтина

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Рассмотрен процесс создания спецификаций систем вентиляции в REVIT.

Ключевые слова: система вентиляции, модель, воздухораспределители, спецификация, Revit.

При создании проекта любых инженерных систем в различных программных комплексах (ADSK, Revit и др.) используют неограниченное количество семейств, которые необходимы при монтаже в нашем случае системы вентиляции [1]. Передавая готовую документацию, по которой будут монтировать данную инженерную систему, в ней должен быть документ, содержащий подробное перечисление арматуры, оборудования, воздуховодов, и т.п.

При возведении модели в программном комплексе Revit, на основе семейств можно без особого труда создать спецификацию. Рассмотрим этапы по созданию спецификации на воздухораспределители системы вентиляции [2, 3].

Большинство изготавителей определенной продукции для строительства, создают 3D модели своего изделия, это облегчает процесс при составлении документации, ведь в таком случае все характеристики используемого оборудования уже занесены в параметры модели.

Чтобы создать спецификацию переходим на вкладку «Вид»-«Спецификации»-«Ведомость/Спецификация» (рисунок 1).

После того как выплывает окно «Новая спецификация», выбираем «Фильтр дисциплины» он помогает сократить количество категорий, по которым можно сделать спецификацию, в нашем случае будем создавать по «Воздухораспределителям» (рисунок 2).

Следующим этапом является создание полей, в этой вкладке мы задаем нужные нам параметры, в которых будет отображаться информация по используемому семейству в проекте (рисунок 3).

Используя вкладку «Фильтр» можно задать параметр для сортировки элементов проекта, таким образом можно задать фильтр, который будет выводить семейства воздухораспределителей только определенного «Завода-изготовителя» и т.п. (рисунок 4).

Вкладка «Сортировка/Группирование», позволяет сортировать все семейства данной спецификации по тому параметру, который вы зададите. Как в порядке возрастания, так и убывания. Параметр «для каждого семейства», если на нем поставить галочку выведет в результате все элементы воздухораспределителей в проекте, чтобы сделать спецификацию компактной, галочку убирают, таким образом, все повторяющиеся элементы не дублируются, а просто прописываются один раз и указывается автоматически количество данного семейства используемого в проекте (рисунок 5).

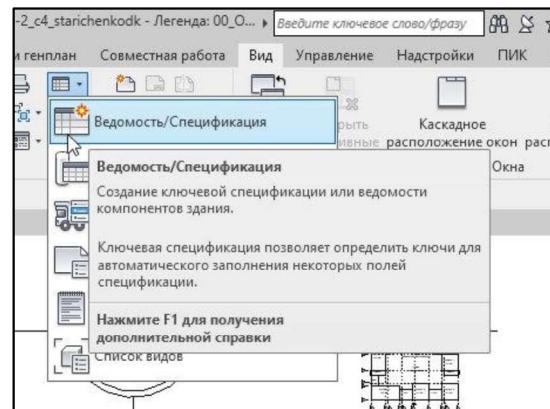


Рисунок 1 – Вызов настроек спецификации

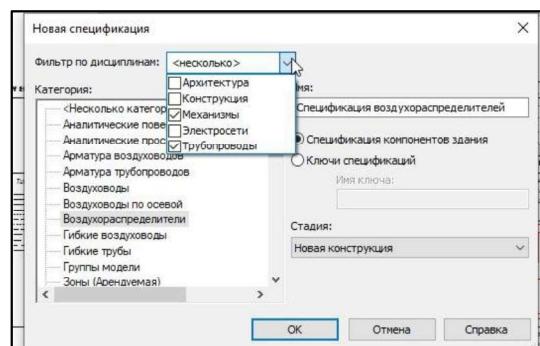


Рисунок 2 – Окно создания новой спецификации

СОЗДАНИЕ СПЕЦИФИКАЦИИ ДЛЯ СИСТЕМ ВЕНТИЛЯЦИИ В REVIT

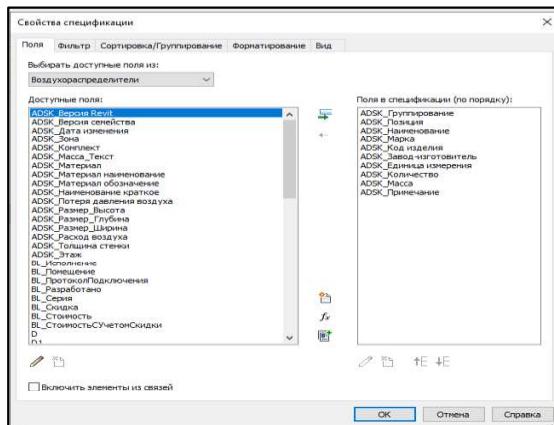


Рисунок 3 – Вкладка «Поля»

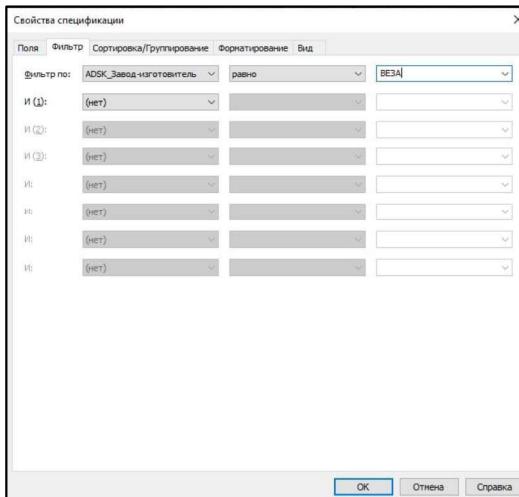


Рисунок 4 – Вкладка «Фильтр»

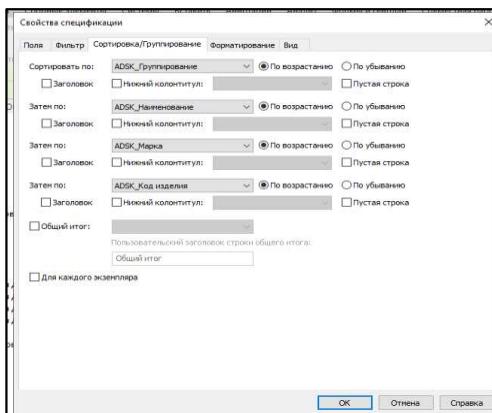


Рисунок 5 – Вкладка «Сортировка/Группировка»

Далее переходим на вкладку «Форматирование», которая влияет на видимость нужных нам категорий, в ней мы подробно разбираем поля, а именно Ориентацию заголовка, выравнивание текста в данном параметре, его название (рисунок 6).

Вкладка «Вид» отвечает за оформление спецификации, в ней можно настроить толщину и высоту строк, настроить цвет и шрифт, текст заголовков и текст граф (рисунок 7).

В результате заполнив нужные нам данные, мы получаем спецификацию «Воздухо-распределители». В ней можно увидеть все характеристики семейства, предоставленные создателем семейства, которые нам нужны, в столбцах которые отвечают за свой параметр (рисунок 8).

Вся информация, которая находится в спецификации, заносится в нее автоматически программой, если в семействе присутствует материал по данному параметру, то при составлении документации он обязательно будет прописан, но бывают семейства, без каких-либо данных, в таком случае, информацию о продукции находят у завода-изготовителя и вносят вручную (рисунок 9).

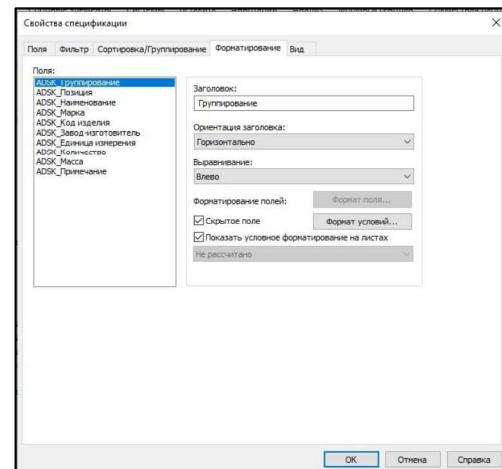


Рисунок 6 – Вкладка «Форматирование»

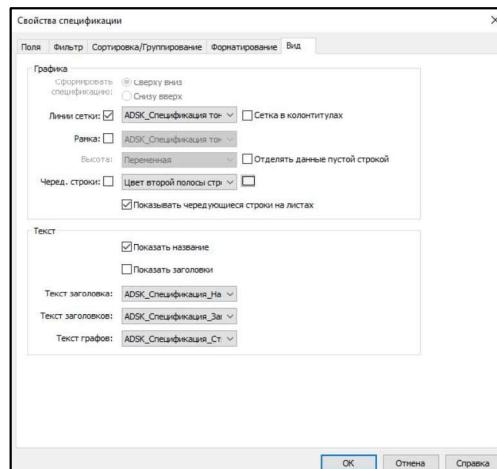


Рисунок 7 – Вкладка «Вид»

Рисунок 8 – Спецификация воздухораспределителей

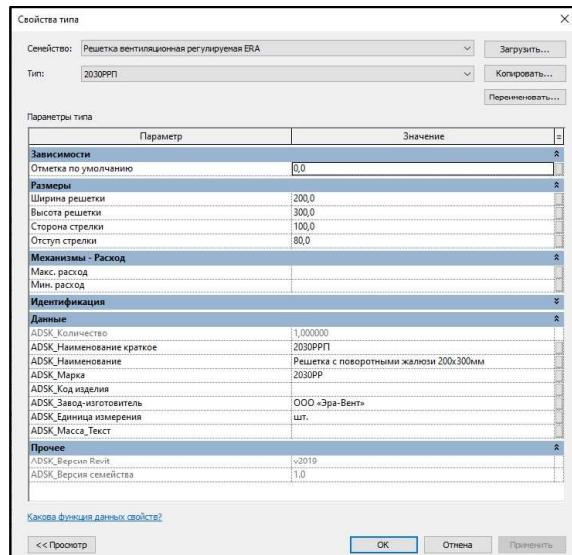


Рисунок 9 – Свойства типа, семейства

Данная информация позволяет оптимизировать процесс создания проектной документации, которая определяет состав оборудования, изделий, материалов, предназначенных для комплектования, подготовки и осуществления монтажа инженерных систем.

СПИСОК ЛИТЕРАТУРЫ

1. Стариценко, Д. К. Создание семейства радиаторов в Revit для оптимизации рабочего процесса при проектировании системы отопления / Д. К. Стариценко, И. А. Бахтина, Н. А. Фок // Современная техника и технологии: проблемы, состояние и перспективы: Материалы XI Всероссийской науч.-практ. конф. 26-27 ноября 2021. – Рубцовск, 2021. – С. 240-243.

2. СП 60.13330.2020. Отопление, вентиляция и кондиционирование: актуализированная редакция СНиП 41-01-2003: дата введения 2021-07-01. – Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/1200095527> (дата обращения 2.02.2022).

3. ГОСТ 21.602-2016. Правила выполнения рабочей документации систем отопления, вентиляции и кондиционирования. Дата введения 2017-07-01. – Электронный фонд правовых и нормативно-технических документов. – Режим доступа: <https://docs.cntd.ru/document/1200142447> (дата обращения 2.02.2022).

Стариценко Дарья Константиновна – студент группы 8Соим-11 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: dashenka.starichenko@mail.ru;

Бахтина Ирина Алексеевна – к.т.н., доцент кафедры «Инженерные сети, теплотехника и гидравлика» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: [bia-altai@mail.ru](mailto:bialtai@mail.ru).

О НИЗКОМ КАЧЕСТВЕ ОБСЛЕДОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ В АЛТАЙСКОМ КРАЕ

Ю. В. Халтурин, Н. Е. Лопухов

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Рассматриваются отчеты (заключения) по обследованию технического состояния зданий; оценивается соответствие состава работ при обследовании зданий требованиям нормативных документов. Оценивается уровень квалификации и опыт специалистов, проводивших обследование зданий, их готовность к проведению таких работ. Разбираются типичные ошибки, допускаемые при обследовании зданий. Оценивается корректность выводов и рекомендаций по устранению выявленных дефектов конструкций зданий.

Ключевые слова: заключение по обследованию технического состояния здания, оценка технического состояния, категория технического состояния, состав работ, указания нормативных документов фактические значения количественно оцениваемых признаков, дефекты и повреждения, расчетная сейсмичность, оценка соответствия.

В течение года в Алтайском крае обследуется техническое состояние сотен зданий. Заказчики данных работ хотят получить объективную информацию об истинном техническом состоянии здания, его отдельных элементов, либо о необходимости капитального ремонта (реконструкции) и, в этом случае состав и объем работ необходимых при капитальному ремонте или реконструкции. Что же получают и, как это не странно оплачивают, заказчики? В подавляющем большинстве – это итоговый документ (заключение или отчет), содержащий ложную (как вариант неполную) информацию о конструктивном решении здания, о его конструкциях и техническом состоянии элементов. Этот документ, как правило, основан на крайне низком качестве обследования, выполненном с нарушением процедур обследования строительных конструкций и состава работ, установленных нормативными документами. Зачастую выводы и рекомендации не соответствуют обнаруженным дефектам и повреждениям. Нередко безосновательно делается вывод об аварийном состоянии строительных конструкций или их элементов, и наоборот, не выявляется аварийное состояние обследуемых конструкций (зданий или сооружений).

Примером подобных итоговых документов могут служить отчеты Архитектурно-конструкторского бюро ООО АКБ «...» г. Барнаул, по сути, являющиеся копиями друг друга. Проанализируем три подобных отчета по результатам обследования объектов, находящихся в республике Алтай в районах с повышенной сейсмичностью: два объекта в селе Майма с сейсмичностью района 8 баллов

и один в селе Дмитриевка с сейсмичностью района 7 баллов:

1. Подстанция 110/10кВ в с. Майма,
2. Автогараж на 10 а/машин в с. Майма,
3. Гараж в селе Дмитриевка.

Уже только название отчетов «Отчет по результатам обследования и оценки технического состояния строительных конструкций...» говорит о низком уровне квалификации и малом опыте специалистов, проводивших обследование зданий, о неготовности к проведению таких работ. ГОСТ 31937–2011 [1] дает следующее определение термина «обследование технического состояния здания (сооружения)»: «Комплекс мероприятий по определению и оценке фактических значений контролируемых параметров, характеризующих работоспособность объекта обследования и определяющих возможность его дальнейшей эксплуатации, реконструкции или необходимость восстановления, усиления, ремонта...». Таким образом, в заключении (отчете) по результатам выполненного обследования согласно [1], обязательно должна быть оценка технического состояния строительных конструкций, которая является его неотъемлемой частью. В приложении Б ГОСТ 31937-2011 – документа, который в период проведения обследований должен был, согласно постановлению правительства РФ от 26 декабря 2014 г. № 1521, применяться на обязательной основе, дана «Форма заключения по обследованию технического состояния здания» и это приложение было обязательным.

Во всех вышеуказанных отчетах сказано: «В соответствии с поставленной заказчиком задачей были выполнены следующие рабо-

ты...». Далее приводится таблица (орфография сохранена):

№ п/п	Наименование работ	Основной показатель	Количество
2	Сделаны обмеры конструкций	Обмеры сечений несущих конструкций	Все конструкции
3	Выполнены фотографии	Количество мест	6
4	Составление отчета	Отчет	1

Получается, что при обследовании специалистами выполнялись только обмерные работы, причем только сечений и только несущих конструкций; делались фотографии и на основании только этих работ составлялись отчеты. То есть при обследовании были проигнорированы указания нормативных документов (ГОСТ 31937–2011, СП 13-102-2003 [2] и др.), что явно свидетельствует о некомпетентности специалистов. В отчетах нет даже упоминания о сборе и анализе проектно-технической документации, не указано имеется ли таковая поенным объектам. Не сказано: о наличии (отсутствии) сертификатов и паспортов на примененные в строительстве зданий изделия и материалы, о проектных нагрузках, расчетных схемах и т.д. Не составлены, как того требует ГОСТ 31937-2011 в пункте 5.1.2, схемы и ведомости дефектов и, не определены размеры данных дефектов, не установлены сроки и причины их появления. Это в принципе делает невозможным проверку обоснованности и достоверности сделанных выводов.

Во всех отчетах есть абсурдные фразы, например: «Общая оценка технического состояния обследуемых строительных конструкций (категория состояния) при обследовании здания выполнена визуально, согласно признакам повреждений и дефектов ГОСТ 31937–2011 «Здания и сооружения». Вышеуказанный ГОСТ дает следующее определение термина «оценка технического состояния»: «Установление степени повреждения и категории технического состояния строительных конструкций или зданий и сооружений в целом, включая состояние грунтов основания, на основе сопоставления фактических значений количественно оцениваемых признаков со значениями этих же признаков, установленных проектом или нормативным документом». Очевидно, что визуально нельзя определить фактические размеры конструкций, величины отклонений от вертикали и горизонтали и другие параметры, как и нельзя визуально сопоставить их со значениями этих

параметров, установленными проектами или нормативными документами.

Специалисты, проводившие обследования, слабо владеют строительной терминологией. Например, в отчете по объекту № 1 (здание подстанции в с. Майма) сказано: «Материалы стен смешанные: панельные и кирпичные», то есть по мнению авторов существует строительный материал – «панельный». В этом же отчете на стр. 10 сказано: «Прочность панелей соответствует классу бетона В10». Здесь специалисты путают прочность панелей – это свойство конструкции, и класс бетона по прочности на сжатие В – это контролируемый (в данном случае при обследовании) показатель качества бетона. Прочность панелей зависит не только от класса бетона на прочность при сжатии, но и от ее армирования (вида арматурной стали, формы и размеров арматурных изделий), точности их (панелей) изготовления и др.

К сожалению, эта ошибка является типичной у данных специалистов. Так при обследовании стен другой конструкции и из другого материала (объект № 3 в селе Дмитриевка) на стр. 10 сказано: «Стены здания монолитные шлакобетонные. Прочность стен лежит вне диапазона измерений прибора Beton Pro Condrtrol». И в этом отчете прочность конструкции и показатель прочности материала для исследователей одно и то же. Мало того получается, что прочность стен можно измерить прибором, что не надо проводить расчеты строительных объектов по предельным состояниям с учетом прочностных характеристик материалов, определяемых при обследовании. По мнению данных специалистов, если прочность материала конструкций оказывается вне диапазона измерений прибора, имеющегося в организации, проводящей обследования, то можно ее не определять.

Во всех отчетах имеются противоречащие здравому смыслу утверждения, характерные не только для вышеуказанных заключений, но и заключений других специалистов многих организаций:

«В ходе обследования стен дефекты и повреждения не выявлены.

Техническое состояние стен работоспособное, категория технического состояния – II». Подобное сказано и о других конструкциях (колоннах, перекрытиях, покрытиях и др.).

СП 13-102-2003 дает следующее определение термина: «Дефект – отдельное несоответствие конструкций какому-либо параметру, установленному проектом или нормативным документом (СНиП, ГОСТ, ТУ, СН и

т.д.)». ГОСТ 31937-2011 дает следующее определение термина «работоспособное техническое состояние»: «Категория технического состояния, при которой некоторые из числа оцениваемых контролируемым параметров не отвечают требованиям проекта или норм...». Получается, что сначала специалисты утверждают, что дефектов (несоответствий...) они не выявили, а присваивая строительной конструкции категорию технического состояния, исходят из того, что дефекты есть. При этом определение терминов даны в каждом отчете. Получается, что они нужны только для увеличения объема отчета.

При обследовании зачастую игнорируется масса дефектов. Например, как можно написать, что дефекты не выявлены, если на рисунке (взят из отчета № 2) четко видно, что цокольная часть стен выполнена из силикатного кирпича – критический дефект, не выполнены правила перевязки (на один тычковый ряд приходится пять ложковых) – критический дефект, отклонения рядов кладки от горизонтали (над оконными проемами) больше предельных 15 мм и т.д. При обследовании установлено, что стены из силикатного кирпича марки М75. СП 14.13330.2018 «Строительство в сейсмических районах» устанавливает: использование силикатного кирпича не допускается, минимальная марка керамического кирпича – М100.

Рисунок – Автогараж на 10 а/машин ГАЭС

Все три вышеуказанных здания находятся на площадках с расчетной сейсмичностью более 6 баллов, однако в отчетах ни слова не сказано об уровне их сейсмообеспеченности. С точки зрения обеспечения сейсмостойкости не зданий не были оценены их объемно-планировочные решения, конструкции и соединения. Для здания, показанного на рисунке и состоящего из двух блоков с разной кон-

структивной схемой (один со стеновой, другой – с каркасной), даже не сказано: разделено ли оно антисейсмическим швом. Для стен не определено временное сопротивление кладки по неперевязанным швам, не определена категория кладки по её сопротивляемости сейсмическим воздействиям и т.д.

Абсолютным лидером по низкому качеству работ по обследованию технического состояния зданий в г. Барнауле является ООО Проектно-строительная компания «Октябрьская» из г. Новосибирска. По результатам комплексного обследования кирпичного, двенадцатиподъездного, разноэтажного жилого здания (часть пятиэтажная, часть шестиэтажная), с подвалом (дом № 131 по пр. Красноармейский в г. Барнауле), ей составлено «Заключение ...» объемом всего 15 страниц, включая титульный лист, ведомость листов, список исполнителей и пять листов фотографий. При обследовании «специалисты» умудрились не увидеть даже очевидного, что над пятиэтажными частями здания покрытие раздельной конструкций (вентилируемое, а над шестиэтажными – вентилируемая. Информация, полученная при обследовании для проектирования капитального ремонта, конечно же, неполна и недостоверна, но муниципалитет г. Барнаула принял и оплатил данное заключение. В данном случае важнее всего не низкое качество обследования, а то, что специалисты городского органа власти не в состоянии были это понять и оценить. Главная причина низкого качества обследования прежде всего в некомпетентности специалистов заказчиков, принимающих и оплачивающих подобные заключения.

СПИСОК ЛИТЕРАТУРЫ

1. ГОСТ 31937-2011. Здания и сооружения. Правила обследования и мониторинга технического состояния. – Введ. 2014-01-01. – М. : Стандартинформ, 2014. – 89 с.

2. СП 13-102-2003. Правила обследования несущих строительных конструкций зданий и сооружений – Введ. 2003-08-21. – М. : Госстрой России, ГУП ЦПП, 2003. – 47 с.

Халтурин Юрий Васильевич – к.т.н., доцент кафедры «Строительные конструкции», ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: khalt.yuriy@mail.ru;

Лопухов Никита Евгеньевич – студент группы СУЗ-72 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: bfranklind@gmail.com.

ИССЛЕДОВАНИЕ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ НАСЫПНОГО ШАРООБРАЗНОГО УТЕПЛИТЕЛЯ

Е. В. Хатина, М. А. Ботабаев

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

В статье рассматривается проблема образования водного конденсата при утеплении уже введённого в эксплуатацию жилого фонда. Рассматриваются последствия этого явления в виде разрушения структуры и понижению теплотехнических свойств теплоизоляционного материала. Поднимается вопрос о необходимости введения в практику использования материала, который не мог бы поглощать влагу или имел бы свойство быстро извлекаться из конструкции, сушиться или заменяться новым. Проведен теоретический и экспериментальный анализ и выявлена зависимость сопротивления теплопередачи от диаметра, площади соприкосновения и теплопроводности насыпного утеплителя.

Ключевые слова: водный конденсат, теплопроводность, термическое сопротивление.

На данный момент по всей территории РФ введены в эксплуатацию и продолжают вводиться новые объекты жилого фонда. Однако с каждым днём в т.н. «новостройках» выявляется всё больше случаев изъянов в работе по утеплению фасада здания. При введении того или иного здания в эксплуатацию выявляются проблемы теплозащиты ограждающих конструкций.

Исходя из правил технологических процессов в строительстве существует несколько путей снижения теплопотерь:

1. Утепление оконных проемов;
2. Лучшее решение проблем систем горячего водоснабжения и вентиляции;
3. Утепление стен.

При утеплении существующего жилого фонда возникает проблема с образованием водного конденсата, который приводит к разрушению структуры и понижению теплотехнических свойств теплоизоляционного материала. Существует потребность в материале, который не мог бы поглощать влагу или имел свойство быстро извлекаться из конструкции, сушиться или заменяться новым. Таким материалом могут быть насыпные утеплители.

Существуют множество традиционных утеплителей стен, различающихся как по структуре, составу, так и по термическому сопротивлению. Эти утеплители имеют малый эксплуатационный срок и достаточно дороги. Новые утеплители, такие как термические теплоизоляционные краски, в качестве добавки в которых используются керамические микроскопические шарики, имеют высокую стоимость и производятся в основном в зарубежных странах.

Процесс распространения и переноса тепла через слой насыпного утеплителя осу-

ществляется 3 способами: теплопроводность, конвекция, тепловое излучение [1]. Математически описать перенос тепла через слой множества шариков достаточно сложно, но можно предположить, что конвективная составляющая при данной структуре материала будет мала и её можно не учитывать; тепловое излучение при наличии множества участков воздушного пространства также теряет свою интенсивность; теплопроводность воздушного пространства достаточно мала, а теплопередача между шариками будет осуществляться через точечное соприкосновение, т.е. будет маленькой.

Для решения этой проблемы на данный момент можно выделить два основных пути. Во-первых – это построение физико-математической модели процесса тепломассопереноса с помощью программы ELCUT.

Во-вторых – это выявление зависимости сопротивления теплопередачи от диаметра, площади соприкосновения и теплопроводности шариков.

На рисунке 1 представлена физико-математическая модель процесса теплопередачи в насыпной изоляции. На рисунках 2-4 приведены графики зависимости показателя R от теплопроводности материала насыпного шарообразного утеплителя, от площади его контакта и от теплопроводности пространства между шарообразным уплотнителем, построенные в ходе авторского теоретического исследования.

Задачей проведённого экспериментального исследования была проверка правильности физико-математической модели процесса тепломассопереноса на примере насыпного шарообразного утеплителя из пенополистерола.

ИССЛЕДОВАНИЕ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ НАСЫПНОГО ШАРООБРАЗНОГО УТЕПЛИТЕЛЯ

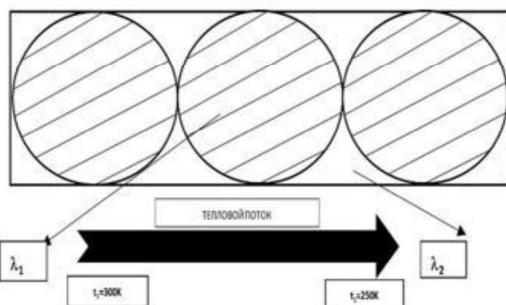


Рисунок 1 – Схема теплопередачи в насыпной изоляции

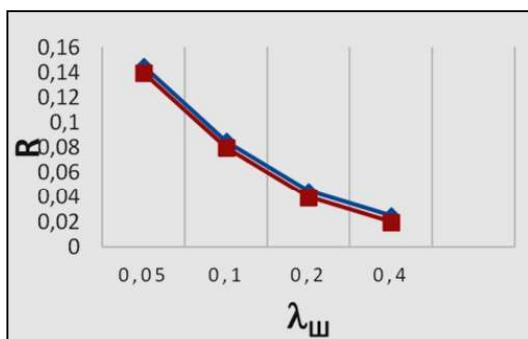


Рисунок 2 – Зависимость R от теплопроводности материала шариков

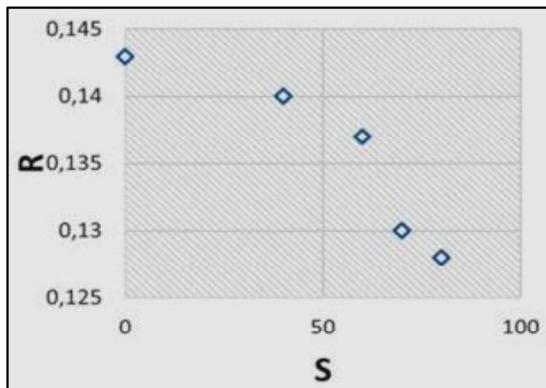


Рисунок 3 – Зависимость R от площади контакта шариков, %

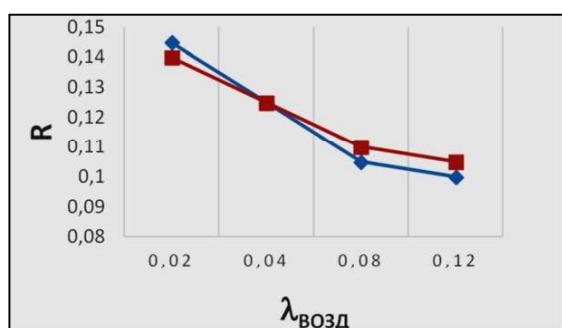


Рисунок 4 – Зависимость R от теплопроводности пространства между шариками

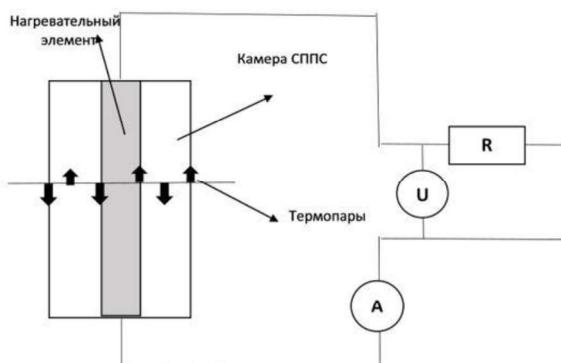


Рисунок 5 – Принципиальная схема экспериментальной установки

В ходе эксперимента испытываемые шарообразные утеплители были помещены в бикалориметр, а для измерения температуры установлены термопары в соответствии со схемой на рисунке 5.

Подавая на нагревательный элемент постоянную мощность, было достигнуто выравнивание теплового потока. Все показания термопар были записаны.

В приведённых таблицах 1, 2 приведены результаты экспериментов (Опыт № 1, Опыт № 2) и их обработка.

Экспериментальные значения расчетного термического сопротивления определяются по формуле

$$R = \frac{2 \cdot S \cdot \Delta t}{W}$$

где S – площадь теплообмена, м², Δt – разность температур между поверхностями теплообмена, °C; W – мощность, подаваемая на нагреватель, Вт.

Опыт № 1: $\Delta t = 48,5^{\circ}\text{C}$; W = 10,9 Вт; R = 0,4° $\text{см}^2/\text{Вт}$ для 5 см = δ.

Опыт № 1.1: R = 0,3° $\text{см}^2/\text{Вт}$ для 5 см = δ.

Опыт № 2.1: $\Delta t = 45,1^{\circ}\text{C}$; W = 10,9 Вт;

R = 0,37° $\text{см}^2/\text{Вт}$ для 5 см = δ.

Опыт № 2.2: R = 0,32° $\text{см}^2/\text{Вт}$ для 5 см = δ

В таблице 3 представлен анализ результатов эксперимента.

Свёрнутые результаты проведенной работы показывают, что сопротивление засыпки одинаковой толщины практически не зависит от диаметра засыпки в диапазоне 2-5 мм, но расхождения между теоретическими и экспериментальными результатами доходит до трех раз.

Это говорит о том, что реальный механизм теплопередачи при заданных условиях значительно отличается от принятого в пункте 3, и требует дальнейшего изучения.

Таблица 1 – Опыт № 1 (2 мм = $d_{ш}$, точечное касание)

№ п/п	I, A	U, В	W, Вт	Температура в точках измерения					
				1	2	3	4	5	6
1	3,3	3,3	10,9	51,77	27,95	75,6	46,78	27,38	76,7
				51,49	27,56	75,3	46,64	27,53	76,3
				51,35	27,38	74,8	46,64	27,24	75,0
2	3,85	3,9	15	59,33	29,95	89,0	53,06	28,38	90,71
				59,33	28,95	89,0	53,06	28,53	90,71
				59,33	28,95	88,81	53,0	28,81	90,73
3	4,35	4,5	19,58	64,0	30,24	96,42	56,34	29,66	98,27
				63,85	30,17	96,39	53,31	29,61	98,25
				63,81	30,11	96,32	52,98	29,57	98,23

Таблица 2 – Опыт № 2 (5 мм = $d_{ш}$, точечное касание)

№ п/п	I, A	U, В	W, Вт	Температура в точках измерения					
				1	2	3	4	5	6
1	3,3	3,3	10,9	41,55	22,0	67,4	41,8	21,7	66,5
				41,6	22,0	67,5	41,9	21,7	66,8
				41,6	22,0	67,4	41,8	21,7	66,8
2	3,85	3,9	15	51,4	24,8	84,9	51,9	24,5	83,9
				51,6	25,3	85,1	52,0	24,5	84,1
				51,7	25,1	84,9	51,9	24,6	84,1
3	4,35	4,5	19,58	22,5	24,0	95,5	53,8	23,8	94,0
				54,7	23,9	95,2	53,9	23,7	93,6
				54,8	23,9	94,9	53,6	23,7	93,5

Таблица 3 – Обобщенные результаты теоретических и экспериментальных исследований

Эксперимент	Теория
$R_{1,1} = 0,05 \text{ } ^\circ\text{C} \text{м}^2 / \text{Вт}$	$R_{1,1} = 0,1462 \text{ } ^\circ\text{C} \text{м}^2 / \text{Вт}$
$R_{1,2} = 0,044 \text{ } ^\circ\text{C} \text{м}^2 / \text{Вт}$	$R_{1,2} = 0,1466 \text{ } ^\circ\text{C} \text{м}^2 / \text{Вт}$

Выводы, которые можно сделать на этом этапе исследования:

1. Значения теоретических и экспериментальных исследований отличаются примерно в 3 раза.

2. Сравнивая $R^3_{1,1}$ и $R^3_{1,2}$ получим разницу 12%. Сравнивая $R^t_{1,1}$ и $R^t_{1,2}$ получим 0,3%, что говорит о несущественном влиянии диаметра засыпки на данные параметры.

3. Линейный характер распределения температуры по толще засыпки говорит о большой воздухо- и паропроницаемости последней, что делает этот вид утепления весьма перспективным для изучения и дальнейшего использования.

СПИСОК ЛИТЕРАТУРЫ

1. Богословский, В. Н. Строительная теплофизика (теплофизические основы отопления, вентиляции и кондиционирования воздуха): учебник для вузов / В. Н. Богословский. – 2-е изд., перераб. и доп. – М. : Высшая школа, 1982 – 415 с.

2. Гурьев, М. Е. Тепловые измерения в строительной теплофизике / Г. М. Е.урьев. –Киев : Высшая школа, 1976. – 128 с.

Хатина Екатерина Владимировна – старший преподаватель кафедры «Технология и механизация строительства» ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: katrin210180@mail.ru;

Ботабаев Мурат Абдырахманович – студент группы 8Спгс-01 ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: murat.botabaev@gmail.com.

УСТРОЙСТВО ФУНДАМЕНТОВ НА ЗАБИВНЫХ СВАЯХ В УСЛОВИЯХ ПЛОТНОЙ ГОРОДСКОЙ ЗАСТРОЙКИ

Б. М. Черепанов, Ю. С. Батракова

Алтайский государственный технический университет им. И. И. Ползунова, г. Барнаул

Одной из актуальных тем на сегодня является уплотнение городской застройки путём возведения, как правило, односекционных зданий повышенной этажности, основанием которых зачастую являются свайные фундаменты. При устройстве фундаментов из забивных свай в грунтовой среде возникают колебания, которые оказывают разрушительное воздействие на основания ближайших зданий и сооружений. В статье изложены результаты анализа нормативной документации с целью определения конкретных числовых значений в условиях плотной городской застройки. Вычислены минимальные допустимые расстояния до существующих зданий при устройстве свайных фундаментов на лессовых просадочных грунтах. Предложены практические методы сокращения безопасных расстояний. Проведены натурные эксперименты по определению безопасных расстояний при различных параметрах траншей, прерывающих распространение динамических волн.

Ключевые слова: свайные фундаменты, уплотнённая городская застройка, точечная застройка, допустимые расстояния, грунты основания, динамические воздействия.

В условиях высокой плотности городской застройки все большую популярность набирает так называемая точечная застройка, имеющая испорченную репутацию на территории нашей страны. Действительно, как показывает практика, на сегодняшний день точечная застройка в России – это строительство многоэтажек посреди сложившихся жилых кварталов, обычно на месте зеленых зон или детских площадок. Новостройка доставляет колоссальные неудобства жильцам ближайших домов на всех этапах жизненного цикла здания: от трясущихся стен во время устройства фундаментов на начальном этапе строительства вследствие колебаний, возникающих в грунтовом массиве при забивке свай, до полного отсутствия солнечного света в квартирах некоторых жильцов после возведения последних этажей здания.

При строительстве объекта вблизи промышленного здания, динамические колебания, возникающие в грунтах основания при забивке свай, могут привести к выходу из строя технологического оборудования, а также помешать нормальной работе многих точных приборов.

Динамические колебания, возникающие в грунтах основания, так же могут оказать неблагоприятное влияние на работу инженерных сетей, в случае превышения допустимых значений вибрации. Реакция конструкций существующих зданий и сооружений на передаваемую через грунт вибрацию зависит от типа фундамента, типа и состояния грунтов

основания, особенностей и состояния строительных конструкций здания и расстояния, на котором находится источник динамического воздействия.

Степень воздействия динамических колебаний, возникающих в грунтовом массиве при забивке свай, на основания существующих зданий и сооружений, является принципиально важным фактом, который необходимо учитывать при определении расстояния, на котором возводимый объект может быть построен относительно существующей застройки. В случае если данное расстояние не выдержано в элементах существующих зданий могут возникнуть процессы, приводящие к снижению прочностных и эксплуатационных характеристик конструкций.

Колебания, возникающие в грунтовом массиве, нередко приводят к повреждениям зданий и других инженерных сооружений в результате возникновения значительных и неравномерных осадок оснований. Неравномерные осадки фундаментов могут повлечь за собой возникновение трещин в конструкциях, которые приводят к невозможности нормальной эксплуатации зданий и сооружений или даже их разрушению.

Однако как показывает иностранная практика, точечная застройка позволяет значительно экономить городские ресурсы и может не оказывать неблагоприятного воздействия на качество жизни населения при продуманном подходе. Негативный опыт строительства подобных зданий на территории

России обусловлен отсутствием норм, регламентирующих условия возведения объекта вблизи существующих зданий и сооружений, а так же ограниченностью применения вибропропицационных мероприятий.

К сожалению, полностью исключить возникновение колебаний, действующих на основания существующих зданий и сооружений, при устройстве свайных фундаментов методом приложения динамической нагрузки невозможно, однако современные технологии позволяют уменьшить их влияние путем применения дополнительных защитных мероприятий.

Сокращение безопасных расстояний, на которых возможна забивка свай, позволит значительно упростить возведение зданий и сооружений в непосредственной близости от существующей застройки, а так же окажет положительное влияние на экономическую эффективность объекта строительства.

При проектировании фундаментов вблизи существующих зданий и сооружений необходимо учитывать свойства грунтов основания. Реакция грунтов на внешнее воздействие будет индивидуальной для каждой строительной площадки. Более того реакция грунта зависит не только от его физико-механических характеристик, но и от условий приложения нагрузки.

Значения колебаний, возникающих в основаниях фундаментов существующих зданий и сооружений, можно снизить посредством устройства в грунтовом массиве барьеров в виде экранирующих траншей, которые должны располагаться между существующим сооружением и источником динамического воздействия. Траншея может быть как открытой, без кого-либо заполнения, так и заполнен-

ной энергопоглощающими материалами. Иногда экранирующую траншею заполняют бетонной смесью, такие монолитные барьеры называют «стена в грунте».

Работа экранирующих траншей объясняется явлением дифракции поверхностных волн (R -волн) при наличии преграды на пути их распространения. Динамические волны на границе двух сред частично преломляются, частично отражаются. Углы преломления и отражения определяются по закону Снелла. Значения амплитуд волн зависят от угла их падения и коэффициента скорости распространения в двух телах (рисунок 1).

С целью определения безопасных расстояний до существующих объектов при забивке свай были выполнены расчёты по ВСН 490-87. Данный документ введен в действие в 1987 году и представляет собой инструкцию к проектированию и устройству свайных фундаментов вблизи существующих зданий и сооружений, а также подземных коммуникаций. В нем приведены допустимые расстояния от погружаемых элементов до существующих зданий и сооружений, а так же пример расчета допустимых расстояний, если фактические расстояния не соответствуют табличным значениям.

Так как динамические колебания, возникающие в грунтовом массиве при забивке свай, оказывают влияние не только на существующие здания, но и на инженерные сети, следует соблюдать минимальное безопасное расстояние относительно данных конструкций. Например, запрещено погружать сваи поперечным сечением до 40×40 см на расстоянии менее 5 м, до существующих подземных трубопроводов, выполненных из ста-

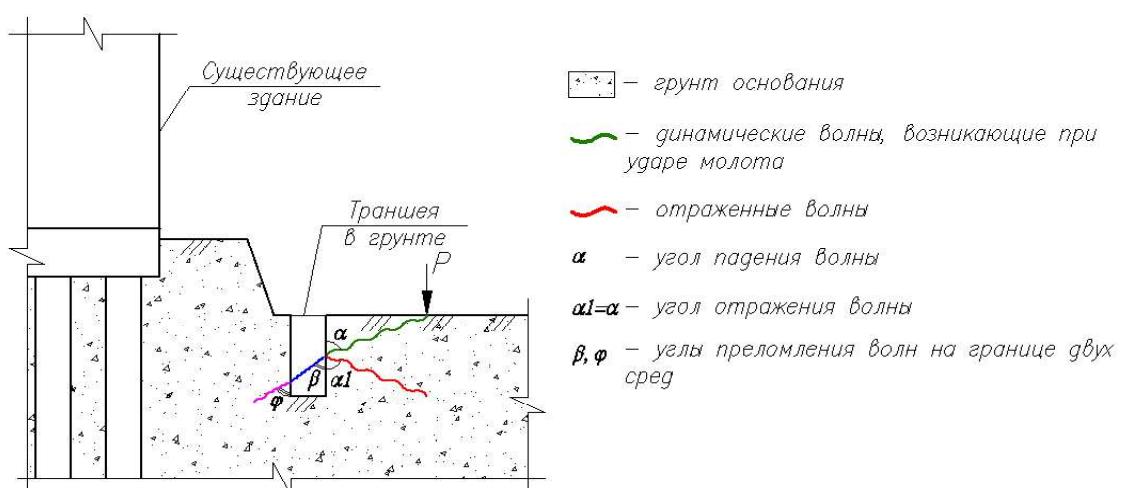


Рисунок 1 – Принцип работы экранирующей траншеи

УСТРОЙСТВО ФУНДАМЕНТОВ НА ЗАБИВНЫХ СВАЯХ В УСЛОВИЯХ ПЛОТНОЙ ГОРОДСКОЙ ЗАСТРОЙКИ

ли, внутреннее давление которых составляет не более 2 МПа [1, пункт 12.1.3]. Однако степень негативного воздействия колебаний, возникающих в грунтовом массиве от ударной нагрузки при забивке свай, зависит не только от конструктивного решения существующего здания, но и от вида грунта основания. Поэтому значения, приведенные в таблице ВСН, являются обобщенными, т.к. отсутствует информация, уточняющая тип грунта.

Вычислим допустимые расстояния с помощью расчета, представленного в данном документе. Для примера рассмотрим устройство свайного фундамента семнадцатиэтажного двухсекционного крупнопанельного жилого дома, расположенного по адресу: г. Барнаул, ул. 65 лет Победы дом 23. Проектом предусмотрено использование железобетонных свай квадратного сечения 400 × 400 мм длиной 12 м. На площадке строительства выделено 6 инженерно-геологических элементов: 1 слой – насыпной грунт; ИГЭ 2 – супесь лессовидная просадочная высокопористая твердая; ИГЭ 3 – суглинок лессовидный просадочный высокопористый полутвердый; ИГЭ 4 – супесь лессовидная просадочная низкопористая; ИГЭ 5 – супесь лессовидная непросадочная; ИГЭ 6 – супесь лессовидная непросадочная пластичная. Несущим является ИГЭ 6 – супесь лессовидная непросадочная, мощность слоя 6,0 м. Грунтовые воды располагаются на глубине 10 м.

По данным таблицы 7.1 ВСН 490-87 минимальное допустимое расстояние от забиваемой сваи до существующего здания следует принять 30 м. Необходимо уточнить эту цифру, учитывая особенности грунта основания строительной площадки. Если в проекте расстояния между существующим зданием и возводимыми фундаментами меньше табличного значения, то допустимые расстояния, на которых забивка сваи не вызовет развития деформаций оснований существующего здания определяют расчётом. В нашем случае допустимое расстояние от погружаемых свай до здания составило 12 м. Данное расстояние является безопасным и забивку свай можно осуществлять без применения каких-либо дополнительных мероприятий. По результатам расчетов безопасное расстояние до существующих зданий и сооружений сократилось на 18 м по сравнению с табличными значениями. Однако полученное значение безопасного расстояния можно сократить еще больше посредством применения вибропропицирующих мероприятий, которые будут обеспечивать гашение колебаний, распро-

страняющихся от источника динамического воздействия.

В ходе эксперимента рассматривался вариант устройства пассивной вибропропицации посредством применения траншеи без заполнения. Для воссоздания процесса устройства свайных фундаментов с использованием дизель-молота в грунт погружался металлический стержень (арматура диаметром 12 мм длиной 1,2 м), на оголовок которого воздействовала ударная нагрузка.

Для фиксации показателей колебаний использовалось мобильное приложение «Vibration meter». Приложение позволяет обнаружить и записать ускорения вертикальных колебаний в измерительной точке, возникающие в грунтовом массиве вследствие воздействия динамической нагрузки. Полученную информацию приложение обрабатывает и выдает в форме графика, который представляет собой отчет о движении земли в измерительной точке.

В ходе эксперимента изменились показатели траншеи: глубина и ширина. Первоначальные габариты траншеи: глубина 0,3 м, ширина 0,1 м, длина 1,0 м. Конечные габариты траншеи: глубина 1,2 м, ширина 0,3 м, длина 1,0 м. Колебания фиксировались в пяти равноудаленных друг от друга точках, расположенных вдоль одной прямой через 0,5 м.

Сначала ускорения вертикальных колебаний были зафиксированы без траншеи. Затем была выкопана траншея глубиной 0,3 м и шириной 0,1 м перед точкой 1 (2,5 м от источника динамического воздействия). Однако приложение не зафиксировало колебаний после устройства траншеи, что объясняется слабой чувствительностью смартфона к вибрации. Аналогичная ситуация произошла и в точках 2 и 3. Приложение зафиксировало незначительную динамику в точке 4, но полученные значения были слишком малы для объективной оценки эффективности траншеи. И только в точке 5 эксперимент показал результат. В последующих экспериментах габариты траншеи поэтапно увеличивались.

По итогам эксперимента высокий изоляционный эффект показала траншея глубиной 1,2 м и шириной 0,3 м. Опыт показал, что зафиксировать колебания, возникающие в грунтовом массиве от приложения относительно небольшой нагрузки, на большом расстоянии с помощью мобильных приложений практически невозможно. Смартфон является недостаточно чувствительным устройством для фиксации слабых вибраций. Для более точного эксперимента необходимо специальное оборудование.

В ходе эксперимента не удалось объективно оценить, на каком расстоянии от источника динамического воздействия траншея показывает лучший изоляционный эффект. Однако удалось подтвердить, что наиболее высокий изоляционный эффект действительно наблюдается непосредственно за траншней. При этом максимальный показатель амплитуды ускорения вертикальных колебаний был зафиксирован перед траншней, что указывает на то, что подобный экран не следует размещать близко к забиваемой сваи, так как динамические волны, отраженные от траншней, могут оказывать негативное воздействие уже на сам погружаемый элемент. Экранирующую траншею необходимо размещать как можно ближе к существующему зданию или сооружению, но так, чтобы она не попала в зону влияния существующего фундамента.

Действительно, с увеличением глубины траншеи изоляционный эффект увеличивается. Между тем изменение ширины траншеи не оказалось существенного влияния на ее эффективность.

Траншея глубиной 1,2 м и шириной 0,3 м показала снижение амплитуды вертикальных колебаний на 73,3%. Учитывая погрешность измерительного прибора, прием энергоэффективность траншеи равной 35%. Амплитуда ускорения вертикальных колебаний, с учетом изоляционного эффекта от траншней, вычисленная по формуле ВСН составила $2,66 \text{ м/с}^2$. Допустимое расстояние от погружаемых свай до здания – 8 м.

Данное расстояние является безопасным и забивку свай можно осуществлять без нанесения ущерба фундаментам существующих зданий и сооружений. По результатам расчетов с учетом влияния экранирующей траншеи безопасное расстояние до существующих зданий и сооружений сократилось еще на 4 м.

По результатам проведенных исследований можно сделать вывод о том, что минимальные безопасные расстояния, прописанные в нормативной документации, являются обобщенными, так как не учитывают специфические свойства грунтов основания строительной площадки и технического состояния окружающей застройки. Для того чтобы уточнить нормативное значение, необходимо осуществить расчет, предложенный в нормативной документации. В рассматриваемом случае по результатам расчета безопасное

расстояние сократилось на 18 м, что составило 60%. Однако полученный результат можно улучшить, если применить виброзолирующие мероприятия, например траншеи. Устройство траншней по результатам полевых испытаний позволяет снизить амплитуду вертикальных колебаний на 36%. После повторного расчета, с учетом виброзоляционного эффекта траншней, безопасное расстояние сократилось еще на 4 м. В конечном итоге безопасное расстояние от забиваемой сваи до существующего здания составило 8 м, что на 73,3% меньше первоначального значения.

В ходе расчета виброзоляционного эффекта от устройства траншней погрешность измерительного прибора (смартфона), который был недостаточно чувствительным к колебаниям, вызванным относительно небольшой нагрузкой, была принята 50%. Поэтому фактический виброзоляционный эффект от применения траншней выше, чем учтенный в перерасчете. Тем не менее, даже в данном случае, траншея, пространство которой ничем не заполнялось, показала хороший виброзоляционный эффект.

СПИСОК ЛИТЕРАТУРЫ

1. ВСН 490-87. Проектирование и устройство свайных фундаментов и шпунтовых ограждений в условиях реконструкции промышленных предприятий и городской застройки (утверждено Минмонтажспецстроем СССР 29 декабря 1986 г.) [электронный ресурс]. – Режим доступа: <https://dwg.ru/dnl/1110> (дата обращения 02.03.2022.).

2. Батракова, Ю. С. Определение минимальных расстояний до существующих зданий и сооружений при устройстве свайного фундамента / Ю. С. Батракова, Б. М. Черепанов // Наука и молодежь: материалы XVII Всероссийской науч.-техн. конф. студентов, аспирантов и молодых учёных / АлтГТУ им. И. И. Ползунова, Барнаул. – 2020. – Ч. 2. – С. 178-180.

Черепанов Борис Михайлович – к.т.н., доцент кафедры «Основания, фундаменты, инженерная геология и геодезия», ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: bmcher@mail.ru;

Батракова Юлия Сергеевна – магистрант кафедры «Основания, фундаменты, инженерная геология и геодезия», ФГБОУ ВО АлтГТУ им. И. И. Ползунова, E-mail: batraba97@inbox.ru.

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

SOLVING THE PROBLEM OF INSTALLING THE DEVICE IN THE TARGET USING ELECTRONIC TOTAL STATIONS

B. F. Azarov

Altai state technical university of I. I. Polzunov, Barnaul

The article discusses the method of installing an electronic total station in the target of the measured line. It is noted that the need to install a device (theodolite, electronic total station) in the target of a line fixed on the ground arises quite often when performing geodetic works directly on the construction site. The article offers a solution to this problem using an electronic total station LEICA TS07. This option compares favorably with the classical solution of the problem by the absence of the need to directly perform angular and linear measurements and calculate the magnitude of the displacement of the device (non-clearance). The description of the sequence of actions in solving the problem of installing the electronic total station LEICA TS07 in the target using the software application «local reverse serif» is given. In conclusion, the options of total stations from manufacturers such as TOPCON, TRIMBLE are given, which can be used as an analogue of the local back-serif procedure when solving the problem of installing the device in the target of the measured line.

Keywords: target, non-clearance, electronic total station LEICA TS07, local back-notch, baseline.

EXPERIENCE IN CREATING A HIGH-ALTITUDE GEODETIC FRAMEWORK TO DETERMINE THE WEAR OF THE ROAD SURFACE

B. F. Azarov, V. L. Sviridov, M. M. Kinzhibalova

Altai state technical university of I. I. Polzunov, Barnaul

The article considers the experience of creating a high-altitude geodetic base in the form of points (reference points) of long-term preservation during scientific research in order to assess the degree and causes of destruction of individual layers of foundations and road surfaces of highways of federal significance in the Altai Territory during their long-term operation. It is noted that to reduce the time and volume of excavation and concrete work when laying reference points, it is advisable to use screw piles of various designs. Information is given on the testing of various methods of laying the reference points of the high-rise foundation, including using screw piles from different manufacturers. In conclusion, it is concluded that it is advisable to use a mechanical method when using screw piles.

Keywords: reference point, high-rise foundation, road surface, highway, screw pile.

CREATING AN INFORMATION MODEL OF LOW-CURRENT SYSTEMS IN REVIT

A. V. Aksenov, I. A. Bakhtina

Altai state technical university of I. I. Polzunov, Barnaul

The process of creating families with individual parameters in the design of low-current systems in the Revit software package is considered.

Keywords: families, cable trays, specification, material, Navisworks, Revit.

INVESTIGATION OF POSSIBLE DESIGN SOLUTIONS FOR TRUSS ASSEMBLIES MADE OF RECTANGULAR WELDED PIPES

N. V. Alpatov, I. V. Kharlamov

Altai state technical university of I. I. Polzunov, Barnaul

The article discusses the main types of steel truss trusses, their disadvantages and advantages. And also a new type of constructive solution of faceless nodes of a tubular truss has been developed and justified.

Keywords: metal structures, truss trusses, truss calculation methods, structural solutions of nodal joints/

POSSIBILITIES OF EFFICIENT DEVELOPMENT OF SMALL COMPLEX POLYMETALLIC DEPOSITS BASIS OF GEOINIRINGAI DIGITAL TRANSFORMATION OF PRODUCTION MINING CLUSTER OF ALTAI TERRITORY

L. N. Amosova¹, S. V. Kramorenko²

¹ Altai state technical university of I. I. Polzunov, Barnaul

² Limited liability company «Engineering technology center», Barnaul

The main problem of using the mineral resource base of the region is the problem of involving the resources of the unallocated fund of deposits in the main production. For the Altai Territory as well as for other old-industry mining regions, there is a need to involve in the group development of geographically close medium and small complex deposits, in order to achieve a combined effect, in order to reduce general and technological costs. The main problem of creating small mining enterprises is the introduction and use of innovative technologies unique to each particular region.

Keywords: geoengineering, mining cluster, digitalization, geotechnology, complex deposits, resource potential.

FEATURES OF LEGO-BRICK BUILDING CONSTRUCTION TECHNOLOGY

O. S. Annenkova, A. V. Dorofeev

Altai state technical university of I. I. Polzunov, Barnaul

The article deals with the following aspects: the peculiarities of the technology of building from lego-brick, as well as the advantages of their use in the construction of residential and public buildings.

Keywords: lego-brick, speed of erection, advantages, application, especially, technology, brick masonry, economy.

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

IMPROVING THE EFFICIENCY OF THE CONSTRUCTION OF HIGH-RISE MONOLITHIC REINFORCED CONCRETE BUILDINGS WITH THE INTRODUCTION OF INNOVATIVE TECHNOLOGIES

O. S. Annenkova, E. S. Romashkina

Altai state technical university of I. I. Polzunov, Barnaul

The article discusses the ways of timely commissioning of high-rise monolithic reinforced concrete buildings, improving the organization of work and increasing technological efficiency to reduce the cost of construction products.

Keywords: monolithic high-rise building, automation of concrete works, construction time, labor costs, technological efficiency.

REDUCTION OF EMISSIONS OF THE GAS SUPPLY SYSTEM OF THE ALTAI TERRITORY

I. Yu. Borzenko, V. V. Logvinenko

Altai state technical university of I. I. Polzunov, Barnaul

The article is devoted to the absorption of greenhouse gas emissions from gas supply organizations of the Altai Territory. Total emissions and the amount of forest to absorb these emissions have been determined.

Keywords: Paris Agreement, characteristics of the gas distribution system of the Altai Territory, emissions of greenhouse gases, characteristics of forestry.

REVEAL OF BUILDING INFORMATION MODELLING TECHNOLOGY ADVANTAGES BY ANALYSING PROJECT PAPERWORKS OF ALTERATIONS TO THE PREMISES

V. V. Borisenko, E. R. Kirkolup, D. A. Reutov

Altai state technical university of I. I. Polzunov, Barnaul

This article tries to reveal advantages of using Building Information Modelling technology using the example of AO «Barnaul TPP-3» engineering and personnel facility and lodge alterations project. The comparative analysis was made with paperwork's gathered by using the automatic projecting system and Information Modelling technology. The floor drawing plans of the studied building were compared with wall, floor, ceiling area calculated schedules. The paperwork's analysis showed differences in area calculating results of the two given projecting methods, moreover sometimes the difference was up to 25%.

Keywords: Building Information Modelling technology (BIM), BIM advantages, alterations project, paperwork's analysis.

ANALYSIS OF THE EXISTING MECHANICAL METHODS OF SOIL COMPACTION ON THE EXAMPLE OF A MULTISTORY RESIDENTIAL BUILDING IN BARNaul

A. V. Bochkareva, B. M. Cherepanov

Altai state technical university of I. I. Polzunov, Barnaul

The article discusses the methods of compacting weak foundation soils during the construction of a multi-storey residential building in Barnaul, gives a brief description of the presented methods and selects the two most appropriate compaction methods for the built-up area.

Keywords: soil compaction, weak soil, structurally unstable soils, mechanical methods of creating artificial bases, ground piles.

CRUSHED CONTAINER GLASS AS AN ALTERNATIVE TO GRANULATED MICRO SILICA

O. V. Buyko, V. A. Plyusnin, A. V. Poptsova

Altai state technical university of I. I. Polzunov, Barnaul

It is impossible to achieve progress in the construction industry without creating new high-quality building materials with optimal technologies for using effective modifiers for Portland cement and concretes based on it. This problem at the present stage can be solved due to the wide involvement of a valuable secondary resource in the production of cement materials, the possibilities of which have not yet been fully disclosed - solid household waste, in particular broken container glass, the accumulation of which is growing throughout Russia and the CIS countries. In this work, studies were carried out to determine the effectiveness of the effect on the strength of the resulting Portland cement material of such substances containing reactive silicon oxide as granular silica fume and broken glass. A comparative analysis of the methods of introducing granular microsilica into the studied compositions was carried out. It also shows the possibility of obtaining fast-hardening, not requiring heat treatment, Portland cement concretes using modifying complexes based on an alternative silica-containing additive.

Keywords: portland cement, concrete, container glass cullet, reactive silica, granular microsilica, strength.

TYPES OF RISKS AND APPLICATION OF BIM MODELING TO REDUCE THE RISKS OF THE INVESTMENT PROJECT

N. S. Bunin, I. A. Bakhtina

Altai state technical university of I. I. Polzunov, Barnaul

The types of risks of an investment and construction object and the use of BIM modeling to reduce investment risks of construction objects in the Revit software package are considered.

Keywords: investment, risk, construction object, risk classification, risk reduction, BIM modeling.

ABOUT POSSIBILITIES OF CALCULATION OF GLUED TIMBER ARCHES USING LIRA 10.12

G. M. Busigina, Yu. V. Khalturin, P. A. Goncharov

Altai state technical university of I. I. Polzunov, Barnaul

Unfavorable combinations of loads in the calculation of glued timber circular arches are considered, the feasibility and necessity of taking into account the effect of the wind load in the calculation of glued timber flat arches are as-

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

sessed, the possibility of selecting and checking the cross section of glued timber structures in Lira 10.12 software is evaluated.

Keywords: glued timber arches, design combinations of loads and stresses, calculation of arches for strength, LIRA software, long-term strength of wood, analysis of calculation results, reinforcement of supporting parts of lintels.

PRODUCTION OF ULTRA-HIGH-STRENGTH CONCRETE BASED ON LOCAL RAW MATERIALS

K. E. Voronina, L. G. Plotnikova

Altai state technical university of I. I. Polzunov, Barnaul

The article discusses examples of obtaining ultra-high-strength concrete - a material with very high technical characteristics due to low and very low V/C ratios (less than 0.25) due to the use of hyperplasticizers. However, in addition to the use of hyperplasticizers, such concretes require a high content of powder in the form of cement, ground rocks, ashes of thermal power plants. The purpose of this study is the production of ultra-high-strength concrete based on local raw materials. To do this, an experiment was conducted in which high-calcium ash was used as a fine-grained additive. At the same time, the strength of concrete on the 28th day of normal hardening reached 50-60 MPa, and on the third day more than 40MPa. Statistical mathematical models and graphs are constructed based on the results obtained.

Keywords: ultra-high-strength concrete, increased strength, normal hardening, compositions, optimal content, high-calcium ash of CHP, hyperplasticizer, low water-cement ratio.

SEISMIC MICRODISTRICTING AS A BASIS FOR ASSESSING THE RELIABILITY OF TERRITORIES FOR CONSTRUCTION

E. I. Vyatkina, V. V. Kostev

Altai state technical university of I. I. Polzunov, Barnaul

The article is devoted to an overview of the principles and methods of seismic micro-zoning (SMR) of territories; describes the initial data for conducting SMR; considers methods for displaying the results of seismic micro-zoning and their use in the design of structures and zoning of territories. The seismogenic situation of the Altai Territory and the effect of increasing the intensity of seismic activity on the characteristics of soils are analyzed.

Keywords: seismic impact, seismic micro-zoning, change of physical and mechanical properties of soils, engineering-geological method, results of micro-zoning.

CELLULAR CONCRETES BASED ON FROM COAL BURNING

Yu. V. Gilmiyarova, K. E. Alieva, K. V. Maksimova

Altai state technical university of I. I. Polzunov, Barnaul

The article presents the technology of production of non-autoclaved cellular concrete based on raw cement, acid ash CHP and blast furnace granulated slag. The technology provides optimal material characteristics in terms of density - strength ratio with characteristics close to the autoclave material. As a result of the work performed, a change in the strength characteristics of non-autoclaved aerated concrete depending on the composition of the raw mixture was established.

Keywords: cellular concrete cement, acid ash CHP, granulated blast furnace slag.

THERMAL INSULATION PLASTER SOLUTIONS

Yu. V. Gilmiyarova, A. Yu. Frolov

Altai state technical university of I. I. Polzunov, Barnaul

In this article, the influence of modifying additives was considered: superplasticizer C-3, Ufapore TCO pore-forming agent and Vinnapas 4042H dispersion polymer powder on the properties of cement binder. These additives make it possible to obtain a productive binder with a reduced density and the desired strength. As a result of the work carried out, it was found that additives give modified binders certain properties necessary for plastering, such as reducing density while maintaining the necessary strength, plasticity, workability and reliable adhesion to the surface.

Keywords: plaster mortar, modifying additives, strength.

PRODUCTION OF WORKS ON THE DEVICE OF MONOLITHIC REINFORCED CONCRETE BOTTOM CONE TYPE, DISCHARGE SLOPE TO THE CENTER OF THE COMPACTOR

I. K. Kalko¹, S. I. Kalko², V. K. Kozlova¹, D. I. Ostapova¹

¹ Altai state technical university of I. I. Polzunov, Barnaul

² Stroygips research and production association, Barnaul

The article presents the results of the production of work on the maintenance of monolithic reinforced concrete of the bottom of the cone type, inclination to the center of the sludge compactor (1 and 2) in the city of Barnaul. Based on the results of the work performed, you can go to the devices of the monolithic reinforced concrete support of the hollow conical type of the support of the sludge compactor (1 and 2).

Keywords: sludge compactor, reinforcement, strips, reinforcement and concrete joint, lighthouse frames, form-work, tension, devices, gripper, rod, scaffolds, concreting, vibrator, hothouse, winter concreting, hardening temperature, trays.

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

LAYING OF ENGINEERING NETWORKS THROUGH HIGHWAYS WITHOUT OPENING THE GROUND BY MEANS OF PUNCTURE

I. K. Kalko¹, S. I. Kalko², G.S. Merentsova¹, D. I. Ostapova¹

¹ Altai state technical university of I. I. Polzunov, Barnaul

² Stroygips research and production association, Barnaul

The article shows the results of works on laying of water pipe PE 80 SDR 17 with diameter 225 × 12,8 in metal pipe with diameter 426 × 6 mm without soil opening by puncture method/

Keywords: laying, guides of frames, plastic and metal pipe, case, casing, catch, well, ditch, depth, steepness, slope, completion, level, ground waters, digging, cap, basic boots, jack, приямок, conical tip.

PRODUCTION OF WORK ON THE DEVICE MONOLITHIC REINFORCED CONCRETE CENTRAL HOLLOW CONE TYPE SUPPORT SLUDGE COMPACTOR

I. K. Kalko¹, S. I. Kalko², D. I. Ostapova¹

¹ Altai state technical university of I. I. Polzunov, Barnaul

² Stroygips research and production association, Barnaul

The article presents the results of work on the construction of a monolithic reinforced concrete central hollow conical type of sludge compactor support (1 and 2) in the city of Barnaul. Based on the results of the work performed, you can proceed to the installation of the sludge compactor equipment (1 and 2).

Keywords: sludge compactor, reinforcement, strips, reinforcement and concrete joint, lighthouse frames, form-work, tension, devices, grab, rod, scaffolds, concreting, vibrator, hothouse, winter concreting, hardening temperature, trays, support, hollow, conical.

LAYING OF A WORKING PLASTIC PIPE IN A CASING THROUGH HIGHWAYS

I. K. Kalko¹, S. I. Kalko², D. I. Ostapova¹

¹ Altai state technical university of I. I. Polzunov, Barnaul

² Stroygips research and production association, Barnaul

The article presents the results of laying a working plastic pipe in a casing through highways.

Keywords: gasket, guide frames, plastic and metal - pipe, casing, gripper, well, pit, depth, welding, slope, docking, level, ground water, digging, plug, stack, wooden sliders, support, tightening clamps, link.

ANALYSIS OF THE BUCKLING TYPES OF STEEL THIN-WALL COLD-FORMED ROD ELEMENT

A. A. Kikot, K. A. Krasulina

Altai state technical university of I. I. Polzunov, Barnaul

The article simulates the operation of a centrally loaded thin-walled rod element with a C-shaped cross section using the SIMULIA Abaqus/CAE Student Edition 2020 computational complex, which implements the finite element method. Characteristics of the material, boundary conditions, type of finite element, finite element mesh division are given. As a result, almost all possible forms of buckling of a thin-walled rod element have been achieved by changing the length of the rod, the thickness of the metal and the proportions of the cross section. They are: local buckling, distortional buckling, flexural and flexural-torsional buckling.

Keywords: light steel thin-walled structures, C-profile, SIMULIA Abaqus/CAE, center-loaded bar element, buckling shapes.

COMPARATIVE ANALYSIS OF MODELING OF A STEEL TRUSS IN TEKLA STRUCTURES AND AUTODESK REVIT SOFTWARE

A. A. Kikot, A. A. Kunts

Altai state technical university of I. I. Polzunov, Barnaul

The article is devoted to the review of modern software systems for building information modeling of a steel truss. Methods for constructing a steel truss in Autodesk Revit and Tekla Structures software are considered in detail and a comparative analysis of the use of these software tools is carried out according to several criteria.

Keywords: Tekla Structures, Autodesk Revit, BIM, steel truss, building information model.

ABOUT THE POSSIBILITIES OF BUILDING INFORMATION MODELS OF HISTORICAL BUILDINGS BASED ON LASER SCANNING TECHNOLOGY

A. I. Kirillova, A. A. Sapai, L. N. Pantushina

Altai state technical university of I. I. Polzunov, Barnaul

The article describes the possibility of creating information models of historical buildings based on laser scanning technology. The application of this technology in the cities of Russia and abroad is considered. Questions concerning the classical approach to the creation of an information model of a historical building are also raised, and arguments are given confirming the advantage of laser scanning of such buildings.

Keywords: technologies, historical building, laser scanning, information modeling, Revit, Re-CAP Pro.

ON THE DYNAMICS OF CHANGES IN THE CONTENT IN THE ATMOSPHERE OXYGEN AND CARBON DIOXIDE

V. C. Kozlova, A. M. Manokha, A. V. Wolf

Altai state technical university of I. I. Polzunov, Barnaul

The questions of the influence of human life activity on the dynamics of the oxygen content in the atmosphere are considered. At present, it can be stated that with the development of various technologies related to the use of oxygen,

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

the consumption of free oxygen is increasing and the demand for it is constantly increasing. Measures are needed to control the oxygen content in the atmosphere and to replenish it.

Keywords: oxygen, carbon dioxide, pollution, technologies.

4D MODELING OF BUILDINGS USING AUTODESK NAVISWORKS

E. A. Krivosheitseva, M. N. Kornitskaya

Altai state technical university of I. I. Polzunov, Barnaul

The article discusses the principles of developing a 4D model in Autodesk Navisworks using Microsoft Project to build a calendar and network schedule and Autodesk Revit to create a 3D model.

Keywords: 4D model, Autodesk Navisworks, Autodesk Revit, Microsoft Project, calendar-network graph, detailing, space-time model, 3D model, BIM, information model.

EXAMPLES OF REALIZING ENGINEERING DEPARTMENTS COOPERATION WITH THE HELP OF BUILDING INFORMATION MODELLING TECHNOLOGY

A. V. Kuleshova, E. R. Kirkolup

Altai state technical university of I. I. Polzunov, Barnaul

The article gives the analysis of engineering e-paperwork of the company based on Autodesk BIM 360. The analysis includes documents loading and the appointment of credentials to the directory storages, starting documents approval, making feedback as well as stamping in a workflow, giving a QR-code and e-signature as a result of obtainment for approval for documents.

Keywords: Building Information Modelling technology (BIM), engineering paperwork, data storage, data analysis, approval for documents, stamping in a workflow, e-signature.

STABILIZATION OF WATERLOGGED SOIL BASES

V. N. Lebzak

Altai state technical university of I. I. Polzunov, Barnaul

When applying chemical methods of strengthening soils, it is necessary to consider two provisions in road works – fixing the soil as a pavement and strengthening the soil as a road foundation. When strengthening soils as road bases, there is a need to give soils only some stability. It is necessary that soils with an excess of water in them would not lose their minimum bearing capacity. This sometimes occurs in some natural soils when they are waterlogged. Fixing soils when some of their properties change can be called soil stabilization.

Keywords: ferruginous vitriol, properties, stratum, soft-plastic loam, plastic sandy loam, stabilization.

DEVELOPMENT OF A TEMPLATE FOR ECTOCONTROL EQUIPMENT FAMILIES IN AUTODESK REVIT FOR THE «SMART HOME» SYSTEM

V. V. Logvinenko, S. M. Gordienko

Altai state technical university of I. I. Polzunov, Barnaul

The article is devoted to the development of Ectocontrol equipment templates for the Smart Home system, such as a motion sensor, a leak sensor with wired and wireless connection, a wireless temperature sensor, a gas leak detector, a controlled wireless and wired socket, a smoke detector, a control device, a wireless removable drive for a crane. The Autodesk Revit family template, which is used to develop project documentation for Smart Home systems in Autodesk Revit, has been updated.

Keywords: Autodesk Revit templates, Smart Home system, sensors, control device, Ectocontrol.

TECHNOLOGY AND ORGANIZATION OF INSTALLATION OF CURB FENCES ON ROUNDINGS

V. N. Lyutov, S. A. Ananiev

Altai state technical university of I. I. Polzunov, Barnaul

The article describes the results of carried out by the authors study of the edge of curb's gash angle's size dependence at various radii of rounding. The authors analyzed daily practice of curb installation using modern geodetic instruments, geolocation systems, etc. Based on the regulatory and technical documentation, the authors describe the process of preparing and installing curbstones, give advice on choosing a special tool.

Keywords: curb fences, curb, curb dimensions, GOST curb, curb installation, rounding options, tools for work, diamond discs, types of discs for construction work.

METHODS FOR CALCULATION OF FENCE OF THE PIT OF BUILDINGS UNDER CONSTRUCTION BY SOIL CONCRETE PILE USING THE SOFTWARE COMPLEX «GEOWALL» IN THE CONDITIONS OF THE CITY OF BARNAU

V. N. Lyutov, M. A. Botabaev

Altai state technical university of I. I. Polzunov, Barnaul

An overview and preliminary calculation of the main parameters of the excavation fence are given based on the available initial data on soils from the development area in the city of Barnaul. In the article described the technique of the theory of modeling the work of the enclosing structure of the excavation from ground-concrete piles. The authors analyzed the step-by-step process of the method in the GeoWall software calculation system. The calculation results are presented in textual and graphical form, indicating the diagrams of the main forces and moments acting on the structure.

Keywords: pit fencing, software and calculation system, active pressure, passive pressure, horizontal movement of the pit wall, jet cementation of soils, lateral soil pressure.

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

STUDY OF MODERN METHODS OF RECONSTRUCTION OF INDUSTRIAL LARGE-SPAN BUILDINGS

V. N. Lyutov, K. A. Krasulina, Yu. S. Yurina

Altai state technical university of I. I. Polzunov, Barnaul

This article deals with modern methods of reconstruction of industrial large-span buildings. The industrial complex of our city includes buildings that need renovation. The main task of reconstruction is the organization of innovative and intensive production, which are resource efficient and comply with environmental regulations. The article describes the technologies and stages of work that form the basis of the reconstruction of the object. The article also discusses general methods and techniques for strengthening the load-bearing structures of industrial buildings, including one of the modern methods – strengthening structures using composite materials based on carbon fibers.

Keywords: technology, reconstruction, reconstruction of industrial buildings, strengthening, carbon fiber.

ORGANIZATION OF DRAINAGE SYSTEM DURING OPERATION OF RAINWATER SEWER SYSTEM

T. E. Lyutova

Altai state technical university of I. I. Polzunov, Barnaul

The article provides an overview and analysis of the main methods of installation of elements of rain and rainwater sewers and their installation locations, describes the causes of failures in the operation of point drainage systems. Based on the normative and technical documentation, author give a recommendations to the organization of the work of maintenance services, describe the main tasks of the work of such services in particular city, as an organized complex system. The author defines the basic requirements for the design of drainage systems.

Keywords: rainwater and stormwater sewerage, elements of a point catchment, organization of water drainage, types of rainwater and stormwater sewerage, maintenance and service of rainwater and stormwater sewerage.

STRENGTHENING THE ROLE OF LINGUISTICS AS AN ELEMENT IMPROVEMENT OF METHODOLOGY ENGINEERING STAFF TRAINING IN THE FIELD OF CONSTRUCTION, ROAD, HOISTING AND TRANSPORT, UTILITY MACHINES

V. V. Malinovsky

Altai state technical university of I. I. Polzunov, Barnaul

The article touches upon the problem of the insufficient level of teaching foreign languages in technical universities. The necessity of strengthening the role of disciplines of the humanitarian cycle in the process of teaching technical specialties is substantiated. Perspective directions for the development of linguistics as a whole are outlined within the framework of the general direction of development of technical universities.

Keywords: linguistics, philology, foreign languages in technical universities, technical translation, student education, training of engineers, teaching methods.

ABOUT THE POSSIBILITIES OF USING THE PRINCIPLES OF SYNERGETICS IN THE LEARNING PROCESS STUDENTS OF TECHNICAL SPECIALTIES ON THE EXAMPLE OF INDUSTRIAL AND CIVIL CONSTRUCTION

V. V. Malinovsky, D. V. Tyshchenko

Altai state technical university of I. I. Polzunov, Barnaul

The article outlines the basic principles of applying the scientific paradigm of synergetics in teaching students of technical specialties of universities. General directions for the development of the methodology for teaching disciplines of «Industrial and civil engineering» (ICC) profile based on a synergistic approach are given.

Keywords: synergetics, construction, ICC, technical specialties, teaching methods.

CALCULATION OF FIRE-FIGHTING VENTILATION SYSTEMS WITH MECHANICAL AIR STIMULATION WHEN CREATING AN INFORMATION MODEL OF A RESIDENTIAL APARTMENT BUILDING

K. V. Matveev, I. A. Bakhtina

Altai state technical university of I. I. Polzunov, Barnaul

The method of calculation of fire-fighting ventilation with mechanical stimulation of air when creating an information model of a residential apartment building is considered.

Keywords: fire-fighting ventilation system, pressure losses, fire-fighting valves, air flow, overpressure.

ANALYSIS OF THE PLATEIA SOFTWARE COMPLEX FOR DESIGN, CONSTRUCTION AND RECONSTRUCTION OF HIGHWAYS

N. V. Medvedev, O. V. Agafonov

Altai state technical university of I. I. Polzunov, Barnaul

It is already impossible to imagine modern life without the use of various modern technologies, including computer ones. It is already difficult to find engineering projects for the construction, repair and reconstruction of highways that are regularly used using computer programs. But in a constant mode, motor transport design systems for roads are used not only in design organizations, but also in many construction organizations for the convenience of working with special documentation. There are a huge number of different road design software on the market, and it can be difficult to choose which one to use. From this task, an analysis of the Plateia complex was carried out.

Keywords: Plateia, road CAD, 3D model of a road, cross section, longitudinal profile, computer modeling.

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

SOIL STABILIZATION OF THE WORKING LAYER OF THE EARTH CANVASES WITH THE USE OF POLYMER-MINERAL «NICOFLOK» SUPPLEMENTS

G. S. Merentsova, N. V. Medvedev, A. A. Dobrynina

Altai state technical university of I. I. Polzunov, Barnaul

Currently, taking into account the constant increase in prices for building materials and products, the issue of using local road construction materials, which are in the immediate vicinity of the highway under construction, is particularly acute. Often local materials do not meet the requirements of regulatory documents, in this case it is recommended to use special additives-stabilizers for materials, one of which is the additive of PMK «Nicolok».

Keywords: highways, cold recycling, polymer-mineral composition, roadbed, working layer of roadbed.

EFFECTIVE METHODS OF SURFACE TREATMENT OF ASPHALT CONCRETE COATINGS

G. S. Merentsova, N. V. Medvedev, M. A. Kulimov

Altai state technical university of I. I. Polzunov, Barnaul

Any road surface wears out during operation due to abrasion under the wheels of cars and exposure to weather and climatic conditions. For the bearing layer of the coating, it is reasonable to use surface treatments, the device of which is performed using bitumen, as well as bitumen emulsions, which are increasingly being used with this technology. This article presents an analysis of information on various types of surface treatments, including new technologies for the wear layer device. In addition, this article revealed effective methods of surface treatment of asphalt concrete coatings.

Keywords: highways, surface treatment, asphalt concrete coating, road coating.

SUBSTANTIATION OF RATIONAL WAYS TO PREVENT ICE FORMATION ON HIGHWAYS IN MOUNTAINOUS CONDITIONS OF THE ALTAI TERRITORY AND THE ALTAI REPUBLIC

G. S. Merentsova, N. V. Medvedev, D. A. Suraev

Altai state technical university of I. I. Polzunov, Barnaul

For more than a dozen years, the process of ice formation and the ice itself have been one of the main problems on highways in the foothill and mountainous areas not only of the Altai Territory and the Altai Republic, but also of other similar regions. The causal reason for this problem is that during the construction of mountain roads, in the middle of the last century, insufficient geological and hydrological surveys were often carried out in the places where the tracks were laid, and therefore, the development and implementation of rational methods to prevent ice formation in such areas is currently being required.

Keywords: ice formation, ice, ways to combat ice, mountain conditions, road safety, highways.

DEVELOPMENT OF RATIONAL METHODS FOR FIGHTING WITH ICE ON ARTIFICIAL STRUCTURES OF HIGHWAYS

G. S. Merentsova, N. V. Medvedev, I. A. Taratynov

Altai state technical university of I. I. Polzunov, Barnaul

Legacy is one of the main problems on highways and artificial structures in the foothill and mountainous regions of the Altai Territory and the Altai Republic. This problem has existed for more than a dozen years and is often used to release ice on artificial structures, is inefficient, so there is a need to develop new waste with overlap on buildings.

Keywords: icing, icing formation, icing limitation methods, roads, culverts, artificial structures.

STABILIZING ADDITIVES FOR STABILIZING THE WORKING LAYER OF THE GROUND PANE DURING CONSTRUCTION, RECONSTRUCTION OF HIGHWAYS

G. S. Merentsova, K. S. Perevalov

Altai state technical university of I. I. Polzunov, Barnaul

At present, the foundation of roads is one of the most urgent tasks of road construction not only in the Altai Territory, but also in Russia. To solve this problem, it is necessary to consider the process of constructing pavement bases of new, modern materials and technologies. Thus, the stabilizing effect on environmental pollution of the soil cover during the construction, reconstruction and repair of roads is used. An analysis of the experience of their application will help to find the most optimal stabilizers for the conditions of the Altai Territory.

Keywords: soil stabilization, stabilizers, polymer, binder, mitigation and suspicion technology, treatment, highways.

ANALYSIS OF THE DISTINCTIVE FEATURES OF PULSED HYDRO-VOLUME DRIVES

A. V. Mitusov, A. A. Mitusov

Altai state technical university of I. I. Polzunov, Barnaul

The need to establish provisions defining the concept and content of the term «pulsed hydro-drives» (ICP), their types and place in the structure of the common system, hydraulic drives, is due to the fact that the classification of GOST 17752-81 covers only continuous hydro-drives. In the work, the hallmarks of continuous action drives are considered hierarchical. It has been established that the most important feature of ICP should be considered to be the ability to create force effects on the processing facility, exceeding the reactive impacts on the machine's carrier. The most intensive development and widespread introduction of ICP was in the mid-20th, due to the increased capabilities of engineering technology/

Keywords: continuous hydro drives, pulsed hydraulic drives, power impacts, reactive impacts, machine carrier, power impulse, led link.

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

STUDYING THE IMPACT OF STREET PARKING LOTS ALONG THE ROAD ON TRAFFIC ACCIDENTS IN BARNaul

I. M. Mikhailidi, I. A. Zaitsev

Altai state technical university of I. I. Polzunov, Barnaul

The transport system of a modern metropolis is the basis of the socio-economic development of the city and is a complex system of interaction between various fields of activity, providing comfort and convenience for residents and guests of the city in accordance with modern standards. An analysis of the current state of transport infrastructure of cities, traffic management systems, and scientific research in the field of traffic management shows the high relevance of the scientific direction associated with the development and management of parking systems. The shortage of parking space in cities puts the tasks of parking organization at one of the central places in solving the transport problems in the cities. In this paper, a geographic information system is used to analyze the location of street parking lots along the roads and their capacities. A 5-kilometer section of the main street of Barnaul was chosen as a model. The result of the work is the proposed method for identifying parking lots along the carriageway and obtaining statistical indicators of their placement and capacity. Some ways are also considered to solve the problem of street parking lots located along the carriageway of roads and streets.

Keywords: parking, vehicle, parking place, traffic accident (RTA), street-road network, accident rate, roadway, geographic information system, GIS, spatial analysis.

MAIN METHODS OF FIGHTING QUICKSANDS DURING CONSTRUCTION OF BUILDINGS AND STRUCTURES

I. V. Noskov, S. A. Ananев, K. I. Noskov

Altai state technical university of I. I. Polzunov, Barnaul

At the beginning of this century, it was believed that the swim of rocks is an almost insurmountable obstacle in the construction of buildings and structures. As construction equipment and knowledge of the nature of quicksands developed, measures to combat this adverse geological phenomenon were also improved. Currently, methods for improving the properties of quicksands are widely used, the choice of which is determined by the engineering and geological conditions of the area where the construction object is located, the type and structural features of the structure, the technological features of the method, and economic calculations.

Keywords: quicksands, soil, water, method, drainage, fixation, freezing, silication, caisson methods, filtration coefficient, groundwater level.

QUICKSAND AS DANGEROUS GEOLOGICAL PROCESSES

I. V. Noskov, S. A. Ananев, K. I. Noskov

Altai state technical university of I. I. Polzunov, Barnaul

The quicksand phenomenon occurs in a special state of rocks. Modern engineering geology calls the quicksand «water-saturated soil, which, when opened, comes into motion and takes on the character of a fluid body». Sands, clay sands, sandy loams can pass into a floating state. There are known cases of transition to a quicksand state and loam, as well as lake silt. Thus, a quicksand is not a certain type of rock, but a special state of rock saturated with water.

Keywords: quicksand, soil, water, properties, dilution, concussion, «plug», «catch», rock swim, soil particles washing out, suspended state.

WINTER MORTARS FOR INSTALLATION OF PANELS OF BUILDINGS

G. I. Ovcharenko, A. V. Viktorov, A. I. Zverev, V. A. Shvets

Altai state technical university of I. I. Polzunov, Barnaul

It is shown that the practical work on the installation of the structures of buildings in Siberia continues to minus 25°C. This requires high dosages of antifreeze additives to ensure the strength of the mortars. However, such high dosages cannot be administered to the plants, as this will not allow to deliver the ready-made mortar to the object, and even more so to work with it for a long time due to the rapid loss of mobility. Therefore, a technology for introducing dry antifreeze additives at the facility into a ready-made delivered mortar was proposed and tested. This, when working in small portions, allows you to provide the required conditions/

Keywords: winter mortars, installation of buildings Efficiency, antifreeze additives, potash and sodium nitrite, retention of mobility, provision of required conditions.

APPLICATIONS OF NOISE INSULATION MATERIALS AT CONSTRUCTION OF AIRPORT TERMINALS

M. A. Osipova, M. Yu. Korolev

Altai state technical university of I. I. Polzunov, Barnaul

The article discusses issues related to the use of effective sound and vibration-absorbing materials that will allow airports to provide favorable conditions for passengers and employees of the aviation sector in the air terminal complexes. Examples of the use of modern building materials in the field of protection from aircraft noise are given on the example of recently built and reconstructed air terminals on the territory of the Russian Federation.

Keywords: air terminal complex, aircraft noise, sound and vibration absorbing materials, sound level.

WOODEN BRIDGES. BRIDGE CONSTRUCTION WITH THE USE OF WOOD IN THE PAST AND NOW

M. A. Podyapolskaya, I. O. Verbitsky, E. V. Verbitskaya

Altai state technical university of I. I. Polzunov, Barnaul

The article discusses the ways of using wood as a material for the construction of bridges, the history of the development of wooden bridge construction, and also contains judgments on the feasibility of using this material in modern construction. Wood as a building material is quite widely used in the construction of buildings and structures, due to the

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

presence of a number of positive properties, which include sufficiently high strength, lightness, and comparative simplicity of work. Under favorable operating conditions, wooden structures are capable of serving for a long time. Along with the advantages of wood over other materials, there are also significant disadvantages that complicate the work and require special attention. In the era of industrialization, materials such as iron and concrete came to the fore in construction, and wood was practically forgotten and used only as a decorative element. At the same time, humanity has begun to look for ways to simplify technological processes in addition to ways to minimize the harmful effects of the use of certain materials on the environment. Wood is a fairly eco-friendly material, so today it is gaining popularity again. Modern materials made of wood, such as glued solid wood and timber, modified wood are used in multi-storey wooden house construction and in wooden bridge construction.

Keywords: wood, bridge, wooden bridge construction, wood in construction, wood as a building material, wooden bridges.

ABOUT THE CAUSES OF THE COLLAPSE OF A HANGAR MADE OF COLD-BENT STEEL ARCHES

T. I. Saurina, I. V. Kharlamov

Altai state technical university of I. I. Polzunov, Barnaul

The article analyzes the main causes of the collapse of the hangar. Recommendations are given to prevent possible collapses of buildings of such a structural system.

Keywords: metal structures, cold-bent thin-walled arches, structural solutions of nodal joints.

STUDY OF THE COMPLIANCE WITH THE TECHNOLOGY OF INSTALLATION OF BEARING STRUCTURES DURING THE CONSTRUCTION OF A LARGE-PANEL BUILDING

A. A. Sobolev, D. A. Reutov

Altai state technical university of I. I. Polzunov, Barnaul

The article addresses the problem of compliance with the technology of installation of prefabricated reinforced concrete structures of multi-storey large-panel buildings. The article explores the main disadvantages of the production of construction and installation works. The article also assesses the degree of materiality of the defects and the need to eliminate them.

Keywords: large-panel buildings, work production technology, installation of structures, deformation, settlement, installation defects.

ANALYSIS OF AUTOMATION TOOLS FOR CALCULATING THE AMOUNT OF WORK FOR ESTIMATES USING INFORMATION MODELING BASED ON REVIT - 5D ESTIMATES

V. V. Sokolova, D. D. Shershneva

The article discusses setting volumes in Revit using parameters and the process of transferring this information to the 5D Estimate. The peculiarities of working with parameters when calculating volumes are revealed. The requirements for the elements of the digital information model presented at the design stage are considered.

Keywords: Revit, parameters, families, standard sizes, scope of work, digital information model, estimated cost.

THE POSSIBILITY OF USING POLYMER COMPOUNDS IN THE RECONSTRUCTION OF WOODEN BUILDINGS OF HISTORICAL AND ARCHITECTURAL VALUE

I. A. Spirin, L. N. Pantyushina, E. V. Verbitskaya

Altai state technical university of I. I. Polzunov, Barnaul

The article is devoted to the possibility of using polymer compositions based on epoxy resins to restore the bearing capacity of damaged wooden elements of non-existent structures of buildings of historical and architectural value.

Keywords: wood, cracks, defect, restoration, beam, polymer composition, epoxy resin, plasticizer, injection, restoration of bearing capacity.

CREATING A SPECIFICATION FOR VENTILATION SYSTEMS IN REVIT

D. K. Starichenko, I. A. Bakhtina

Altai state technical university of I. I. Polzunov, Barnaul

The process of creating specifications of ventilation systems in REVIT is considered.

Keywords: ventilation system, model, air distributors, specification, Revit.

ABOUT LOW QUALITY OF THE SURVEY OF BUILDINGS AND STRUCTURES IN THE ALTAI REGION

Yu. V. Khalturin, N. E. Lopukhov

Altai state technical university of I. I. Polzunov, Barnaul

Reports on the survey of the technical condition of buildings are considered; compliance of the scope of works for the survey of buildings with the requirements of normative documents is assessed. The level of qualification and experience of specialists who conducted the surveys of buildings, their readiness to carry out such work are assessed. The typical mistakes made during the inspection of buildings are analyzed. The correctness of conclusions and recommendations for the elimination of identified defects of building structures are evaluated.

Keywords: report on the survey of the technical condition of a building, structural assessment, category of technical condition, scope of work, requirements of normative documents, actual values of evaluated parameters, defects and damages, seismicity, conformity assessment.

CONTENTS, ABSTRACTS AND KEYWORDS OF PAPERS

STUDY OF THE THERMOPHYSICAL PROPERTIES OF A BULK BALL-SHAPED INSULATION

E. V. Khatina, M. A. Botabaev

Altai state technical university of I. I. Polzunov, Barnaul

The article deals with the problem of the formation of water condensate during the insulation of already commissioned housing stock. In the article are considered the consequences of this phenomenon in the form of destruction of the structure and a decrease in the thermal properties of the heat-insulating material. The question is raised about the need to introduce into practice the use of a material that could not absorb moisture or would have the property of being quickly removed from the structure, dried or replaced with a new one. It the article was carried out a theoretical and experimental analysis, was revealed the dependence of the heat transfer resistance on the diameter, contact area and thermal conductivity of the bulk insulation.

Keywords: water condensate, thermal conductivity, thermal resistance.

INSTALLATION OF FOUNDATIONS ON DRIVEN PILES IN CONDITIONS OF DENSE URBAN DEVELOPMENT

B. M. Cherepanov, Yu. S. Batrakova

Altai state technical university of I. I. Polzunov, Barnaul

Compaction of urban development by erecting single-section high-rise buildings with a foundation of pile foundations is one of the hot topics today. In the soil environment, vibrations occur that have a devastating effect on the foundations of nearby buildings and structures when constructing foundations from pile foundations. The article presents the results of the analysis of regulatory documentation in order to determine specific numerical values in conditions of dense urban development. The minimum allowable distances to existing buildings are calculated when constructing pile foundations on loess collapsible. Practical methods for reducing safe distances are proposed. Field experiments were carried out to determine safe distances for various parameters of trenches that interrupt the propagation of dynamic waves.

Keywords: pile foundations, dense urban development, infill development, allowable distances, soil, dynamic influences.

ПРАВИЛА ОФОРМЛЕНИЯ СТАТЬИ

Статья объемом от 3 страниц (по согласованию с редакцией, допускаются статьи объемом от 3 до 10 страниц), имеющая индекс УДК, аннотацию и ключевые слова на русском языке (в начале текста статьи) с приложением в отдельном файле перевода названия, аннотации, ФИО авторов и ключевых слов на английском языке, а также сведений об авторах (учёной степени, звания и места работы, e-mail и/или контактного телефона) должна отвечать следующим требованиям:

Работы принимаются в текстовом редакторе Microsoft Word.

Во вкладке «Разметка страницы»: используется размер бумаги формата А4, ориентация листа книжная. Поля: верхнее – 3,5 см; нижнее – 2,5 см; левое – 2,5 см; правое – 2,5 см; переплет – 0 см. В диалоге «Колонки» – «Другие колонки» выбирается расположение текста «в две колонки», устанавливается ширина колонок – 7,65 см, промежуток между ними – 0,7 см. В диалоге «Расстановка переносов» выбирается «авто».

Во вкладке «Вставка» выбирается «Верхний колонтитул» – «Пустой», далее появляется вкладка «Конструктор», включаются "Особый колонтитул для первой страницы" и "Разные колонтитулы для четных и нечетных страниц". Колонтитулы от края: верхний – 2,0 см; нижний – 2,0 см.

В верхнем колонтитуле указывается: на титульной странице – «особый колонтитул»; на чётных страницах – инициалы и фамилия автора («Arial», 10 пунктов, прописные); на нечётных страницах – название статьи («Arial», 10 пунктов, прописные). Нумерация страниц проставляется шрифтом размером «Arial», 12 пунктов, курсив. Расположение нумерации – внизу страницы в нижнем колонтитуле, для четных страниц выравнивание по левому краю, для нечетных по правому.

Структура статьи в обязательном порядке должна содержать:

- УДК (размещение в левом верхнем углу документа);
- Названия статей набираются прописными буквами (шрифт «Arial», размер шрифта текста – 14 пунктов, полужирный) по центру документа;
- Инициалы и фамилии авторов размещаются под названием статьи (шрифт «Arial», размер шрифта текста – 12 пунктов);
- аннотация (шрифт «Arial», размер шрифта – 10 пунктов, курсив, красная строка – 0,8 см, интервал между строками «одинарный») – текст (объемом 150 - 200 слов), отражающий актуальность, цель, методы исследования, полученные результаты;
- ключевые слова (не менее 10 слов или словосочетаний) (шрифт «Arial», размер шрифта – 10 пунктов, курсив, красная строка – 0,8 см, интервал между строками «одинарный»);
- основной текст (для основной части текста используется шрифт «Arial», размер шрифта основного текста – 10 пунктов, красная строка (отступ) – 0,8 см, интервал между строками «одинарный»);
- список литературы (шрифт «Arial», размер – 9 пунктов) оформляется в соответствии с ГОСТ Р 7.0.5 – 2008 «Библиографическая ссылка. Общие требования и правила составления»;
- сведения об авторах (фамилия, имя, отчество, учёная степень, звание, место работы, e-mail и/или контактный телефон – обязательно, индикаторы ORCID – по желанию);
- на английском языке перевод названия статьи, ФИО авторов, аннотации и ключевых слов в отдельном файле.

Для создания формул и таблиц используются встроенные возможности Microsoft Word. Рисунки цифрового формата (в электронном виде) создаются средствами Microsoft Word или другими программами и вставляются в нужное место документа.

Размеры рисунков не должны превышать границы полей страницы основного текста документа с учетом подрисуночной подписи. Рисунки издательством не редактируются. Если рисунок по ширине превышает размер колонки, то необходимо ставить перед ним и после него разрыв раздела на текущей странице и располагать рисунок в начале или в конце страницы.

Рисунки, надписи и объекты Microsoft Word должны перемещаться вместе с текстом, т. е. быть не поверх текста!

При приеме работы в печать обязательно наличие твердой копии и экспертного заключения!

К публикации принимаются статьи, ранее нигде не опубликованные и не представленные к печати в других изданиях.

Публикации принимаются на русском и английском языках.

К статье прилагается согласие на обработку персональных данных.

Материалы журнала (постатейно) и сопроводительная документация собираются и передаются в редакцию ответственным за выпуск лицом.

Все статьи будут проверены в системе «Антиплагиат», при оригинальности менее 75 % статьи будут возвращены авторам.

Контактная информация:

Стопорева Татьяна Александровна – тел.: 89039905960, e-mail: orpд_st@mai1.ru

Степанова Анна Александровна – тел. 89967044850, e-mail: editor.altgtu@mail.ru

ОТЗЫВ СТАТЕЙ

Были выявлены случаи дублирования публикации в журнале «Ползуновский альманах». Редакцией журнала было инициировано расследование по всем дублирующим публикациям. Выполнена тотальная сверка всех статей, опубликованных в журнале «Ползуновский альманах» со статьями в других журналах. По факту было выявлено 9 случаев, когда статьи были опубликованы в журнале «Ползуновский альманах» с одновременной и более ранней публикацией в других журналах. В связи с этим было проведено собрание редколлегии журнала и принято решение о ретракции дублирующих научных статей из журнала.

Сведения о ретрагированных научных статьях:

1. О кинетике формирования диффузионного слоя при борировании среднеуглеродистой и высококуглеродистой сталей / И.А. Гармаева, А.М. Гурьев, Б.Д. Лыгденов, Мэй Шунчи, Е.А. Кошелева // Ползуновский альманах. 2017. № 4 (Т.5). С.123-127.
2. Миляева Л.Г. Оценка уровня инновационности учебного процесса, базирующаяся на опросе потребителей образовательных услуг // Ползуновский альманах. 2017. № 4 (Т.4). С.228-231.
3. Маутканова А.Т., Казахская диаспора в Российской Федерации в межпереписной период 2002-2010 гг // Ползуновский альманах. 2017. № 4 (Т.4). С.222-224.
4. Попова А.А., Яковлев В.И. Сейдурров М.Н. Структурно-напряженное состояние механокомпозита "гидроксиапатит-интерметаллид" для нанесения детонационных биосовместимых покрытий на медицинские имплантаты // Ползуновский альманах. 2015. № 4. С.52-55.
5. Осокин Ю.А., Кочетков И.Н. О контроле тепловых процессов в объемной среде // Ползуновский альманах. 2017. № 4 (Т.3). С.173-175. Текст непосредственный.
6. Плазменно-порошковая наплавка износостойких покрытий системы Ni-Cr-B-Si-Fe/Wc, модифицированных наноразмерным Al_2O_3 / М.В. Радченко, Т.Б. Радченко, А.Н. Смирнов, К.В. Князьков // Ползуновский альманах. 2015. № 4. С.62-68.
7. Сравнение структуры и свойств диффузионного слоя сталей в литом и деформированном состоянии после термоциклирования при химико-термической обработке / А.М. Гурьев, О.А. Власова, С.Г. Иванов, И.А. Гармаева, Мэй Шунчи, Люи ЧАО // Ползуновский альманах. 2017. № 4 (Т.5). С.5-10.
8. Бендрикова А.Ю. Социологический подход к изучению проблемы трудоустройства выпускников вузов // Ползуновский альманах. 2017. № 4 (Т.4). С.56-59.
9. Радченко М.В., Шевцов Ю.О., Радченко Т.Б. Разработка технологии газорошковой наплавки защитных покрытий на элементы котлов с "Кипящим слоем" // Ползуновский альманах. 2015. № 4. С.100-107.

ПОЛЗУНОВСКИЙ АЛЬМАНАХ

Электронное периодическое научное издание

Статьи опубликованы в авторской редакции

Компьютерная верстка, макет: И. В. Карелина

Учредитель журнала

Федеральное государственное бюджетное
образовательное учреждение высшего образова-
ния «Алтайский государственный технический
университет имени И. И. Ползунова»

Издательство Алтайского государственного
технического университета им. И. И. Ползунова
656038, г. Барнаул, пр-т Ленина, 46

ISSN 2079-1097

Издательство АлтГТУ им. И. И. Ползунова
656038 г. Барнаул, пр. Ленина, 46, каб. 113 главного корпуса
тел./факс +7 (3852) 29-09-46
сайт: <http://ipc.altstu.ru/> e-mail: altgtu@mail.ru
Дизайн обложки: Р.С. Жуковский, доц. каф. ТИАрх

НА ОБЛОЖКЕ:

Главный корпус АлтГТУ, памятник И. И. Ползунову, г. Барнаул