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Аннотация. В районах с экстремальными природно-климатическими условиями срок эксплуатации из-

делий из полимерных композиционных материалов в большей степени зависит от процессов старения и 
коррозии, чем от механического воздействия. Поскольку влага является одним из главных факторов старе-
ния, то исследование воздействия влаги на экспонированные конструкционные полимерные материалы 
наиболее важны для понимания процессов их старения, в том числе и на экспонированные стекло-
углепластики. Методом инфракрасной спектроскопии установлено отсутствие химического взаимодей-
ствия связующего на основе Эд-20 стекло-углепластика и влаги. Введение в эпоксидное связующее стекло-
ткани приводит к взаимодействию поверхностных гидроксилов стекловолокна с эпоксидными группами смо-
лы, увеличивая количество полярных групп (R-OH) и исходное неравновесное состояние в стекло-
углепластиках.  По этой причине после цикла сорбции и десорбции влаги, установлены необратимые изме-
нения предела прочности на трехточечный изгиб и предела прочности на растяжение, а именно уменьшение 
их значений, тогда как значения предела прочности на растяжение и изгиб у углепластика остались на том 
же уровне. Результатом сопоставления коэффициентов диффузии при сорбции и десорбции влаги стекло-
углепластиков до и после экспонирования является обоснование релаксации исходной неравновесной струк-
туры, возникшей при формировании, стекло-углепластиков на начальном этапе экспонировании в зоне хо-
лодного климата. После экспонирования в течение 12 месяцев в зоне холодного климата выявлен обрати-
мый эффект пластифицирующего воздействия влаги на предел прочности на трехточечный изгиб и на 
растяжение исследуемых стекло-углепластиков. Таким образом, в летний период суточные циклы сорбции и 
десорбции влаги не влияют на механические свойства исследуемых стекло-углепластиков.  

Ключевые слова: стеклоткань, углеткань, коэффициент диффузии, пластификация, структурная 
релаксация, старение, исходная неравновесная структура, предел прочности на трехточечный изгиб, пре-
дел прочности на растяжение. 

Благодарности: Авторы выражают благодарность центру коллективного пользования Федерального 
исследовательского центра Якутского научного центра СО РАН за предоставленную возможность прове-
дения исследований на их оборудовании. 

Финансирование: Работа выполнена в рамках государственных заданий Министерства науки и выс-
шего образования Российской Федерации (FWRS-2024-0036 и FWRS-2024-0058) 
___________________________________________________________________________________________________________________________________________________________________ 

Для цитирования: Исследование воздействия влаги на экспонированные эпоксидные стекло-углепластики в 
зоне холодного климата / А. А. Гаврильева [и др.]. // Ползуновский вестник. 2025. № 4, С. 243–249. doi: 
10.25712/ASTU.2072-8921.2025.04.041. EDN: https://elibrary.ru/CKXJUS. 
___________________________________________________________________________________________________________________________________________________________________ 
  

https://elibrary.ru/CKXJUS
https://orcid.org/0000-0002-5919-495X
mailto:kychkinplasma@mail.ru
mailto:vasilyeva_edm@mail.ru
https://orcid.org/0000-0001-8953-9309
mailto:icen.kychkin@mail.ru
https://orcid.org/0000-0003-1540-8140
mailto:mkopyrin91@gmail.com
https://orcid.org/0000-0002-6018-6391
mailto:aital.markov@gmail.com


А. А. ГАВРИЛЬЕВА, А. К. КЫЧКИН, Е. Д. ВАСИЛЬЕВА, М. М. КОПЫРИН, А. Е. МАРКОВ 

244  ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 2025 

Original article  
 

EFFECTS OF MOISTURE ON CARBON FABRIC AND GLASS  
FABRIC REINFORCED EPOXY PLASTICS 

AFTER EXPOSURE TO A COLD CLIMATE ZONE 
 

Anna A. Gavrilieva 1, Anatoly K. Kychkin 2, Elena D. Vasilyeva 3,  
Aisen A. Kychkin 4, Michail M. Kopyrin 5, Aital E. Markov 6 

 

1, 2, 3 V.P. Larionov Institute of the Physical-Technical Problems of the North, Siberian Branch of the RAS, Yakutsk, Russia 
3 M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia 
4, 5, 6 The Yakut Scientific Centre of the Siberian Branch of the RAS, Yakutsk, Russia 
1 gav-ann@yandex.ru, https://orcid.org/0000-0002-5919-495X 
2 kychkinplasma@mail.ru, https://orcid.org/0000-0002-5276-5713 
3 vasilyeva_edm@mail.ru, htps://orcid.org/0000-0001-8953-9309 
4 icen.kychkin@mail.ru, https://orcid.org/0000-0003-1540-8140 
5 mkopyrin91@gmail.com, https://orcid.org/0000-0002-6018-6391 
6 aital.markov@gmail.com, https://orcid.org/0000-0001-6853-6758 

 

Abstract. In areas with extreme climatic conditions, the service life of polymer composite products is more de-
pendent on ageing and corrosion processes than mechanical impact. Since moisture is one of the main factors of aging, 
the study of the effect of moisture on exposed structural polymeric materials is most important for understanding their 
aging processes, including on exposed glass fabric and carbon fabric reinforced epoxy plastics (GFRP-CFRP hybrids). 
Using infrared spectroscopy, it was established that there is no chemical interaction of the binder based on ED-20 with 
moisture. The introduction of glass fabric into the epoxy binder leads to the interaction of the surface hydroxyls of the 
glass fiber with the epoxy groups of the resin, increasing the number of polar groups (R-OH) and the initial nonequilibri-
um state in the GFRP-CFRP hybrids. For this reason, after a cycle of moisture sorption and desorption, irreversible 
changes in the three-point bending strength and tensile strength of the GFRP-CFRP hybrids are established: a decrease 
in their values, while the values of the tensile and bending strength of the CFRP remained at the same level. The result 
of comparing the diffusion coefficients during sorption and desorption of moisture of GFRP-CFRP hybrids before and 
after exposure to a cold climate zone is the justification of the relaxation of the initial nonequilibrium structure of GFRP-
CFRP hybrid exposed to a cold climate zone. After exposure for 12 months in a cold climate zone, a reversible effect of 
the plasticizing effect of moisture on the three-point bending strength and tensile strength of the studied the GFRP-
CFRP hybrids was revealed. Thus, in the summer period, the daily cycles of moisture sorption and desorption do not 
affect the mechanical properties of the studied the GFRP-CFRP hybrids. 

Keywords: glass fabric, carbon fabric, diffusion coefficient, plasticization, structural relaxation, aging, initial 
nonequilibrium structure, three-point bending strength, tensile strength.  
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ВВЕДЕНИЕ 
 

Добавление стекловолокна в углепластики при-
водит к незначительному снижению их механических, 
термических и физических свойств [1, 2], такие стек-
ло-углепластики могут стать экономичной альтерна-
тивой традиционным углепластикам [4-6]. 

Одним из основных факторов, влияющих на по-
лимерную матрицу в процессе использования и хра-
нения армированных пластиков, является содержа-
щаяся в ней влага. При поглощении влаги в армиро-
ванных пластиках на основе эпоксисоединений моле-
кулы воды экранируют полярные центры макромоле-
кул (связанные молекулы воды), накопление свобод-
ных молекул воды вызывает перестройку полимерной 
матрицы и набухание материала. Это, в свою оче-
редь, способствует релаксации напряжений, возник-
ших в процессе формования изделий, пластификации, 
а также доотверждения. Кроме того, возможен гидро-
лиз полимерной матрицы, который приводит к разви-
тию дефектов и изменению адгезии между волокном 

и полимерной матрицей. Таким образом, воздействие 
влагой может значительно снизить, так и повысить 
рабочие характеристики армированных пластиков, 
причем оно может быть как обратимым (пластифика-
ция), так и необратимым (релаксация структурных 
напряжений, сшивка) [7-11]. 

С другой стороны, физико-химические и струк-
турные превращения при воздействии влаги очень 
важны для понимания механизмов старения пласти-
ков при натурных климатических испытаниях [12]. 

Целью работы является выявление влияния 
сорбированной влаги на эпоксидные стекло-
углепластики после экспонирования в очень холод-
ном климате. Влияние влаги определялось по следу-
ющим критериям: отсутствие химического взаимо-
действие полимерной матрицы и пластификатора 
(влага) с помощью инфракрасной спектроскопии; 
наличие структурных напряжений с помощью соотне-
сения коэффициентов диффузии при сорбции и по-
следующей десорбции влаги; определение обрати-
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мых и необратимых изменений механических свойств 
при цикле сорбции и десорбции влаги. На основе 
выбранных критериев стекло-углепластики сопостав-
ляются со стеклопластиками и углепластиками до 
(складское хранение) и после экспонирования в хо-
лодном климате.  
 

МЕТОДЫ 
 

Эпоксидиановая смола ЭД-20 отверждается 
изо-метилтетрагидрофталевым ангидридом (изо-
МТГФА) в присутствии ускорителя 2,4,6-
трис(диметиламинометил)фенола (УП-606/2) в соот-
ношении (56,7:42,5:0,8) по рецептуре РТП-СП2-
20994511-1999Т. В качестве армирующего наполни-
теля использовали стеклянную ткань ТР-560-30А (100) 
и углеродную ткань ТВИЛ 2/2-1000-12к-400. Методом 
вакуумной инфузии изготовлены образцы эпоксидно-
го пластика с размерами 950×450×5 мм, имеющие 
слои армирования стеклоткани и/или углеткани.  

Стеклопластик (СП)(GFRP) состоит из 18 слоев 
стеклоткани, углепластик (УП)(CFRP) состоит из 14 сло-
ев углеткани, гибридный пластик (СП2УП2)(GF2CF2) – 
[СУ]3У[СУ]3С. Далее общее название исследуемых ар-
мированных пластиков – АП(RP).  

АП согласно ГОСТ 9.708–83 выставлены на по-
лигоне г. Якутска ЦКП ФИЦ ЯНЦ СО РАН (зона хо-
лодного климата).  

Химический анализ АП исследовали методом 
инфракрасной спектроскопии на ИК-спектрометре с 
Фурье преобразованием Varian 7000 FT-IR. Спектры 
получали с помощью приставки НПВО. 

Для исследования влагопереноса в АП, было 
вырезано по 5 штук плит размерами 150х75x5 мм. 
Торцы образцов были покрыты эпоксидной смолой. 
Образцы были предварительно высушены в вакуум-
ном сушильном шкафу ШКВ–65/3,5 при температуре 
60 °С до постоянной массы. Процесс сорбции влаги 
проводили в климатической камере М-75/150-1000 
КТВХ при температуре 45 °C и относительной влаж-
ности 90 % (в течение 153 дня). Процесс десорбции 
влаги проводили в сушильном вакуумном термошка-
фу LABOR MUSZERIPARI MUVEK при температуре 
равной 45 °C. Взвешивание образцов проводили на 
аналитических весах ГОСМЕТР ВЛ–320В. 

Аналогично, проводили сорбцию и десорбцию 
образцов АП после 1 года климатического воздей-
ствия, только были подготовлены образцы по 5 штук 
в виде плитки размерами 50х15x5 мм при температу-
ре 60 °C и влажности (98±2) %. 

Упруго-прочностные характеристики АП, а 
именно испытания на трехточечный изгиб (ГОСТ Р 
56810-2015) и растяжение (ГОСТ Р 56785-2015), из-
мерялись после цикла увлажнения образцов разме-
рами 50х15x5 мм при температуре 60 °C и влажности 
(98±2) % до стабилизации массы с открытыми торца-
ми с последующим высушиванием при температуре 
60 °С в течении 72 часов. 
 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 
 

На рисунке 1 представлены кривые ИК-спектров 
АП (зеленый – исходный; синий – через 240 ч. влаго-
насыщения; желтый – через 720 ч. влагонасыщения). 
У всех образцов в области 3600-3000 см-1 появляется 
широкая более интенсивная полоса, присущие моле-
кулы воды, которые возникают из-за изменения дли-
ны связей в молекуле [13]. Появление новых или ис-
чезновение имеющихся спектральных пиков не 
наблюдается. Таким образом, сорбированная влага и 

связующее на основе ЭД-20 в исследуемых стекло-
(и)углепластиках химически не взаимодействуют. 

 

 
 

 
 

Рисунок 1 – Кривые ИК-спектров образцов пластиков 
(зеленый – до воздействия влаги; синий – через 240 ч. 

воздействия влаги; желтый – через 720 ч. воздей-
ствия влаги): а) СП; б) СП2УП2; в) УП. 

 

Figure 1 – IR spectra curves of plastic samples (green is 
before exposure to moisture; blue is after 240 hours of 
exposure to moisture; yellow is after 720 hours of expo-

sure to moisture): a) GFRP; b) GF2CF2; c) CFRP 
 

После 240 ч. процесса сорбции влаги у образцов 
СП (рисунок 1) в спектре наблюдается увеличение ин-
тенсивности пика в области 3400 см-1. Этот пик соответ-
ствует связанной молекулы воды с полярными группами 
полимера (R-О-Н), экранируя их, вызывая пластифика-
цию и структурирование полимерной матрицы [14]. Да-
лее после 720 ч. наблюдается уменьшение этого пика, 
во-видимому, в результате перестройке полимерной 
матрицы. Известно, что в отличие от углеволокна стек-
ловолокно обладает поверхностными гидроксилами, что 
приводит к дополнительным полярным группам в поли-
мере (R-О-Н) по схеме [15]. 

. 
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А также сильных адгезионных связей в межфазной 
зоне стеклоткань-связующее.   

У образцов УП наблюдается рост пика в обла-
сти 3400 см-1 по мере влагонасыщения, что указывает 
на то, что степень пластификации и структурирования 
полимерной матрицы меньше, чем у образцов СП. 
Промежуточное поведение наблюдается у гибридных 
пластиков СП2УП2.  

Экспериментальные данные влагопоглощения 
пластиков были обработаны в соответствии с ГОСТ 
4650–2014. Кинетика определялось по относительно-
му приросту массы, M, %, в виде 

𝑀𝑛 = 100 ∙ (𝑀𝑡𝑛 −𝑀0)/𝑀0, 

где  𝑀𝑡𝑛 – масса испытуемого образца после выдерж-

ки во влаге (безвлажностный режим) в течение вре-
мени 𝑡𝑛, мг, (𝑛 = 1…𝑁); 𝑀0  – масса испытуемого об-
разца после первоначального просушивания, мг.  

На рисунке 2 представлены экспериментальные 
значения кинетики сорбции и десорбции влаги в пла-
стиках до и после 1 года климатического воздействия. 
Можно выделить общие закономерности: зависи-
мость относительного изменения массы образцов от 
квадратного корня из времени линейна на начальном 
этапе, что говорит о сорбции и десорбции влаги по 
закону Фика. Поэтому для аппроксимации методом 
наименьших квадратов используем модель диффу-
зии Фика для бесконечной пластины c толщиной 𝑙:  

– для кинетики сорбции влаги 

𝑀(𝑡)

𝑀∞
= 1 −

8

𝜋2
∑

exp(−
𝐷
𝑙2
(2𝑛 + 1)2𝜋2𝑡)

(2𝑛 + 1)2
,

∞

𝑛=0

 

где 𝑀∞  – предельное содержание влаги; 𝐷 – коэф-
фициент диффузии влаги; 𝑡 – время воздействия 
влагой, 

– для кинетики десорбции влаги 

𝑀𝑑(𝑡)

𝑀0
=

8

𝜋2
∑

exp(−
𝐷𝑑
𝑙2
(2𝑛 + 1)2𝜋2𝑡)

(2𝑛 + 1)2
,

∞

𝑛=0
 

где 𝑀0  – начальное содержание влаги при десорбции; 
𝐷𝑑  – коэффициент диффузии десорбции влаги; 𝑡  – 
время воздействия безвлажностного режима.  

Адекватность модели определялась коэффици-
ентом детерминации:  

𝑅2 = 1 − ∑
(𝑀(𝑡𝑛)−𝑀𝑛)

2

(𝑀𝑛−∑ 𝑀𝑛/𝑁
𝑁
𝑛=1 )

2
𝑁
𝑛=1 . 

Результаты обработки данных представлены в таб-
лице 1 и 2. 

 

 

 
Рисунок 2 – Экспериментальные значения сорбции и 

десорбции влаги и ее аппроксимация законом диффу-
зии Фика (синяя линия) в образцах до и после 1 года 

климатического воздействия: а) СП; б) СП2УП2; в) УП 
 

Figure 2 – Experimental values of moisture sorption and 
desorption and its approximation by Fick's diffusion law 
(blue line) in samples before and after 1 year of climatic 

exposure: a) GFRP; b) GF2CF2; c) CFRP 
 

Таблица 1 – Параметры сорбции влаги в АП / Table 1 – Moisture sorption parameters in RPs 

Маркировка 

Предельное влагосодержа-
ние, %, 

Коэффициент диффузии, x102 

мм2/сут., 
Коэффициент детерминации 

до после экспони-
рования 

до после экспони-
рования 

до после экспони-
рования 

СП 0,47 1 6,8 10,3 0,990 0,986 

СП2УП2 0,49 1,08 5,9 9,3 0,994 0,987 

УП 0,59 1,32 7,3 16,7 0,991 0,989 
 

Таблица 2 – Параметры десорбции влаги в АП / Table 2 – Moisture desorption parameters in RPs 

Маркировка 

Предельное влагосодержа-
ние, %, 

Коэффициент диффузии 
десорбции, x102 мм2/сут., 

Коэффициент детерминации 

до после экспони-
рования 

до после экспони-
рования 

до после экспониро-
вания 

СП 0,40 0,82 3,1 9,9 0,987 0,943 

СП2УП2 0,40 0,82 3,1 9,9 0,987 0,943 

УП 0,52 1,13 4,3 15,7 0,983 0,957 

 

Модель диффузии Фика достоверно описывает 
кинетику сорбции и десорбции влаги АП, коэффици-
ент детерминации 𝑅2 =0,943÷0,989. Нижняя граница 
адекватности по шкале Чеддока равна 0,8.  

Наибольшее значение предельного влагосо-
держания у образца УП, на 25 % больше, чем у об-
разца СП. После 1 года экспонирования – на 32 %. 
Относительно высокая сорбционная способность 
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углепластика связана с относительно высокой исход-
ной пористостью. 

Коэффициент диффузии неэкспонированных 
образцов УП на 6 % больше по сравнению с коэффи-
циентом диффузии образца СП. А вот после 1 года 
экспонирования коэффициент диффузии образца УП 
на 62 % больше по сравнению с коэффициентом 
диффузии образца СП. Более того, у неэкспониро-
ванных образцов УП наблюдаются уменьшение мас-
сы после десорбции (рис. 2в), что, указывает на уда-
ление низкомолекулярных продуктов десорбции. 

В таблице 3 представлены значения отношения 
коэффициентов диффузии на стадии сорбции и де-
сорбции влаги в АП до и после 1 года экспонирования. 
 

Таблица 3 – Отношение коэффициентов диффузии 
при десорбции и сорбции влаги 
 

Table 3 – The ratio of diffusion coefficients for moisture 
desorption and sorption 

Маркировка 

Отношение коэффициентов диффузии 
на стадии десорбции и сорбции влаги 

до после экспониро-
вания 

СП 0,45 0,93 

СП2УП2 0,48 0,79 

УП 0,56 0,9 
 

Результаты, представленные в таблице 4, пока-
зывают, что коэффициент диффузии на стадии десорб-
ции неэкспонированных образцов АП почти в 2 раза 
больше, чем коэффициент диффузии на стадии сорб-
ции. На стадии сорбции происходит релаксация исход-
ной неравновесной структуры полимерной матрицы [10, 
15]. Тогда как, коэффициент диффузии на стадии де-
сорбции почти равен коэффициенту диффузии на ста-
дии сорбции влаги в АП после 1 года экспонирования, 
что указывает на то, что в полимерной матрице при экс-
понировании уменьшается количество активных цен-
тров и происходит релаксация полимерной матрицы, 
исходной неравновесной структуры. 

Результаты определения необратимого воздей-
ствия влаги в АП на предел прочности при трехточеч-
ном изгибе представлен на рисунке 3, на предел 
прочности при растяжении представлен на рисунке 4. 

 
Рисунок 3 – Изменение предела прочности при изгибе 

образцов АП после цикла сорбции-десорбции 
 

Figure 3 – Change in the bending strength of RPs sam-
ples after a sorption-desorption cycle 

 

Как видно из рисунка 3 в неэкспонированных 
образцах СП, СП2УП2 под воздействием влаги про-
исходит необратимые изменения предела прочности 
на изгиб: ухудшили свои прочностные показатели на 
33 %, на 42%. Тогда как у образцов УП под воздей-

ствием влаги наблюдаются обратимые изменения 
механических свойств: образец УП ухудшил, но на 9%, 
при этом остался в пределах погрешности. Такое разли-
чие объясняется тем, что при изготовлении за счет 
сильных адгезионных связей в межфазном слое стекло-
ткань-связующее, возникает исходная неравновесная 
структура, она то необратимо релаксирует под воздей-
ствием влагой. Однако, через 1 год экспонирования у 
образцов АП наблюдается обратимый эффект под воз-
действием влаги на предел прочности и на изгиб.  

 
Рисунок 4 – Изменение предела прочности при рас-

тяжении после цикла сорбции-десорбции 
 

Figure 4 – Change in the tensile strength of RPs samples 
after a sorption-desorption cycle 

 

Согласно результатам (рис. 4) в неэкспониро-
ванных образцах СП, СП2УП2 под воздействием вла-
ги происходит необратимые изменения предела 
прочности на растяжение: ухудшили свои прочност-
ные показатели на растяжение на 25 %, 27 %. Тогда 
как у образцов УП под воздействием влаги наблюда-
ются обратимые изменения механических свойств: 
остались в пределах погрешности. Через 1 год экспо-
нирования образцы СП, СП2УП2, УП под воздействи-
ем влаги ухудшили свои прочностные показатели на 
растяжение на 27 %, 10 %, 6 %. Скорее всего это свя-
зано с тем, что при измерении предела прочности на 
растяжение основную нагрузку  воспринимают все 
ткани армирования, они недостаточно просушились 
за 72 ч. Тогда как при измерениях предела прочности 
на трехточечный изгиб основную нагрузку принимают 
межфазная зона в поверхностных слоях АП, она то 
успела просушится за 72 ч.  

Таким образом, для определения обратимых воз-
действий влаги на предел прочности на растяжение необ-
ходимо время сушки увеличить вплоть до 21 суток [16]. 
 

ЗАКЛЮЧЕНИЕ  
 

Сорбированная влага и связующее в исследуе-
мых стекло-углепластиках химически не взаимодей-
ствуют. Введение в эпоксидное связующее стеклот-
кани приводит к необратимой пластификации влагой 
стекло-углепластика, за счет релаксации исходной 
неравновесной структуры. Однако после экспониро-
вания в течение 1 года в холодном климате стекло-
углепластик устойчив к воздействию цикла сорбции-
десорбции в повышенной влажности.   
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