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Аннотация. Бактериальная наноцеллюлоза является биополимером, её уникальность заключается в 
том, что она имеет очень тонкую трёхмерную структуру, отличную газопроницаемость, высокую проч-
ность, биосовместимость. Бактериальная наноцеллюлоза не содержит пектина, гемицеллюлоз и лигнина. 
Применяется бактериальная наноцеллюлоза в пищевой, фармацевтической, текстильной, промышленности 
в биомедицине и биоэлектронике. Производство бактериальной наноцеллюлозы является дорогостоящим, за-
мена классических питательных сред на ферментативные гидролизаты из целлюлозосодержащего сырья мо-
жет способствовать снижению цены конечного продукта. В данной работе было использовано легковозобнов-
ляемое целлюлозосодержащее сырьё: тростник, суданская трава (выращивают в агропромышленном мас-
штабе), мискантус (техническая культура), шелуха овса (отходы производства геркулеса), водяной гиацинт 
(выращивают для очистки воды в закрытых водоемах), лён, конопля. В ходе работы был проанализирован хи-
мический состав целлюлозосодержащего сырья без химической предварительной обработки, и полученных 
субстратов после щелочной делигнификации. Затем все полученные образцы подвергали ферментативному 
гидролизу. Полученные данные показали, что химическая предварительная обработка повышает содержание 
целлюлозы в 2-3 раза, за счёт чего повышается реакционная способность субстратов к ферментативному 
гидролизу в 1,6-23,0 раза. Выход бактериальной наноцеллюлозы из ферментативных гидролизатов на основе 
субстратов: тростника - 5,7 %, суданской травы - 3,1 %, мискантуса сорта Сорановский - 9,7 %, мискантуса 
сорта КАМИС - 3,0 %, шелухи овса - 4,9 %, водяного гиацинта - 10,7 %, костры конопли - 5,3 %.  

Ключевые слова: бактериальная наноцеллюлоза, целлюлозосодержащие сырьё, тростник, суданская 
трава, мискантус, шелуха овса, водяной гиацинт, лён, конопля, ферментативный гидролиз, биосинтез.  
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Abstract. Bacterial nanocellulose is a biopolymer and is unique due to its very fine 3D structure, excellent gas permea-
bility, high strength, and biocompatibility. Bacterial nanocellulose contains no pec-tin, hemicelluloses, and lignin. Bacterial nano-
cellulose is used in the food, pharmaceutical and textile industries, biomedicine, and bioelectronics. The production of bacterial 
nanocellulose is high-cost; there-fore, replacing classical nutrient media by enzymatic hydrolyzates from cellulosic raw materials 
may reduce the price of the end product. This study utilized easily renewable cellulosic feedstocks, such as reed, Sudan grass 
(cultivated on an agro-industrial scale), miscanthus (industrial crop), oat hulls (Hercules oats production residues), water hyacinth 
(cultivated for phytoremediation of enclosed water bodies), flax, and hemp. Chemical compositions of the cellulosic feedstocks 
without chemical pretreatment and of substrates obtained after alkaline delignification were analyzed in the course of the study. 
All resultant samples were then subjected to enzymatic hydrolysis. The obtained data demonstrated that the chemi-cal pretreat-
ment enhanced the cellulose content by 2-3 times, thereby increasing the reactivity of the substrates to enzymatic hydrolysis by 
1.6-23.0 times. The yields of bacterial nanocellulose from the substrate-based enzymatic hydrolyzates were 5.7 % for reed, 3.1 % 
for Sudan grass, 9.7 % for miscanthus var. Soranovskii, 3.0 % for miscanthus var. KAMIS, 4.9 % for oat hulls, 10.7% for water 
hyacinth, and 5.3 % for hemp shiv. 
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ВВЕДЕНИЕ 
 

Бактериальная наноцеллюлоза – это один из раз-
новидностей наноцеллюлозы [1], натуральный биопо-
лимер, имеющий большое значение в различных техно-
логических областях благодаря своим невероятным 
физико-химическим и биологическим свойствам [2].  

Бактериальная наноцеллюлоза биосинтезиру-
ется внеклеточно бактериями, принадлежащими ро-
дам Agrobacterium, Alcaligenes, Pseudomonas, Rhizo-
bium или Sarcina состоит из целлюлозы в виде цепочки 
нановолокон шириной менее 100 нм [3]. Она имеет 
очень тонкую трёхмерную структуру, отличную га-
зопроницаемость, высокую прочность во влажном со-
стоянии, биосовместимость и впитывающую способ-
ность [4]. Бактериальная наноцеллюлоза в отличии от 
растительной целлюлозы не содержит пектина, геми-
целлюлоз и лигнина, поэтому может применяться в чи-
стом виде [5]. В ходе микробного синтеза возможно ре-
гулировать физико-химические и функциональные 
свойства бактериальной наноцеллюлозы (кристаллич-
ность, пористость, размер нановолокон и механиче-
ские свойства) путём изменения биосинтеза: штамма 
бактерий, состава питательной среды и условий куль-
тивирования [6]. Бактериальную наноцеллюлозу 
можно получать на синтетических, полусинтетических 
средах, а также на химических и ферментативных гид-
ролизатах предварительного обработанного целлюло-
зосодержащего сырья [1,7,8]. Технология производ-
ства напрямую влияет на физические и химические ха-
рактеристики бактериальной наноцеллюлозы, а также 
на её надмолекулярную структуру [1,9]. 

Диапазон областей применения бактериальной 
наноцеллюлозы включает пищевую промышленность, 
фармацевтическую промышленность, тканевую инже-
нерию, биомедицину [9], её также используют для про-
изводства мембран [10], применяется в биоэлектро-
нике для создания автономных электродов [11].  

В данной работе для получения бактериальной 
наноцеллюлозы было использовано легковозобновля-
емое целлюлозосодержащее сырьё. Выбор сырья ва-
рьируется от технических культур, которые выращи-
вают в промышленных масштабах, такие как конопля, 
лён, мискантус, используемые в кормопроизводстве 
суданская трава и тростник, используемый для 
очистки закрытых водоемов водяной гиацинт, а также 
отходы производства геркулеса – шелуха овса.  

 

МЕТОДЫ 
 

Целлюлозосодержащее сырьё: тростник, судан-
ская трава, мискантус сахароцветный сорта Соранов-
ский, мискантус гигантский сорта КАМИС, шелуха 
овса, водяной гиацинт, продукты переработки льна и 
конопли: волокно льна (пенька короткая), костра льна 
предоставило АО «Бийская Льняная Компания» 
(г. Бийск, Россия), волокно конопли, костра конопли 
предоставило ООО «Мордовские пенькозаводы» 
(г. Инсар, Республика Мордовия, Россия), подвергали 
предварительной химической обработке, 4%-ным гид-
роксидом натрия при атмосферном давлении (щелоч-
ной делигнификацией) по методике [12] с получением 

субстратов. Химический состав сырья и полученных 
субстратов определяли по методике [13]. 

Сырьё и субстраты подвергали ферментатив-
ному гидролизу по методике [7] гидролиз проводили 
при постоянном перемешивании на шейкере лабора-
торном «ПЭ-6410» (Россия), скорость перемешивания 
150 об/мин, температура 40-45 °С, продолжительность 
гидролиза 72 ч, использованы ферментные препараты 
«Целлолюкс-А» (грибного происхождения, ООО ПО 
«Сиббиофарм», Россия), и «Ультрафло-Коре» (проду-
цент Trichoderma reesei, «Novozymes A/S», Дания). Вы-
бор концентрации ацетатного буферного раствора 
0,05 М обоснован в [14]. Для приготовления питатель-
ной среды из гидролизатов после определения кон-
центрации редуцирующих веществ в пересчёте на 
глюкозу по методике [15] гидролизаты кипятили, затем 
вносили чёрный чай в концентрации 10 г/л. 

Биосинтез бактериальной наноцеллюлозы прово-
дили по методике [16], в суховоздушном термостате «ТС-
1/20» (Россия), в статических условиях при температуре 
27 °С, в течение 10 суток, с применением симбиотической 
культуры Medusomyces gisevii Sa-12 [8] для высокой про-
изводительности гель-плёнок. В качестве контроля ис-
пользовали полусинтетическую питательную среду.  

Завершающей стадией биосинтеза бактериальной 
наноцеллюлозы является съем гель-плёнок и их про-
мывка. Сушку жемчужно-белых гель-пленок проводили в 
лиофильной сублимационной сушилке «HR 7000 M» 
(Россия) до постоянной массы по методике [17], для рас-
чёта выхода и последующего анализа основных свойств 
бактериальной наноцеллюлозы. Выход сухой бактери-
альной наноцеллюлозы рассчитывали формуле (1): 

 

   𝑊 =
𝑚

𝐶∙𝑉∙0,9
∙ 100 %                (1), 

 

где W – выход бактериальной наноцеллю-
лозы, %; 

m – масса образца бактериальной нано-целлю-
лозы в пересчете на абсолютно сухое вещество, г; 

C – концентрация редуцирующих веществ в 
среде в пересчете на глюкозу, г/л;  

V – начальный объем среды, л;  
0,9 – коэффициент пересчёта, обусловленный 

отщеплением молекулы воды при полимеризации глю-
козы в целлюлозу. 

Степень полимеризации образцов бактериаль-
ной наноцеллюлозы определяли вискозиметрическим 
методом [18] с использованием в качестве раствори-
теля кадоксен (ethylenediamine, АО LenReaktiv, CAS 
No. 107-15-3, Russia; cadmium oxide, АО LenReaktiv, 
CAS No. 1306-19-0 Russia). 

Растровая электронная микроскопия лиофили-
зированных образцов бактериальной наноцеллюлозы 
выполнялась с помощью микроскопа JSM-840 (JEOL 
Ltd., Токио, Япония) с рентгеновским микроанализато-
ром Link-860 серии II с целью установления структуры 
и определения ширины нановолокна.  

Работа выполнена при использовании оборудо-
вания Бийского регионального центра коллективного 
пользования СО РАН (ИПХЭТ СО РАН, г. Бийск). 
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РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 
 

Компонентный состав необработанных видов 
сырья представлен в таблице 1. Анализ полученных 
данных позволяет выделить лидеров по содержанию 
целлюлозы: волокно конопли – 76,0 %, волокно льна – 

66,0 %. Наименьшее количество целлюлозы содержа-
лось в водяном гиацинте – 26,0 %. 

Результаты ферментативного гидролиза необ-
работанных видов сырья приведены на рисунке 1.  

 

Таблица 1 – Компонентный состав целлюлозосодержащего сырья без предварительной химической обработки  
 

Table 1 – Component composition of cellulose-containing raw materials without preliminary chemical treatment 
Сырьё Массовая доля, % 

целлюлозы по 
Кюршнеру 

лигнина пентозанов золы ЖВФ 

Тростник  43,00 24,00 18,50 6,69 1,05 

Суданская трава  43,00 16,00 19,00 6,42 1,29 

Мискантус сахароцветный сорт  
Сорановский  

49,00 17,00 24,00 3,73 0,98 

Мискантус гигантский сорт КАМИС 50,00 19,00 21,00 1,63 0,48 

Шелуха овса  36,50 19,00 29,00 6,45 0,51 

Водяной гиацинт  26,00 12,00 11,00 25,43 1,20 

Волокно льна  66,00 11,00 5,00 3,21 1,67 

Костра льна  42,00 26,00 18,50 2,80 1,76 

Волокно конопли  76,50 5,50 2,50 2,50 2,40 

Костра конопли  47,00 23,00 18,00 2,30 0,46 

Примечание: ЖВФ – жировосковая фракция. 
 

 
 

Рисунок 1 – Зависимость концентрации редуцирующих веществ от времени ферментативного гидролиза (сырья 
без химической предварительной обработки) 

 

Figure 1 – Dependence of the concentration of reducing substances on the time of enzymatic hydrolysis (raw materials 
without chemical pre-treatment) 

 

В результате гидролиза и анализа рисунка 1, для 
всех видов сырья была выявлена низкая реакционная 
способность к ферментативному гидролизу, так как ко-
нечная концентрация редуцирующих веществ составила 
у тростника – 3,0 г/л, суданской травы – 4,6 г/л, мискан-
туса сахароцветного сорта Сорановский – 1,5 г/л, мискан-
туса гигантского сорта КАМИС – 1,6 г/л, шелухи овса – 1,0 
г/л, водяного гиацинта – 2,0 г/л, волокна льна– 4,8 г/л, ко-
стры льна – 2,6 г/л, волокна конопли – 3,0 г/л, костры ко-
нопли – 3,0 г/л. Для биосинтеза бактериальной наноцел-
люлозы конечная концентрация редуцирующих веществ 
рекомендована в пределах 10-20 г/л [7]. 

В связи с полученными результатами было при-
нято решение произвести предварительную химическую 

обработку целлюлозосодержащего сырья щелочной де-
лигнификацией, которая применяется для растительных 
материалов, содержащих целлюлозу, чтобы повысить 
реакционную способность при последующем гидролизе. 
Это достигается за счет уменьшения размера частиц, 
разрушения кристаллической структуры целлюлозы и 
удаления лигнина [19,20,21]. После чего целлюлоза под 
действием ферментного комплекса превращается в цел-
лобиозу, а затем в глюкозу [22]. Компонентный состав по-
лученных субстратов после (предварительной химиче-
ской обработки сырья) представлен в таблице 2. Полу-
ченные результаты показали эффективность предвари-
тельной химической обработки, это подтверждается из-
менением в компонентном составе, а именно повыше-
нием содержания целлюлозы в субстратах в 1,7-3,2 раза, 
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за исключением субстратов из волокна льна и волокна 
конопли – полученные данные обусловлены особенно-
стью лубяных культур, их морфологией, так, у костры 
льна после щелочной делигнификации наблюдается уве-
личение лигнина с 26 % до 37 %, что препятствует фер-
ментативному гидролизу [23, 24].  

Наиболее ярко химическая делигнификация про-
явилась на водяном гиацинте: содержание целлюлозы 
возросло с 26,0 % до 83,0 %.  

Результаты ферментативного гидролиза субстра-
тов приведены на рисунке 2. Очевидно, что щелочная де-

лигнификация повышает реакционную способность цел-
люлозосодержащего сырья, поскольку конечная концен-
трация редуцирующих веществ у субстратов, выше, чем 
у сырья: 4,0-28,0 г/л против 1,0-4,8 г/л. Субстраты разде-
ляются на 2 группы: высокореакционноспособные (трост-
ник – 22,8 г/л, суданская трава – 20,2 г/л, мискантус саха-
роцветный сорта Сорановский – 25,0 г/л, мискантус ги-
гантский сорта КАМИС – 18,5 г/л, шелуха овса – 23,0 г/л, 
водяной гиацинт – 22,6  г/л, костра конопли – 28,0 г/л) 
и низкореакционноспособные (волокно льна – 8,0 г/л, 
костра льна – 4,0 г/л, волокно конопли – 6,0 г/л). 

 

Таблица 2 – Компонентный состав целлюлозосодержащего сырья, предварительно химически обработанного 
щелочной делигнификацией 

 

Table 2 – Component composition of cellulose-containing raw materials, pre-chemically treated by alkaline delignification 
Сырьё, обработанное щелочной 

делигнификацией 
Массовая доля, % 

целлюлозы по 
Кюршнеру 

лигнина пентозанов золы ЖВФ 

Тростник  88,00 7,00 3,50 0,97 1,16 

Суданская трава  85,00 5,50 7,00 2,09 2,37 

Мискантус  
сахароцветный сорт  
Сорановский  

93,00 5,00 4,00 0,50 1,86 

Мискантус гигантский сорт КАМИС 85,00 8,00 2,00 3,95 0,28 

Шелуха овса  87,00 5,00 7,00 0,11 0,60 

Водяной гиацинт  83,00 19,00 1,40 7,50 2,29 

Волокно льна  89,00 10,00 1,00 0,19 1,25 

Костра льна  59,00 37,00 3,00 0,7 1,40 

Волокно конопли  92,00 6,00 0,40 0,75 0,80 

Костра конопли  87,00 8,00 5,00 1,82 0,36 

 
Рисунок 2 – Зависимость концентрации редуцирующих веществ от времени ферментативного гидролиза (сырья, 

обработанного щелочной делигнификацией) 
 

Figure 2 – Dependence of the concentration of reducing substances on the time of enzymatic hydrolysis (raw materials 
treated with alkaline delignification) 

 

Полученные данные свидетельствуют о высокой эф-
фективности щелочной делигнификации для большин-
ства рассмотренных источников, кроме волокна льна, 
костры льна, волокна конопли. Это может быть обуслов-
лено специфичностью строения лубяной культуры, их 
прочностью и высокой устойчивостью к истиранию и 
воздействию гидролизующих ферментов [25, 26]. 

Из данных гидролизатов были приготовлены пи-
тательные среды для биосинтеза бактериальной нано-
целлюлозы. Выход бактериальной наноцеллюлозы на 
контрольной питательной среде и гидролизатах, а 
также степень полимеризации и ширина нановолокон 
представлены в таблице 3. Гидролизаты, полученные 

из волокна льна, костры льна, волокна конопли, не 
применялись для биосинтеза бактериальной наноцел-
люлозы в связи с низкой концентрацией редуцирую-
щих веществ.  

Лидером по выходу бактериальной наноцеллю-
лозы и степени полимеризации является водяной гиа-
цинт, а именно 10,7 % и 2200 соответственно. Данные 
значения являются максимально близки к контрольному 
образцу: 12,8 % и 3000. Ширина нановолокон 90 нм, по-
лученных на гидролизате водяного гиацинта, близка к 
100 нм контроля (на полусинтетической питательной 
среде). Позитивные полученные данные впервые де-
монстрируют возможность биосинтеза бактериальной 
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наноцеллюлозы из водяного гиацинта [27].  
Для гидролиза использовали сочетание двух 

ферментов, так как известно, что ферментативный 
гидролиз целлюлозы происходит в результате после-
довательно-параллельного действия нескольких фер-
ментов, входящих в состав так называемого целлю-
лазного комплекса [28]. Гидролиз целлюлозосодержа-
щего сырья без предварительной химической обра-
ботки является не эффективным, и это было доказано 
в данной работе, так как конечная концентрация реду-
цирующих веществ составила не более 5 г/л.   

 

Таблица 3 – Характеристики образцов бактериальной 
наноцеллюлозы  
 

Table 3 – Characteristics of bacterial nanocellulose samples 
Субстрат для 

получения 
БНЦ 

Выход, 
% 

СП Ширина 
нановолокон, 

нм 

Контроль 12,8 3000 100 

Тростник 5,7 1150 70 

Суданская 
трава 

3,1 
1300 

50 

Мискантус  
сахароцвет-
ный 

9,7 
700 

35 

Мискантус  
гигантский  

3,0 
1050 

40 

Шелуха овса 4,9 900 46 

Водяной гиа-
цинт 

10,7 
2200 

90 

Костра  
конопли  

5,3 
1100 

80 

Примечание:  
БНЦ – бактериальная наноцеллюлоза; 
СП – степень полимеризации; 
Контроль – бактериальная наноцеллюлоза, полученная 
на полусинтетической  
питательной среде. 

 

Степень полимеризации опытных образцов бак-
териальной наноцеллюлозы в среднем составила 850, 
что в 3,5 раза ниже степени полимеризации бактери-
альной наноцеллюлозы, полученной на полусинтети-
ческой питательной среде.  

С помощью растровой электронной микроскопии 
была обнаружена сетчатая наноразмерная структура 
для всех экспериментальных образцов, являющаяся 
отличительной характерной особенностью бактери-
альной наноцеллюлозы. При этом, для контрольного 
образца ширина нановолокон составила 100 нм, а для 
образцов, полученных на гидролизатах, 60 нм. Полу-
ченные данные совпадают с литературными [29]. Та-
ким образом, нами было показано, что симбиоз Medu-
somyces gisevii Sa-12 может адаптироваться к разным 
условиям биосинтеза и питательным средам, сохра-
няя свою уникальную наноструктуру.  

 

ЗАКЛЮЧЕНИЕ  
 

Полученные результаты позволяют сделать вы-
вод о том, что целлюлозосодержащее сырьё необхо-
димо подвергать предварительной химической обра-
ботке для повышения реакционной активности суб-
стратов к ферментативному гидролизу для обеспече-
ния необходимой концентрации редуцирующих ве-
ществ в питательной среде. Щелочная делигнифика-
ция повысила конечную концентрацию редуцирующих 
веществ для тростника в 5,0 раз, суданской травы – 4,5 
раза, мискантуса сахароцветного сорта Сорановский – 
16,0 раз, мискантуса гигантского сорта КАМИС – 11,5 

раз, шелухи овса – 23,0 раза, водяного гиацинта  – 11,3 
раза, волокна льна –1,6 раз, костры льна – 1,5 раза, 
волокна конопли – 2,0 раза, костры конопли – 9,3 раза. 
Эти результаты показывают, что щелочная делигни-
фикация неэффективна только для трёх источников 
(волокна льна, костры льна, волокна конопли). Эти яв-
ления обусловлены специфичностью строения лубя-
ной культуры, их прочностью и высокой устойчивостью 
к воздействию гидролизующих ферментов.  

Самый высокий выход бактериальной наноцеллю-
лозы, а именно 10,7 %, был получен на питательной 
среде из гидролизата продукта щелочной делигнифика-
ции водяного гиацинта. Данная обработка позволила по-
высить содержание целлюлозы в субстрате в 3,2 раза, 
затем повысить конечную концентрацию при фермента-
тивном гидролизе в 11,3 раза по сравнению с не обрабо-
танным сырьём. Степень полимеризации бактериальной 
наноцеллюлозы из водяного гиацинта максимальная из 
всех источников и составила 2200. Ширина нановолокон 
так же наиболее близка к контролю и составила 90 нм. 
Таким образом, в данной статье впервые описано полу-
чение бактериальной наноцеллюлозы из водяного гиа-
цинта, причём с выходом и качественными характеристи-
ками, близкими к контролю. 
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