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Аннотация. Исследовано изменение микроструктуры и фазового состояния алюминиевого сплава 
марки 7075 до и после азотирования. Сплав был изготовлен проволочно-дуговым аддитивным способом, в 
области подложки которого преобладали столбчатые зерна, в центральной части присутствовали столб-
чатые и дендритные структуры, периферийная зона изготовленного слитка демонстрировала равноосные 
структуры с размером зерна до 50 мкм. Рассматриваемая структурная неоднородность обусловлена скоро-
стью охлаждения заготовки, термическим градиентом в процессе послойного изготовления материала. 
На основе микрорентгеноспектрального анализа были обнаружены η-фаза (MgZn₂) и S-фаза (Al₂CuMg), скон-
центрированные у границ зерен. Сплав представлен обособленными металлическими включениями Al₂Cu 
(θ-фаза), образующихся из-за медленного охлаждения или перегрева металла. 

После проведения азотирования в дуговом разряде с использованием плазменного источника (накален-
ный катод) в исследуемом сплаве наблюдалось формирование поликристаллической структуры, характери-
зующейся размерами ячеек в диапазоне 60–200 мкм. В сплаве после низкотемпературного азотирования при-
сутствовали единичные интерметаллические соединения MgZn₂ (η) и Al₂Cu (θ). Обнаружено незначительное 
изменение элементного состава образца, обусловленное процессом плазменного азотирования, которое 
способствует перераспределению легирующих элементов с последующим формированием упрочненного 
поверхностного слоя. Полученные результаты подчеркивают влияние технологических параметров на из-
менение микроструктуры и фазового состава аддитивно изготовленных алюминиевых сплавов после азо-
тирования. 

Ключевые слова: алюминиевые сплавы, аддитивное производство, низкотемпературное азотирова-
ние, структурно-фазовое состояние, равноосные, столбчатые зерна. 
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Abstract. The change in the microstructure and phase state of aluminum alloy grade 7075 before and after nitri-
ding was studied. The alloy was produced by the wire-arc additive method, in the substrate area of which columnar 
grains prevailed, in the central part there were columnar and dendritic structures, the peripheral zone of the manufac-
tured ingot demonstrated equiaxed structures with a grain size of up to 50 μm. The considered structural heterogeneity 
is caused by the cooling rate of the workpiece, the thermal gradient in the process of layer-by-layer production of the 
material. Based on the micro-X-ray spectral analysis, the η-phase (MgZn₂) and S-phase (Al₂CuMg) concentrated at the 
grain boundaries were detected. The alloy is represented by isolated metallic inclusions of Al₂Cu (θ-phase), formed due 
to slow cooling or overheating of the metal. After nitriding in an arc discharge using a plasma source (hot cathode), the 
formation of a polycrystalline structure characterized by cell sizes in the range of 60-200 μm was observed in the studied 
alloy. Single intermetallic compounds MgZn₂ (η) and Al₂Cu (θ) were present in the alloy after low-temperature nitriding. 
A slight change in the elemental composition of the sample was detected, caused by the plasma nitriding process, which 
promotes the redistribution of alloying elements with the subsequent formation of a hardened surface layer. The ob-
tained results emphasize the influence of process parameters on the change in the microstructure and phase composi-
tion of additively manufactured aluminum alloys after nitriding. 

Keywords: Aluminum alloys, additive manufacturing, low-temperature nitriding, structural-phase state, equiaxed, 
columnar grains. 
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ВВЕДЕНИЕ 
 

В последние годы алюминиевые сплавы при-
влекли большое внимание исследователей из-за их 
механических свойств, таких как удельная прочность, 
плотность, износ, усталостная прочность и тепловое 
расширение. Предпочтительной группой алюминие-
вых сплавов являются сплавы 7xxx серии, обладаю-
щие высоким соотношением прочности к весу, пла-
стичностью и коррозионной стойкостью [1, 2], хорошо 
подходящие для применения в автомобильной про-
мышленности (кузовные панели, каркасы сидений, 
колесные диски) [3]. 

В алюминиевом сплаве 7075 цинк и магний явля-
ются главными легирующими элементами и их высокое 
содержание (более 6 %) обеспечивает повышенную 
прочность [4] и восприимчивость к термической обра-
ботке, но при этом наблюдается максимальная склон-
ность к коррозионному растрескиванию под напряжени-
ем. Небольшие добавки меди, хрома, марганца вызы-
вают незначительное упрочнение материала и необхо-
димы для контроля роста зерна при рекристаллиза-
ции [5]. Примеси кремния в сплаве AА7075 могут сни-
жать вязкость разрушения и усталостную прочность.  

Повышение механических свойств при высоких 
нагрузках остается актуальной задачей для компо-
нентов, работающих в условиях циклических нагрузок. 
Для повышения механических свойств сплава 7075, 
изготовленного проволочно-дуговым аддитивным спо-
собом, предлагается проведение низкотемпературного 
азотирования в дуговом разряде при помощи плазмен-
ного источника с накаленным катодом. 

Низкотемпературное азотирование алюминие-
вых сплавов является важным процессом модифика-
ции механических свойств поверхности (износостой-
кость и коррозионные свойства) без ущерба для ос-
новных свойств материала. Этот процесс позволяет 
избежать фазовых переходов и нежелательных оса-
ждений соединений, которые могут произойти при 
более высоких температурах, тем самым сохраняя 
химическую однородность [7]. Для повышения корро-
зионной стойкости алюминиевого сплава 7075-T6 в 
солевых средах плазменное азотирование продемон-
стрировало эффективность 64,2 % [8]. Низкотемпера-
турное азотирование повышает твердость поверхно-
сти алюминиевых сплавов, что крайне важно при 

применении в условиях, требующих высокой износо-
стойкости. Одна из причин ‒ образование на поверх-
ности слоев нитрида алюминия AlN, который значи-
тельно повышает прочность сплава при механических 
нагрузках [9]. Хотя азотирование демонстрирует по-
вышение микротвердости на 15‒40 % [10], однако 
рассматриваемый процесс сопряжен с риском воз-
никновения хрупкого разрушения и снижения преде-
лов прочности при растяжении на 10‒25 % [11]. Ука-
занные эффекты обусловлены образованием хрупких 
нитридных соединений и трансформацией субмик-
ронной структуры материала [12]. Поэтому выбор 
актуальных режимов проведения азотирования оста-
ется перспективным инструментом для целенаправ-
ленной коррекции функциональных свойств в соот-
ветствии с эксплуатационными требованиями, что 
подтверждает их ключевую роль в прикладном мате-
риаловедении и инженерных разработках. В настоя-
щей работе оценено изменение микроструктуры и 
фазового состояния алюминиевого сплава марки 
7075 до и после модифицирования поверхности низ-
котемпературным азотированием. 

 

МАТЕРИАЛЫ И МЕТОДИКА 
 

В условиях НПЦ «Сварочные процессы и тех-
нологии» СибГИУ был изготовлен слиток из алюми-
ниевого сплава марки 7075 с использованием 
3D принтера, работающего по технологии моделиро-
вания методом послойного наплавления (FDM), в 
качестве источника питания для наплавки использо-
вался сварочный аппарат. Наплавка исследуемого 
сплава осуществлялась на алюминиевую подложу 
толщиной не менее 10 мм, где в качестве защитного 
газа использовался Ar. Сплав был получен с исполь-
зованием оптимального режима наплавки [13–15], 
обеспечивающего низкое разбрызгивание присадоч-
ного материала (проволоки) и минимизацию активных 
газов, влияющих на термическое разложение приса-
дочных материалов. Из полученного слитка на элек-
троэрозионном станке струйного типа ДК7732 выре-
залось несколько образцов с различных областей 
заготовки (рисунок 1) в форме кубиков (10 мм3) для 
исследования микроструктуры, которые потом под-
вергались химико-термической обработке поверхно-
сти с одной стороны.  
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Модифицирование поверхности методом низко-
температурного азотирования проводилось в услови-
ях научно-исследовательской лаборатории «Металлы 
и сплавы при экстремальных воздействиях» на уста-
новке ННВ-6,6-И1. Данная установка позволяет про-
водить очистку, активацию и нагрев поверхности об-
рабатываемых деталей ионами рабочего газа, гене-
рируемого сильноточным плазменным источником с 
накальным катодом. Азотирование осуществляли в 
дуговом разряде при помощи плазменного источника 
с накаленным катодом при температуре 350 ºС в те-
чение 2 ч в газовой смеси 50 % аргона и 50 % азота; 
давление 0,5 Па; напряжение 500 В. Такие параметры 
проведения исследований выбраны с целью изучения 

влияния низкотемпературного азотирования на обра-
зование нитридов алюминия и изменения структурно-
фазового состояния материала. Перед азотировани-
ем образцы были отполированы до зеркального 
блеска (эту поверхность подвергали азотированию).  

Для изучения изменения структуры сплава 
АА7075 до и после азотирования использовали скани-
рующий электронный микроскоп (прибор «KYKY EM-
6900») со следующими рабочими параметрами: ускоря-
ющее напряжение – 26 кэВ, ток эмиссии – 150 мА, ток 
накала ‒ 2,16 А. Проведение микрорентгеноспектраль-
ного анализа образцов осуществлялось с использова-
нием энергодисперсионного спектрометра Oxford Xplore. 

 

Рисунок 1 – Области исследования слитка из сплава АА7075, изготовленного проволочно-дуговым аддитивным способом: 
1 ‒ приграничная к подложке область; 2 ‒ центральная область; 3 ‒ периферийная область 

 

Figure 1 – Study areas of the AA7075 alloy ingot manufactured by the wire-arc additive method: 
1 ‒ area adjacent to the substrate; 2 ‒ central area; 3 ‒ peripheral area 

 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 
 

Для анализа микроструктуры наплавленных об-
разцов до азотирования использовали сканирующую 
электронную микроскопию (СЭМ). На рисунке 1 проде-
монстрированы три ключевые зоны: периферийная, 
центральная и приграничная к подложке. Трещины при 
затвердевании материала не обнаружены, а средняя 
пористость не превышает 2 %. При наплавке перифе-
рийного слоя (рисунок 2, а) происходит переплав верх-
них слоев заготовки, формируя область с высокой ско-
ростью охлаждения (обусловленную межслойным охла-
ждением), способствуя образованию равноосных зерен 
с размером до 50 мкм. В центральной области (рису-
нок 2, б) наблюдается смешанная структура из столбча-

тых и дендритных зерен. Это связано с уменьшением 
термического градиента из-за накопления тепла по мере 
послойного изготовления слитка. В приграничной к под-
ложке области преобладают столбчатые зерна, что 
объясняется сниженным рассеиванием тепла. Наплавка 
сплава AА7075 аддитивным способом формирует слож-
ную микроструктуру, зависящую от тепловых условий. 
Ключевые факторы ‒ скорость охлаждения, термиче-
ский градиент и многократный нагрев. Отсутствие тре-
щин и низкая пористость (менее 2 %) подтверждают 
технологическую стабильность процесса, однако неод-
нородность зерен требует дальнейшую оптимизацию 
режимов для улучшения микроструктуры и дальнейших 
механических свойств сплава. 

 
Рисунок 2 – Микроструктура алюминиевого сплава АА7075 в различных областях до и после азотирования: 

a ‒ периферийная область; b ‒ центральная область; c ‒ приграничная к подложке область; d ‒ периферийная область после 
азотирования; e ‒ центральная область после азотирования; f ‒ приграничная к подложке область после азотирования 

 

Figure 3 – Microstructure of aluminum alloy AA7075 in different areas before and after nitriding: 
a ‒ peripheral area; b ‒ central area; c ‒ area bordering the substrate; d ‒ peripheral area after nitriding;  

e ‒ central area after nitriding; f ‒ area bordering the substrate after nitriding 
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В алюминиевом сплаве марки 7075, содержа-
щем цинк, магний и медь в качестве легирующих 
элементов, может образовываться несколько интер-
металлических соединений, способствующих механи-
ческим свойствам сплава и его коррозионной стойко-
сти. Присутствие этих интерметаллидов имеет реша-
ющее значение для эксплуатационных характеристик 

сплава. Поэтому для дальнейшего исследования 
структурно-фазового состояния до и после азотиро-
вания была выбрана периферийная область сплава 
АА7075 с равномерным распределением равноосных 
зерен. Идентификацию интерметаллидных включе-
ний осуществляли с использованием микрорентгено-
спектрального анализа (рисунок 3). 

 

 

Рисунок 3 – СЭМ изображение алюминиевого сплава АА7075 с точечным микрорентгеноспектральным анализом 
 

Figure 3 – SEM image of aluminum alloy AA7075 with spot micro-X-ray spectral analysis 

 

 
 

 
Рисунок 4 – Микрорентгеноспектральный анализ модифицированной поверхности сплава АА7075: а ‒ СЭМ изображение исследуемой 

поверхности; б ‒ микрорентгеноспектральный анализ исследуемой области с суммарным элементным содержанием 
 

Figure 4 – Micro X-ray spectral analysis of the modified surface of the AA7075 alloy: 
a ‒ SEM image of the studied surface; b ‒ micro-X-ray spectral analysis of the studied area with the total elemental content 
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В периферийной области сплава микроструктура 
демонстрирует четкие границы зерен, что указывает на 
выделение вторичных фаз. Ключевыми фазами, влия-
ющими на прочность сплава системы Al ‒ Zn ‒ Mg, 
являются η-фаза (MgZn₂) и S-фаза (Al₂CuMg), сконцен-
трированные у границ зерен [16‒18]. Сплав представ-
лен обособленными металлическими включениями 
Al₂Cu (θ-фаза), образующихся из-за медленного охла-
ждения или перегрева металла. Основная фаза пред-
ставлена твердым раствором α-Al, в котором растворе-
ны 6,9 ат. % Zn; 2,0 ат. % Mg%; 1,9 ат. % Cu; 1,7 ат. % O; 
0,4 ат. % Mn; 0,2 ат. % Cr; 0,1 ат. % Fe. Для модифици-
рования поверхностных свойств сплава АА7075 было 
проведено низкотемпературное азотирование в дуго-
вом разряде при помощи плазменного источника с 
накаленным катодом. СЭМ изображение азотирован-
ной поверхности представлено на рисунке 4. 

Изменение размера зерен в образовавшемся 
слое после бомбардировки и травления ионами со-
ставило до 200 мкм. Стоит отметить, что присутству-
ют единичные интерметаллические соединения 
MgZn₂ (η) и Al₂Cu (θ), остальные соединения, пред-
ставленные фазы Al₂CuMg (S), не были обнаружены 
микрорентгеноспектральным анализом, что можно 
связать с их частичным растворением в твердом рас-
творе. На основе микрорентгеноспектрального анали-
за в модифицированной поверхности алюминиевого 
сплава АА7075 можно отметить следующее содержа-
ние элементов: 6,9 ат. % Zn; 2,4 ат. % O; 1,9 ат. % Cu; 
1,3 ат. % Mg; 0,4 ат. % Mn; 0,2 ат. % Cr; 0,1 ат. % Fe. 
После азотирования возросло содержание атомов 
кислорода до 2,4 ат. %, что можно связать с дополни-
тельным образованием поверхностного слоя Al2O3. 
На основе результатов микрорентгеноспектрального 
анализа отмечено снижение Mg до 1,3 ат. %, указан-
ное изменение элементного состава может быть обу-
словлено процессом плазменного азотирования, ко-
торое способствует образованию MgZn₂ и Al₂Cu с 
последующим формированием упрочненного поверх-
ностного слоя [19, 20]. 

 

ЗАКЛЮЧЕНИЕ 
 

Морфология сплава АА7075, изготовленного про-
волочно-дуговым аддитивным способом, изменяется в 
зависимости от расстояния до подложки. Так, в пригра-
ничной к подложке области преобладают столбчатые 
зерна, в центральной области наблюдается смешанная 
структура из столбчатых и дендритных зерен, перифе-
рийная область состоит из равноосных зерен до 100 мкм. 
Такое отличие в микроструктуре связано со следующими 
параметрами: скоростью охлаждения заготовки, темпера-
турным градиентом и многократным нагревом. Морфоло-
гия сплава АА7075 после обработки в дуговом разряде 
имела зеренную (поликристаллическую) структуру. Раз-
мер ячеек образовавшегося слоя после бомбардировки и 
травления ионами составил от 60 до 200 мкм. Обнаруже-
но незначительно изменение элементного состава образ-
ца, обусловленное процессом плазменного азотирования, 
которое способствует перераспределению легирующих 
элементов с последующим формированием упрочненно-
го поверхностного слоя. Полученные результаты подчер-
кивают влияние технологических параметров на измене-
ние микроструктуры и фазового состава аддитивно изго-
товленных алюминиевых сплавов после азотирования. 
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