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Аннотация. Компоненты растительного сырья фенольной природы являются важными биологически 
активными веществами с широким профилем функциональности. Одним из перспективных направлений 
применения полифенолов в качестве регуляторов динамики реакций неферментативного окрашивания явля-
ется взаимодействие с промежуточными продуктами, в частности с 5-гидроксиметилфурфуролом. В 
настоящей работе изучены компонентный состав шротов докритической СО2-экстракции Золотарника 
канадского и взаимодействие идентифицированных флавоноидов методами тонкослойной хроматографии и 
колебательной спектроскопии флавоноидов (кверцетин, рутин, гисперидин, гиперозид) с 5-
гидроксиметилфурфуролом. Методами ИК- и УФ-спектроскопии показано, что связывание 5-
гидроксиметилфурфурола реализуется посредством конденсации последнего по карбонильной группе с уча-
стием А-циклов молекул флавоноидов. Листья и соцветия Золотарника аналогичны по структурно-
групповому составу, при этом соцветия характеризуются более высоким содержанием флавоноидов, что 
позволяет рекомендовать их в качестве более перспективного источника для разработки составов пище-
вых систем.  

Ключевые слова: флавоноиды, Золотарник канадский, вытяжки, шроты, неферментативное окраши-
вание, 5-гидроксиметилфурфурол, электронная спектроскопия, ИК-спектроскопия. 
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Abstract. The phenolic nature components of plant raw materials are important biologically active substances with 
a wide range of functionality. One of the promising areas of application of polyphenols as regulators of the dynamics of 
non-enzymatic staining reactions through interaction with intermediates, in particular with 5-hydroxymethylfurfural. In this 
work, the component composition of Solidago canadensis L. subcritical CO2 extraction meal and the interaction of flavo-
noids identified by thin-layer chromatography and vibrational spectroscopy (quercetin, rutin, hesperidin, hyperoside) with 
5-hydroxymethylfurfural were studied. IR and UV spectroscopy have shown that the binding of 5-hydroxymethylfurfural is 
realized by condensation of the latter along the carbonyl group with the participation of A-cycles of flavonoid molecules. 
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The leaves and inflorescences of Solidago canadensis are similar in structural and group composition, while the inflo-
rescences are characterized by a higher content of flavonoids, which allows them to be recommended as a more per-
spective source for the development of food system. 
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ВВЕДЕНИЕ 

 

Полифенольные соединения, являясь известными 
антиокислительными производными, характеризуются 
приобретающей в последние годы популярностью в связи 
с проявлением широкого спектра действия в биологиче-
ских системах. Одним из новых направлений изучения 
действия полифенольных, в частности флавоноидных 
соединений, является их способность связывать токсич-
ные продукты (акриламид, гетероциклы) важнейших про-
цессов пищевой химии – реакции неферментативного 
окрашивания углеводов (карамелизация, реакция Майя-
ра) [1]. Эффект связывания, вероятно, реализуется за 
счет конденсации посредством взаимодействия феноль-
ных циклов и функциональных групп потенциально ток-
сичных продуктов [2], механизмы которого находятся в 
стадии активного изучения. Кроме того показано, что свя-
зывание продуктов реакций неферментативного окраши-
вания может быть реализовано с участием большой 
группы веществ различных классов и их композитов в 
форме гидрогелей [3], что является развитием другого 
перспективного направления пищевой индустрии – регу-
лирования цветности пищевых систем [4].  

Главным источником биологически активных 
полифенолов является растительное сырье, извле-
чение из которого флавоноидов и родственных со-
единений изучено в представительном количестве 
работ и с каждым годом число публикаций по данной 
тематике только возрастает. В подавляющем боль-
шинстве случаев для извлечения природных соеди-
нений применяют экстракционные методы, в том чис-
ле углекислотную экстракцию, и полученные вытяжки, 
как правило, являются основной формой применения 
полифенольных композиций.  

Одной из основных проблем практического 
применения извлечений из растительного сырья от-
мечается их сложный многокомпонентный состав, 
определяющий при этом их основные свойства. 
В настоящее время для исследования состава расти-
тельных экстрактов широко используются хромато-
графические методы (ВЭЖХ) в сочетании с тандем-
ной масс-спектрометрией [5, 6]. Применение для ука-
занных целей более доступных спектроскопических 
методов (ИК-Фурье спектроскопия, спектроскопия УФ- 
и видимой области) в сочетании с фитохимическим 
анализом позволяет охарактеризовать функциональ-
но-групповой состав (классы извлекаемых классиче-
скими растворителями или сверхкритической экс-
тракцией вторичных метаболитов растений) экстрак-
тов и оценить соотношение биологически активных 
компонентов [5]. Регистрация и анализ колебатель-
ных спектров поглощения и отражения с применени-
ем современных ИК-Фурье спектрометров дает воз-
можность исследовать как фракционированные с 
применением хроматографических методов экстрак-
ты, так и извлекаемые из разных частей растений 
масла без их предварительного разделения с под-

тверждением спектральных данных результатами 
фитохимического анализа [5].  

Информация о функционально-групповом и фи-
тохимическом составе растительных экстрактов поз-
воляет не только оценивать их биологическую актив-
ность, но и в свете описанных выше свойств прогно-
зировать способность к связыванию токсичных про-
дуктов сахар-аминных реакций, что, несомненно, яв-
ляется актуальным как в части разработки теории и 
методологии исследований в данном направлении, 
так и в практическом плане для подбора пищевых 
составов функционального назначения. Так, за по-
следние несколько лет опубликованы результаты 
исследований по изучению влияния строения флаво-
ноидов на эффективность связывания акриламида и 
участвующего в его образовании 5-гидрокси-
метилфурфурола (5-ГМФ) [2, 7], в частности показа-
но, что конденсация по альдегидной группе 5-ГМФ 
предпочтительна по положению 6 А-цикла флавонов 
[7], при этом наиболее способствуют проявлению 
связывающей по отношению к акриламиду способно-
сти 5,7-ОН-группы А-цикла [2]. 

Тем не менее, ранее полученные результаты 
указывают на отсутствие у некоторых фенолов спо-
собности к торможению образования акриламида и 5-
ГМФ, образующимися в условиях реакции Майяра [8]. 
Авторами одной из последних работ по данной про-
блеме [9] показана возможность исследования свя-
зывания 5-ГМФ полифенольными компонентами рас-
тительных экстрактов, при этом анализ механизмов 
образования и строения образующихся промежуточ-
ных и конечных продуктов не приводится, что пред-
полагает актуальность и перспективность дополни-
тельное исследований в данном направлении в части 
установления корреляций природы и состава расти-
тельных экстрактов с их связывающей способностью.      

Цель работы – изучение компонентного соста-
ва этанольных вытяжек шротов докритической угле-
кислотной экстракции растений Золотарника канад-
ского (листьев и соцветий) с целью оценки их связы-
вающей способности по отношению к 5-
гидроксиметилфурфуролу.   

 

МЕТОДЫ 
 

В качестве исследуемого растительного мате-
риала использовали листья и соцветия Золотарника 
канадского (Solidago canadensis L.), собранного на 
территории Удмуртской Республики и предоставлен-
ного кафедрой Ботаники, зоологии и физиологии жи-
вотных Удмуртского государственного университета.  

Фитохимическая идентификация флавоноидов 
Добавление к водно-спиртовому извлечению 3 %-

ного раствора хлорида алюминия в 95 %-ном этаноле 
при наличии флавоноидов дает желто-зеленое окраши-
вание; описанный эффект был отмечен для обоих типов 
исследуемых объектов (листьев и соцветий).  
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Получение шротов докритической углекислотной 
экстракции 

Исследуемые шроты после докритической СО2-
экстракции (экстрактор РАЭ-01-05; 10 МПа; 50 ºС) 
были предоставлены кафедрой Физиологии, клеточ-
ной биологии и биотехнологии Удмуртского государ-
ственного университета.  

Получение вытяжек из шротов   
Сухие шроты СО2-экстрактов помещали в раство-

ритель (80 % этанол) и термостатировались в колбах с 
обратным холодильником при температуре кипения в 
течение заданного времени 1.5 ч), после чего фильтро-
вали, получая вытяжки для исследования функциональ-
но-группового и компонентного состава.  

Анализ вытяжек методом тонкослойной  
хроматографии 

Идентификацию флавоноидов методом ТСХ 
проводили на пластинках «Silufol» в элюентных си-
стемах: а) н-бутанол-уксусная кислота-вода (4:1:5) и 
б) этилацетат-уксусная кислота-вода (7:1:2). Эта-
нольные растворы (экстракты) наносили на линию 
старта, после чего помещали пластинки (10 х 4 см) в 
камеру и выдерживали до достижения фронтом рас-
творителя линии финиша. Пластинки высушивали до 
исчезновения запаха растворителя, после чего 
опрыскивали 5 % спиртовым раствором хлорида 
алюминия с последующим нагреванием в сушильном 
шкафу при 105 ºС в течение 5 минут. Рассчитывали 
значения Rf по отношению пробегов компонентов 
(центры ярко-желтых пятен) и растворителя от линии 
старта до линии финиша. 

Количественное определение содержания  
флавоноидов в шротах 

Точную навеску измельченного сырья (1 г) по-
мещали в круглодонную колбу вместимостью 
250,0 мл и прибавляли 50,0 мл 60 % спирта этилово-
го. Колбу с содержимым кипятили на водяной бане с 
обратным холодильником в течение 2 часов. Полу-
ченное извлечение фильтровали через беззольный 
фильтр (раствор «А»). Аликвоту 5,0 мл раствора «А» 
помещали в мерную колбу вместимостью 50,0 мл и 
доводили объем раствора до метки 60 % спиртом эти-
ловым (раствор «Б»). По 5,0 мл раствора «Б» помеща-
ли в две мерные колбы вместимостью 50,0 мл. В 
первую колбу прибавляли 2,0 мл 3 %-го раствора алю-
миния хлорида в спирте этиловом. В обеих колбах 
доводили объем растворов до метки 60 %-ным спир-
том этиловым и через 40 минут измеряли оптическую 
плотность раствора из первой колбы при длине волны 
389 нм в кюветах с толщиной слоя 1 см на спектрофо-
тометре СФ-2000 (ОКБ «Спектр», СПб, Россия). В ка-
честве раствора сравнения использовали раствор из 
второй колбы. Содержание флавоноидов (%) в изуча-
емом сырье рассчитывали по формуле: 

Х = 5000ꞏА / ε ꞏa, 
где А – оптическая плотность испытуемого раствора;    
      ε – удельный показатель поглощения комплекса 
флавоноидов с алюминия хлоридом, равный 401;  
      а – навеска шрота, г. 

Регистрация колебательных спектров твердых 
фаз вытяжек 

Вытяжки из исходных экстрактов исследовали в 
виде высушенных после удаления растворителя 
твердых фаз в KBr-таблетках (1 мг пробы в 200 мг 
KBr). ИК-Фурье спектры регистрировали на ИК-Фурье 
спектрометре ФСМ-2201 (ООО «Инфраспек», СПб, 
Россия) в интервале волновых чисел 4000–400 см-1 с 
разрешением по волновому числу 4 см-1 при 40 ска-

нах и обрабатывали в программе FSpec 4.3.0.9. На 
основании отнесения наиболее интенсивных спек-
тральных полос к структурным фрагментам вторич-
ных метаболитов с использованием ранее описанного 
подхода [10] были идентифицированы соответствую-
щие производные, потенциально обладающие альде-
гид-связывающей способностью.   

Изучение процессов связывания  
5-гидроксиметилфурфурола 

Неферментативное окрашивание, приводящее к 
образованию 5-ГМФ, моделировали кислотно-
катализируемой реакцией карамелизации D-
фруктозы (80 ºС, 1 час), реализуемой в герметичной 
колбе, в которую вносили 20 мл раствора фруктозы 
(400 г/л), содержащего 0,004 моль/л HCl, контроль 
окончания процесса осуществляли спектрофотомет-
рически (λmax = 277±2 нм). По истечении времени к 
15 мл полученного раствора добавляли 0,01 г твер-
дых фаз вытяжек и в течение 1 часа непрерывно пе-
ремешивали в колбе с обратным холодильником при 
t = 30 ºC на модуле ротационного испарителя ИР-1М3 
[11]. По окончании процесса регистрировали элек-
тронные спектры проб (5 мл) в кварцевых кюветах 
(1 см) в диапазоне длин волн 200–500 нм с разреше-
нием по длине волны 2 нм. На завершающем этапе 
удаляли избыток растворителя концентрированием и 
полученную гомогенизированную систему исследова-
ли ИК-спектроскопически (параметры регистрации 
спектров аналогичны вышеописанным) в форме тон-
ких пленок между солевыми пластинами с соответ-
ствующим контролем толщины оптического пути.   

 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 
 

Первичные испытания шротов включали фитохи-
мические исследование, тонкослойную хроматографию 
и определение массового содержания флавоноидов. 
Фитохимический анализ подтверждает присутствие в 
исходном сырье флавоноидов, ТСХ шротов (табл. 1) 
позволяет идентифицировать три компонента. 

ИК-спектроскопия является одним из методов, 
позволяющих достаточно оперативно и достоверно 
проводить идентификацию флавоноидных компонен-
тов экстрактов. Вытяжки шротов листьев и соцветий 
Золотарника схожи по функционально-групповому 
составу между собой (рис. 1).  

 

 
 

Рисунок 1 – Колебательные спектры твердых фаз 
этанольных вытяжек шротов Золотарника канадского: 

1 – листья; 2 – соцветия (KBr, 1:200) 
 

Figure 1 – Solidago canadensis L. meals ethanolic  
extract solid phases vibrational spectra: 1 – leaves;  

2 – inflorescences (1:200 KBr)  
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Таблица 1 – Данные первичных испытаний исходного растительного сырья  
 

Table 1 – Primary investigation data of the initial plant material  

Система 

Значения Rf при ТСХ флавоноидов в различных элюентных системах 
Массовое содержание фла-
воноидов в шротах (Х), % 

Бутанол-уксусная  
кислота-вода (4:1:5) 

Этилацетат-уксусная  
кислота-вода (7:1:2) 

Листья 0,89 Кверцетин 
0,90 
0,74 
0,46 

Кверцетин 
Гиперозид 

Рутин 
3,3±0,3 

Соцветия 0,85 Кверцетин 
0,91 
0,67 
0,51 

Кверцетин 
Гиперозид 

Рутин 
3,7±0,2 

 
В таблице 2 представлено сопоставление 

экспериментальных данных и результатов расчета 
ИК-спектра молекулы кверцетина в рамках теории 
функционала плотности [12]. Подобное сопостав-
ление позволяет дать оценку отнесениям полос в 
области валентных колебаний кратных С=С-связей 
[13], что необходимо в плане получения достоверной 
информации о структурных изменениях в процессе 
взаимодействия молекул флавоноидов с 5-ГМФ. 
В частности, анализ данных таблицы 2 показывает 
отнесение сигналов 1609, 1516 см-1 к валентным ко-
лебаниям С=С соответственно циклов С и А молеку-
лы кверцетина [12]. Тем не менее, при сопоставлении 
положения полос, в том числе со спектрами стан-
дартных образцов, следует учитывать возможность 
проявления близких по частоте сигналов для разных 
структурных фрагментов молекул флавоноидов, а 
также взаимодействие компонентов в матрице шро-
тов, приводящее к изменению положения характери-
стических пиков [12].   

 

Таблица 2 – Отнесение полос (см-1) в спектрах 
твердых фаз вытяжек исследуемых шротов (эксп) и 
кверцетина (расч) и (станд) 
 

Table 2 – Assignment of bands wavenumber values (cm-1) 
in the meals extracts solid phases spectra (exp) and 
quercetin (calc) and (stand)   

Отнесение νэксп νрасч νстанд 

νС=С  1609 1608 1616 

νС=С  1516 1516 1523 

νС-ОН + νС=С 1451 1440 1446 

νС-ОН + δС-ОН 1367 1375 1383 

δС-ОН 1307 1312 1325 
 

В области ниже 1000 см-1 интенсивность полос 
в спектрах флавоноидов низкая [13], однако некото-
рые отнесения могут быть использованы для получе-
ния дополнительной информации о составе шротов. 
Низкочастотные сигналы 933, 812, 762 см-1 относятся 
к колебаниям моносахаридных циклов α-гликозидов 
и/или ароматических =С-Н-фрагментов фенолов, 
С=С-Н-фрагментов флавоноидов. Первая их них про-
является в спектре кверцетина [12], вторая и третья 
характерны как общие для флавонолов и флавононов 
(гиперозид, гисперидин) [14, 15].  

Деформационные СН-колебания гликозидной со-
ставляющей рутина – рамнопиранозил и глюкопирано-
зил-циклов представлены в спектрах полосами 1116 и 
1161 см-1, сигнал 992 см-1 обусловлен наложением коле-
баний ωСН рамнопиранозы и колебаний С-О-С-связей 
между циклами [15]. Присутствие сочетающихся угле-
водных фрагментов подтверждается наличием харак-
терных для колебаний С-О-С-связей гликозидов с фе-
нольным остатком полос 1068 и 1037 см-1 [14].  

Колебательные спектры реакционных систем 
флавоноиды – 5-ГМФ в сравнении со спектрами 
твердых фаз шротов представлены на рис. 2.  

Сопоставление ИК-спектров (рис. 2) показывает 
наличие полос, центрированных при 1030 см-1 

(спектры 3, 4), характерных для С-О-колебаний 
связанных по карбонильной группе фурановых 
циклов [16], взаимодействие 5-ГМФ с участием С=О-
функции также подтверждается слабой 
интенсивностью полос νС=О (1651 см-1). С другой 
стороны, наблюдается существенная депрессия 
характерных для флавоноидов полос колебаний С=С-
ароматических циклов, что, вероятно, объясняется 
конденсацией молекул полифенолов: подобный 
эффект ранее описан авторами [17]. Новая полоса 
1470 см-1 в спектрах 3, 4 относится по данным [18] к 
колебаниям С=С-С-фрагментов конденсированных 
молекул флавоноидов. 

 

 
 

Рисунок 2 – Колебательные спектры твердых фаз 
этанольных вытяжек шротов: 1 – листья; 2 – соцветия 

в сопоставлении со спектрами систем  
флавоноиды-5-ГМФ: 3 – листья; 4 – соцветия 

 

Figure 2 – Vibrational spectra of solid phases of ethanol 
meal extracts: 1 – leaves; 2 – inflorescences  

in comparison with the spectra of flavonoids-5-GMF  
systems: 3 – leaves; 4 – inflorescences 

 

Электронные спектры (рис. 3) показывают 
интенсивное поглощение 5-ГМФ в исходном растворе 
термостатированной фруктозы (276 нм), при этом 
после введения в систему твердых фаз вытяжек 
шротов (систем флавоноиды – 5-ГМФ) спектральные 
контуры меняются и по окончании экспериментов 
наблюдается полоса 380 нм, характеризующая 
поглощение флавоноидов [19], при этом более 
коротковолновая полоса регистрируется в только 
форме инфлексии и смещается к значениям 265 нм. 
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Рисунок 3 – Электронные спектры исследуемых  

реакционных систем   
 

Figure 3 – UV-Vis spectra of investigated reactive  
systems 

 

Схема взаимодействия 5-ГМФ с полифенольными 
компонентами исследуемого растительного сырья (на 
модели молекулы кверцетина) может быть представлена 
в виде:   

 

 
R – структурно-аналогичный фрагмент молекулы 
флавоноида. 

Фруктоза в кислой среде при нагревании претер-
певает ряд последовательных превращений, основным 
конечным продуктом которых является 5-ГМФ. Далее 
происходит алкилирование молекулы флавоноида в 
положение 8 (А-цикл), на что указывают литературные 
данные [11]. Анализ описанных выше спектральных эф-
фектов дополнительно подтверждает участие А-циклов в 
конденсации: спектральный профиль интервала, вклю-
чающего полосы С=С-валентных колебаний существенно 
трансформируется, в частности, помимо смещения по-
лос 1609 см-1 в высокочастотную область с понижением 
интенсивности [19], практически полностью нивелируется 
полоса 1516 см-1 (νС=С А-цикла, табл. 2). Анализ измене-
ния профилей электронных спектров (рис. 3) показывает 
снижение поглощения (276 нм, n→π*-переход) участву-
ющей в конденсации карбонильной группы 5-ГМФ. По-
глощение флавоноидов характеризуется двумя макси-
мумами в спектрах: полоса I (300–400 нм), относимая к 
переходам с участием π-электронной системы В-цикла и 
полоса II (220–280 нм), связанная с переходами электро-
нов А-цикла [20]. Первая полоса сохраняет свое положе-
ние, тогда как вторая проявляется только в форме плеча, 
подтверждая конденсацию с 5-ГМФ по А-циклу [17].  

Дальнейшее развитие исследований в данном 
направлении перспективно в части выделения и изуче-
ния структуры продуктов взаимодействия флавоноидов с 
5-ГМФ, что открывает подходы к синтезу новых анти-
окислительных препаратов на основе конденсированных 
полифенолов [17, 18].      

 

ЗАКЛЮЧЕНИЕ  
 

1. В ходе проведенного исследования изучены 
компонентный состав шротов докритической СО2-
экстракции Золотарника канадского и взаимодействие 
идентифицированных методами тонкослойной хромато-
графии и колебательной спектроскопии флавоноидов 
(кверцетин, рутин, гисперидин, гиперозид) с 
5-гидроксиметилфурфуролом.  

2. Методами ИК- и УФ-спектроскопии показано, что 
связывание 5-гидроксиметилфурфурола реализуется по-
средством конденсации последнего по карбонильной группе 
с участием А-циклов молекул флавоноидов.  

3. Листья и соцветия Золотарника аналогичны по 
структурно-групповому составу, при этом соцветия ха-
рактеризуются более высоким содержанием флавонои-
дов, что позволяет рекомендовать их в качестве источ-
ника для разработки составов пищевых систем.  

4. Дальнейшее развитие исследований в данном 
направлении перспективно в части выделения и изуче-
ния структуры продуктов взаимодействия флавоноидов с 
5-ГМФ, открывающих подходы к синтезу новых антиокис-
лительных препаратов на основе конденсированных 
полифенолов.      
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