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Аннотация. Исследованы механические характеристики алюминиевого сплава марки 7075 модифици-
рованного электронно-пучковой обработкой. Образцы подвергали двум видам механических испытаний: од-
ноосное растяжение с постоянной скоростью и усталостное нагружение. Состояние элементного и фазо-
вого состава сплавов системы Al-Zn-Mg-Cu изучали методами сканирующей электронной микроскопии. В 
сплаве AA7075 после электронно-пучковой модификации основную роль играет α-Al матрица, в которой в 
твёрдом растворе находятся легирующие элементы Zn, Mg и Cu, а также Fe, Si и Mn. При локальном повы-
шении концентраций Zn и Mg происходит формирование упрочняющей η-фазы (Mg(Zn,Cu)₂), а при присут-
ствии Cu и Mg выделяются частицы S-фазы (Al₂CuMg). В зонах с высоким содержанием меди (≥ 35 ат. % Cu) 
и присутствием Fe/Ni образуются интерметаллиды θ-фазы (Al₂Cu) и сложные Al–Fe–Ni–Cu соединения, то-
гда как отдельные участки с преобладанием Zn и Cu (28–46 ат. % Zn, 27–40 ат. % Cu) характеризуются 
наличием Cu–Zn интерметаллидов. Электронно-пучковая обработка (ЭПО) алюминиевого сплава 7075, полу-
ченного аддитивным методом, увеличивает предел прочности в 2 раза (с 100,9 до 199,3). Это достигнуто за 
счет устранения дефектов, микроструктурных изменений, снятия остаточных напряжений от послойного 
наплавления при аддитивном производстве. После усталостных испытаний образец, изготовленный адди-
тивным способом, демонстрирует ≈235 000 циклов до разрушения, а комбинация с ЭПО повышает выносли-
вость до 260 000 циклов. Стандартное отклонение σ ≈ 5–8 % для прочности, σ ≈ 10–15 % для усталости, 
подтверждает, что метод электронно-пучковой обработки нивелирует недостатки аддитивного производ-
ства, обеспечивая одновременный рост прочности, пластичности и усталостной долговечности сплава 
7075. 

Ключевые слова: сплав 7075, растяжение, усталость, микроструктура, электронно-пучковая обра-
ботка. 
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Abstract. The mechanical properties of aluminum alloy grade 7075 modified by electron-beam processing were 
studied. The samples were subjected to two types of mechanical tests: uniaxial tension at a constant rate and fatigue 
loading. The state of the elemental and phase composition of the Al-Zn-Mg-Cu alloys was studied using scanning elec-
tron microscopy. In the AA7075 alloy after electron-beam modification, the main role is played by the α-Al matrix, in 
which the alloying elements Zn, Mg and Cu, as well as Fe, Si and Mn are in solid solution. With a local increase in the 
concentrations of Zn and Mg, the strengthening η-phase (Mg(Zn,Cu)₂) is formed, and in the presence of Cu and Mg, 
particles of the S-phase (Al₂CuMg) are released. In areas with high copper content (≥ 35 аt. % Cu) and the presence of 
Fe/Ni, θ-phase intermetallic compounds (Al₂Cu) and complex Al–Fe–Ni–Cu compounds are formed, whereas individual 
areas with a predominance of Zn and Cu (28–46 at. % Zn, 27–40 at. % Cu) are characterized by the presence of Cu–Zn 
intermetallic compounds. Electron beam processing (EBP) of 7075 aluminum alloy obtained by the additive method in-
creases the ultimate strength by 2 times (from 100.9 to 199.3). This is achieved by eliminating defects, microstructural 
changes, and relieving residual stresses from layer-by-layer deposition during additive manufacturing. After fatigue test-
ing, the additively manufactured sample demonstrates ≈235,000 cycles before failure (versus 130,000 for the traditional 
analogue), and the combination with EPO increases the endurance to 260,000 cycles. The standard deviation of σ ≈ 5–
8 % for strength, σ ≈ 10–15 % for fatigue confirms that the electron beam processing method eliminates the disad-
vantages of additive manufacturing, providing a simultaneous increase in strength, ductility and fatigue life of the 7075 
alloy. 
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ВВЕДЕНИЕ 
 

В ряде современных отраслей промышленно-
сти, прежде всего связанных с машиностроением, 
алюминиевый сплав марки 7075 системы Al-Zn-Mg-Cu 
привлекает внимание исследователей благодаря 
сочетанию высокой прочности по отношению к массе 
[1]. Вместе с тем, ограниченная коррозионная стой-
кость, сложность сварки и недостаточная пластич-
ность при комнатной температуре ставят задачи оп-
тимизации микроструктуры и технологии обработки 
сплава [2]. В литературе активно рассматриваются 
методы термической обработки, введение нанострук-
тур и композитных усилителей, а также применение 
аддитивных и электронно-лучевых технологий для 
повышения эксплуатационных характеристик сплавов 
системы Al-Zn-Mg-Cu систем [3-4].  Сплав 7075, ши-
роко используется для изготовления фюзеляжей, 
конструктивных элементов двигателей и топливных 
баков, где критичны как прочность при растяжении 
более 200 МПа и относительной деформации поряд-
ка 10 %, так и усталостная долговечность [5]. В авто-
мобильной промышленности 7075-й сплав использу-
ют в узлах подвески, шасси и гоночных компонентах 
благодаря хорошей виброустойчивости и износостой-
кости [6]. 7075-й сплав достигает одного из самых 
высоких показателей прочности среди алюминиевых 
сплавов благодаря наличию фазовых упрочняющих 
осадков MgZn₂ и Cu-обогащенных зон [1]. Это делает 
его незаменимым в тех областях, где на первое ме-
сто выходят требования к минимизации массы при 
сохранении механической прочности. Работы по мо-
дификации режимов растворения и старения (T6, 
RRA, тройное старение) направлены на регулирова-
ние размера и распределения осадков η-фазы для 
баланса прочности, и пластичности [7]. Введение 
наночастиц (TiC, SiC, B₄C) позволяет дополнительно 
упрочнять сплав за счёт препятствования движению 
дислокаций и зернограничного укрепления [8]. Иссле-
дования аддитивного изготовления для ремонта из-
делий из AA7075-T651 показывают, что управляемое 
осаждение слоя металла сохраняет исходную микро-
структуру и прочность материала [9]. Применение 
электронно-пучковой модификации и лазерных мето-

дов поверхностного упрочнения способствует обра-
зованию остаточных сжимающих напряжений и по-
вышению коррозионной стойкости [10, 11]. Влияние 
электронно-лучевой обработки на алюминиевые 
сплавы приводит к улучшению микроструктурных и 
механических свойств. Этот метод обработки моди-
фицирует поверхностные слои сплавов, что приводит 
к повышению твердости, износостойкости.  

При обработке электронным пучком образуется 
модифицированный поверхностный слой, обычно 
глубиной до 200 мкм, характеризующийся перенасы-
щенным твердым раствором на основе алюминия, 
который заменяет интерметаллические фазы, при-
сутствующие в исходном сплаве [12,13]. Образуются 
высокоскоростные ячеистые кристаллизационные 
структуры, способствующие улучшению размеров 
зерен и механических свойств. Микротвердость алю-
миниевых сплавов может увеличиться более чем на 
30 % из-за механизмов упрочнения, активируемых 
электронно-лучевой обработкой. Заметно улучшена 
износостойкость; например, исследование сплавов Al-
Si показало увеличение износостойкости после обра-
ботки на 29-32 % [14]. Электронно-лучевая обработка 
способствует лучшему анодированию сплавов Al-Si 
путем рафинирования частиц кремния, тем самым 
улучшая механические свойства поверхности и корро-
зионную стойкость [15]. Хотя электронно-лучевая об-
работка дает значительные преимущества, она также 
может создавать проблемы, такие как возможность 
образования микротрещин и дефектов поверхности, 
которые могут повлиять на долгосрочную производи-
тельность в некоторых областях применения. 

Продолжающееся совершенствование техноло-
гий обработки и мульти дисциплинарные исследова-
ния микроструктуры сплава 7075 остаются ключевы-
ми для расширения областей его применения. Ком-
бинация классических методов обработки и иннова-
ционных подходов (аддитивные технологии [16-19], 
электронно-пучковая обработка) открывает перспек-
тивы получения материалов с уникальным сочетани-
ем прочности, пластичности и долговечности. 

 

МАТЕРИАЛЫ И МЕТОДЫ 
 

В качестве материала исследований использо-
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ван алюминиевый сплав марки 7075, образцы на рас-
тяжение имели форму пропорциональных лопаток и 
имели следующие размеры: толщина 3 мм; ширина 
14 мм; расчетная длина 60 мм (рис. 1). Образцы для 
исследований усталостной долговечности имели 
форму параллелепипеда размерами 4х12х130 мм с 
двумя концентраторами напряжений в виде полукруга 
радиусом 20 мм. Для качественной оценки усталост-
ных характеристик образцов, изготовленных по ГОСТ 
25.502-79, их подвергали механической шлифовке 
наждачной бумагой с уменьшением дисперсности аб-
разивных частиц, поскольку, качество подготовки по-
верхности изделий влияет на показатели сопротивле-
ния усталости. Модифицирование наплавленного слоя 
осуществляли, облучая поверхность высокоинтенсив-
ным электронным пучком на установке “СОЛО” [20] в 
режиме плавления и высокоскоростной кристаллиза-
ции. Данная установка разработана институтом силь-
ноточной электроники СО РАН в Томске.  

 

 
 

Рисунок 1 – Внешний вид образца алюминиевого сплава 
7075 для механических испытаний после электронно-

пучковой обработки 
 

Figure 1 – Appearance of the 7075-aluminum alloy specimen 
for mechanical testing after electron beam treatment 

 

Механические испытания алюминиевого сплава 
марки 7075 поверхностно модифицированного электрон-
ным пучком, осуществляли путем одноосного растяжения 
образцов на испытательной машине «SUBRAMAX PMBC-
50» с постоянной скоростью 0,5 мм/мин.  

Исследования на усталостную долговечность 
выполнялись на специализированном оборудовании, 
работающему по схеме асимметричного консольного 
изгиба. В ходе экспериментов регистрировалось коли-
чество циклов, предшествующих разрушению матери-
ала. Все испытания осуществлялись при комнатной 
температуре (~293 К), а частота нагружений образцов 
изгибом составляла 2,3 Гц. Для достижения мини-
мального порога в 10⁵ циклов до появления трещин 
экспериментально подбирались пиковые значения 
напряжения и амплитуды циклических воздействий. 

Исследования структуры излома и элементного 
состава осуществляли на сканирующем электронном 
микроскопе «KYKY EM-6900», с термоэмиссионным 
вольфрамовым катодом и приставкой (Oxford Xplore) 
для микрорентгеноспектрального анализа элементно-
го состава. Напряжение, разгоняющее электроны в 
электронном пучке, составило 25 кэВ, ток накала со-
ставлял 2,14 A, ток эмиссии составил 150· 10-6 A. Ре-
гистрация сигнала осуществлялась детектором вто-
ричных электронов типа Эверхарта-Торнли (SE) и 
обратно отраженных электронов (BSE), позволяющим 
получать фазовый контраст от элементов с различ-
ным атомным номером. 

 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 
 

Образец после электронно-пучковой обработки 
(рис. 2) продемонстрировал почти вдвое более высокий 
предел прочности (199,3 МПа) и в четыре раза большую 
относительную деформацию (8,10 %) по сравнению с 
необлученным образцом (рисунок 2) (100,9 МПа и 2,10 % 
соответственно). Что указывает на одновременное улуч-
шение прочности и пластичности. Возможными причина-
ми улучшения служат: устранение дефектов аддитивного 
производства, а именно снятие остаточных напряжений 
при ЭПО, возникшие при послойном наплавлении, также 
ЭПО, как высокоэнергетический процесс, переплавляет 
поверхность, устраняя микропоры и трещины, характер-
ные для аддитивных материалов. Электронно-пучковая 
обработка, формирует более мелкие и однородные зерна 
с растворение хрупких интерметаллидов (например, 
MgZn₂ в сплаве 7075) и образование локальных фазовых 
превращений в поверхностном слое под действием высо-
коэнергетического электронного пучка. 

На графике (рис. 2) представлено несколько ва-
риантов исследования алюминиевого сплава 7075: ад-
дитивным способом и с применением электронно-
пучковой обработки (EPO). Применение аддитивных 
технологий и электронно-пучковой обработки увеличи-
вает количество циклов до разрушения. После уста-
лостных испытаний образец, изготовленный аддитив-
ным способом, демонстрирует ≈235 000 циклов до раз-
рушения, а комбинация с ЭПО повышает выносливость 
до 260 000 циклов. Стандартное отклонение σ ≈ 5–8 % 
для прочности, σ ≈ 10–15 % для усталости, подтвержда-
ет, что метод электронно-пучковой обработки нивелиру-
ет недостатки аддитивного производства, обеспечивая 
одновременный рост прочности, пластичности и уста-
лостной долговечности сплава 7075. 

 
Рисунок 2 – Количество циклов до усталостного разрушения 

и предел прочности алюминиевого сплава 7075, изготов-
ленного аддитивным производством (АП) и дополнительно 

облученного электронно-пучковой обработкой (ЭПО) 
 

Figure 2 – Number of cycles to fatigue failure and tensile 
strength of the 7075-aluminum alloy produced by additive  

manufacturing (AM) and additionally treated with electron beam 
processing (EBP) 

 

Микроструктура излома после испытания на 
усталостную долговечность аддитивно изготовленно-
го сплава 7075 (рисунок 3) характеризуется сложным 
распределением интерметаллидов (MgZn₂, Al₂Cu, 
Al₂CuMg, CuZn) и перенасыщенного твердого раство-
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ра α-Al.  В результате энергодисперсионного анализа 
(EDS) алюминиевого сплава AA7075 после электрон-
но-пучковой обработки выявлены различные фазы и 
зоны распределения легирующих элементов.  

 

 
Рисунок 3 – Микроструктура излома после усталост-
ного разрушения и элементный состав по спектрам 

алюминиевого сплава 7075 модифицированного 
электронно-пучковой обработкой 

 

Figure 3 – Fracture microstructure after fatigue failure 
and elemental composition from spectra of the 7075-
aluminum alloy modified by electron beam processing 

 

Основная матрица (α-Al) представляет собой 
твёрдый раствор алюминия с растворёнными Zn, Mg, 
Cu, Fe, Si и Mn. В спектрах 1, 2, 8 и 10 (Al > 80 ат. %, 
Zn 4–16 ат. %, Mg 1–2 ат. %, Cu до 3 ат. %) фиксиру-
ются однородные области матрицы с преобладанием 
алюминия и разбросом легирующих элементов ниже 
10 ат. %. В спектре 3 (Al ≈ 62 ат. %, Zn ≈ 14 ат. %, Cu 
≈ 12 ат. %, Mg ≈ 12 ат. %) наблюдается смесь упроч-
няющих интерметаллидов (MgZn₂ с частичным заме-
щением Zn на Cu) и S-фазы (Al₂CuMg), причём сово-
купная доля вторичных фаз достигает ≈ 38 ат. %. 
Такая комбинация фаз характерна для старения 
сплава в режиме T6 и обеспечивает оптимальную 
прочность и пластичность материала. Точка 4 харак-
теризуется высоким содержанием меди (≈ 37 ат. %) и 
наличием Fe (~ 1 ат. %) и Ni (~ 7 ат. %), что указывает 
на образование θ-фаз (Al₂Cu) и сложных интерметал-
лидов Al–Fe–Ni–Cu, вероятно Al₇Cu₂Fe или Al₃Ni₂. 

Эти включения формируются при выплавке и могут 
служить центрами зарождения трещин при цикличе-
ских нагрузках. Интерметаллидные зоны в спектрах 5, 
6 и 7 (Zn 28–46 ат. %, Cu 27–40 ат. %) представляют 
собой Cu–Zn соединения с частичным растворением 
Mg в спектре 7. Такие фазы обеспечивают дополни-
тельное упрочнение, но могут снижать ударную вяз-
кость. Спектр 9 (100 ат. % Al) демонстрирует практи-
чески чистую матрицу, где содержание легирующих 
элементов ниже уровня детектирования энергодис-
персионной спектрометрии. 

ВЫВОДЫ 
 

В заключении можно отметить, что всесторонне 
изучение характеристик упрочненного алюминиевого 
сплава АА7075 методами современного физического 
материаловедения выявило значительные преобра-
зования, как качественные, так и количественные. 

1. Электронно-пучковая обработка (ЭПО) алю-
миниевого сплава 7075 почти удваивает предел 
прочности (с 100,9 до 199,3 Н/мм²) и увеличивает 
пластичность в четыре раза (с 2,10 % до 8,10 %). Од-
новременное повышение прочности и пластичности 
достигается за счёт снятия остаточных напряжений, 
образованных после аддитивного изготовления изде-
лия, микропор и трещин в поверхностном слое, и рас-
творения хрупких интерметаллидов под действием 
высокоэнергетического электронного пучка. 

2. Испытания на усталостную долговечность 
демонстрирует, что применение аддитивной техноло-
гии и электронно-пучковой обработки увеличивает 
число циклов до разрушения (≈ 260 000 циклов). Не-
смотря на статистический разброс значений, разли-
чия между аддитивным и ЭПО-модифицированным 
материалом подтверждают эффективность комбини-
рованных технологий для повышения прочностных и 
усталостных свойств алюминиевого сплава 7075. 

3. Микрорентгеноспектральный анализ выявил, 
что, основная матрица (α-Al) представляет собой 
твёрдый раствор алюминия с растворёнными эле-
ментами Zn, Mg, Cu, Fe, Si и Mn. Также наблюдается 
смесь упрочняющих интерметаллидов (MgZn₂) и S-
фазы (Al₂CuMg). В локальных областях сплава обна-
ружено высокое содержанием меди (≈ 37 ат. %) и 
наличием Fe (~ 1 ат. %) и Ni (~ 7 ат. %), что указывает 
на образование θ-фаз (Al₂Cu) и сложных интерметал-
лидов Al–Fe–Ni–Cu, вероятно Al₇Cu₂Fe или Al₃Ni₂. 
Эти включения формируются при выплавке и могут 
служить центрами зарождения трещин при цикличе-
ских нагрузках. 
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