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Аннотация. Считается, что теплопроводность неметаллических, в том числе и алмазных материалов 

осуществляется в основном фононами. Однако в углеродных алмазоподобных пленках ситуация сложнее. 

Казалось бы, что в монофазных алмазных пленках фононный механизм теплопроводности очевиден. Однако 

множесвенность границ раздела и наличие большой концентрации водорода снижают коэффициент тепло-

проводности до 0,2 – 3,0 Вт/(мК) в алмазных пленах, то есть на три, четыре порядка по сравнению с тепло-

проводностью алмазного монокристалла. Лишь в микронных алмазных пленках коэффициент теплопровод-

ности приближается к теплопроводности алмазного монокристалла. Сложность обоснования механизма 

теплопроводности в углеродных тонких (нанометровых) пленках заключается в особенностях структуры, 

представляющей собой фактически тонкопленочный композит из алмазоподобных и графитоподобных кла-

стеров, размер которых составляет 0,5 – 1,0 нм. Таким образом, такой композит представляет собой сово-

купность областей, обладающих разными механизмами теплопроводности – в алмазоподобных кластерах 

действует фононный механизм, в графитоподобных кластерах преобладает электронный механизм переноса 

тепла. То есть на границе раздела наблюдается смена переноса тепла с фононного на электронный. Однако в 

углеродных алмазоподобных пленках границы раздела отсутствуют, алмазоподобные и графитоподобные 

кластеры связаны sp3- и sp2- связями, что сопровождается появлением локализованных электронных состо-

яний в запрещенной зоне алмазоподобного кластера вплоть до ее полного заполнения. Фактически алмазо-

подобный кластер становится электропроводящим кластером. Такой эффект значительно усложняет меха-

низм теплопроводности. 

Ключевые слова: углеродные пленки, алмазоподобные кластеры, графитоподобные кластеры, sp2-, 

sp3 -гибридизация. 
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Abstract. It is believed that the thermal conductivity of non-metallic materials, including diamonds, is carried 

out mainly by phonons. However, the situation is more complicated in carbon diamond-like films. It would seem 

that in single-phase diamond films the phonon mechanism of thermal conductivity is obvious. However, the multi-

plicity of interfaces and the presence of a high concentration of hydrogen reduce the thermal conductivity coefficient 

to 0.2 - 3.0 W / (mK) in diamond films, that is, by three to four orders of magnitude compared to the thermal con-

ductivity of a diamond single crystal. Only in micron diamond films does the thermal conductivity coefficient ap-

proach the thermal conductivity of a diamond single crystal. The complexity of substantiating the mechanism of 

thermal conductivity in carbon thin (nanometer) films lies in the features of the structure, which is actually a thin-

film composite of diamond-like and graphite-like clusters, the size of which is 0.5 - 1.0 nm. Thus, such a composite 

is a set of regions with different mechanisms of thermal conductivity - in diamond-like clusters, the phonon mecha-

nism operates, in graphite-like clusters, the electronic mechanism of heat transfer prevails. That is, at the interface, a 

change in heat transfer from phonon to electronic is observed. However, in carbon diamond-like films, there are no 

interfaces, diamond-like and graphite-like clusters are linked by sp3- and sp2-bonds, which is accompanied by the 

appearance of localized electronic states in the forbidden zone of the diamond-like cluster until it is completely 

filled. In fact, the diamond-like cluster becomes an electrically conductive cluster. This effect significantly compli-

cates the mechanism of thermal conductivity. 
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Введение 

Теплопроводность углеродных алмазопо-
добных пленок (DLC-пленок) активно изучает-
ся в связи с возможностью их применения в со-
временной электронике. Однако представлен-
ные данные о теплопроводности углеродных 
алмазоподобных пленок толщиной около 70 – 
300 нм свидетельствуют о крайне низкой вели-
чине коэффициента теплопроводности (0,3-1,0 
Вт/мК) [1]. В работе [2] установлено, что теп-
лопроводность углеродных гидрогенизирован-
ных аморфных пленок a-C:H самая низкая и со-
ставляет 0,2–0,3 Вт/мК, в то время как гидроге-
низированные ta-C:H пленки имеют теплопро-
водность около 1 Вт/мК, а тетрагональные ta-C 
пленки имеют самую высокую теплопровод-
ность – около 3,5 Вт/мК. В алмазных пленках a-
C:H, толщиной от примерно 100 и до 500 нм 
теплопроводность при комнатной температуре 

составляет 0,20 Вт m−1K−1, увеличение доли sp3 
связанного углерода увеличивает теплопровод-
ность до 2,2 Вт m−1K−1 [3]. 

В то же время в микронных алмазных 
пленках толщиной 18 и 13 μм [4] и в пленках 
толщиной 5 μм [5], выращенных из разбавлен-
ной смеси метана в водороде, теплопровод-
ность при комнатной температуре составила 
около 1000 - 1200 Вт/мК, т. е. столько же, 
сколько у природных монокристаллических 
алмазов. Нанокристаллические алмазные плен-
ки толщиной 0,5, 1,0 и 5,6 μм, теплопровод-
ность варьируется от 100 Вт м-1K-1 до более 
чем 1300 Вт м-1K-1 [6]. В пленках миллимет-
ровой толщины (толщиной 1,68 мм) теплопро-
водность 1916 и 1739 Wm-1K-1 соответственно, 
то есть близка к теплопроводности монокри-
сталла алмаза при комнатной температуре [2]. 

Столь большая разница в теплопроводно-
сти (фактически на четыре порядка), очевидно, 
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обусловлена особенностями механизма перено-
са тепла в нанометровых и микронной толщи-
ны пленках. Известно, что в неметаллических 
кристаллах теплопроводность осуществляется в 
основном за счет переноса тепла фононами [7]. 
Отмечается низкая (430-730 К) температура 
Дебая DLC-пленок по сравнению с температу-
рой Дебая монокристаллического алмаза (2230 
К) [1]. Среднее расстояние, на которое фононы 
проходят между событиями рассеяния в объем-
ной решетке алмаза, очень велико - более 200 
нм при комнатной температуре, перенося до 
80% тепла, что делает роль границ зерен осо-
бенно важной [8]. Показано, что фононы со 
средним значением свободного пробега около 
350 нм обеспечивают около 90% переноса теп-
ла. Подчеркивается преимущественный вклад 
баллистических фононов в перенос тепла, что 
имеет важное значение для объяснения высо-
кой теплопроводности алмазных пленок тол-
щина 5,6 μм [6]. Характерно, что при увеличе-
нии температуры измерения теплопроводность 
алмазных пленок снижается, демонстрируя об-
ратную зависимость по сравнению с высокока-
чественным монокристаллическим алмазом 
выше 500 К, где рассеянием фононов на грани-
цах зерен и на дефектах можно пренебречь, что 
может быть связано с влиянием примесей и 
границ зерен на теплопроводность алмазных 
пленок при повышении температуры [2].  

Известно, что структурное состояние угле-
родных алмазоподобных пленок, полученных 
конденсацией углерода из лазерной парогазо-
вой фазы может быть определено как композит 
из алмазоподобных и графитоподобных кла-
стеров размером 0,5 – 1,0 нм [9]. В этой связи 
проблема низкой теплопроводности может 
быть связана с другим механизмом распростра-
нения тепла, при котором в самой частице фо-
ноны движутся квазибаллистически, а главный 
вклад в теплосопротивление дает теплопереда-
ча через границу алмазоподобный-
графитопподобный кластеры, определяющая 
теплосопротивление Капицы [10]. В рассмат-
риваемом случае механизм теплоповодности 
границы алмазоподобные-графитоподобные 
кластеры фактически является механизмом 
теплопроводности границы металл−диэлектрик 
[10]. При тепловом потоке через границу ме-
талла и диэлектрика температуры электронов и 
фононов различны. Это приводит к дополни-
тельному вкладу в сопротивление Капицы из-за 
того, что электроны, переносящие тепло в ме-
талле, не переносят его через границу, а вовле-
чены в перенос тепла только на некотором рас-
стоянии от нее, что снижает эффективность пе-
реноса тепла вблизи границы.  

Разные температуры электронов и фононов 
имеют место и в углеродных наноструктурах, 

состоящих из алмазоподобных областей с sp3 
гибридизованными атомами углерода, являю-
щихся диэлектриком, и графитоподобных об-
ластей с sp2 гибридизацией атомов, являющих-
ся полуметаллом [11]. На границах раздела sp2- 
и sp3-наночастиц перенос фононов происходит 
в основном в одном направлении и имеет бал-
листический характер. [12]. Электроны не мо-
гут переходить из области sp2 (полуметалл) в 
область sp3 (диэлектрик), то есть тепло перено-
сится через такую границу лишь в виде потока 
фононов. В этой связи на sp2/sp3 границы су-
ществует перепад температуры.  

В связи с большим влиянием sp2/sp3 гра-
ницы раздела между областями, с существенно 
различающимися свойствами (диэлек-
трик/полуметалл), на теплопроводность компо-
зита необходимо провести анализ состояния 
границы между sp2 и sp3 кластерами в угле-
родных алмазоподобных пленках, полученных 
лазерным методом. 

2. Методика получения углеродных пле-
нок 

Для получения углеродных алмазоподоб-
ных пленок применялся способ прямого испа-
рения графитовых мишений при воздействии 
лазерного излучения с длиной волны 1064 нм 
от неодимового лазера NTS-300 и последую-
щей конденсацией углерода на аморфные под-
ложки из силикатного стекла. Структурное со-
стояние углеродных алмазоподобных пленок 
зависит от режима конденсации атомов углеро-
да на подложку. Изменяя режим можно управ-
лять свойствами пленки в широком диапазоне 
значений.  

Лазерный пучок вводился в вакуумную ка-
меру вакуумной установки (остаточное давле-
ние не хуже 10-5 торр), где располагались гра-
фитовые мишени ниже фокусного пятна и под-
ложки из силикатного стекла. На графитовой 
мишени диаметром 5 мм и толщиной около 2 
мм фактически расфокусированный лазерный 
пучок, энергию которого меняли в интервале 
1,1 - 7 Дж, создавал пятно диаметром около 3 
мм. Время экспозиции составляло около 5 ми-
нут. Полученный поток испаряемого углерода 
осаждался на стеклянные подложки, которые 
располагались на расстоянии примерно 10 см 
от мишени и под углом около 30 градусов к оси 
паро-газового факела, формируя углеродную 
пленку.  

Структура углеродных алмазоподобных 
пленок была изучена с помощью высокоразре-
шающей просвечивающей микроскопии (с по-
мощью просвечивающего электронного микро-
скопа Philips CM-30) в Материаловедческом 
центре коллективного доступа при Томском 
государственном университете. Спектры ком-
бинационного рассеяния света (КРС) при ком-
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натной температуре получены в Институте гео-
логии и минералогии СО РАН. Использовался 
конфокальный Рамановский спектрометр 
LabRAM HR; возбуждение в пятне диаметром 
около 5 микрон производилось He-Cd лазером, 
излучающем на длине волны 325 нм. 

3. Экспериментальные результаты 
3.1. Электронная микроскопия углерод-

ных тонких пленок 
На рис. 1 приведены светлопольное изоб-

ражение структуры углеродной алмазоподоб-
ной пленки и дифракции электронов от этой 
структуры, полученные с помощью просвечи-
вающего электронного микроскопа. 

 

Рис. 1. Светлопольное изображение углеродной  

алмазоподобной пленки (а) и дифракция электронов 

(рефлексы (111) и (220)) от этой пленки (b). 

Fig. 1. Bright-field image of a diamond-like carbon film 

(a) and electron diffraction (reflections (111) and (220)) 

from this film (b). 

Отметим, что светлопольное и темнополь-

ное изображения структуры тонкой пленки 

совпадают, что свидетельствует о высокой од-

нородном в распределении структурных со-

ставляющих и наличии преимущественно од-

ной структурной составляющей. Выделенная 

область размером 2,5 нм содержит цепочку 

объектов, которые (как ранее было определено 

[2]) представляют собой кластеры, размер ко-

торых составляет около 0,5 нм, а максимальный 

размер - около 1,0 нм. Электронограмма 

(вставка на рис. 1) представляет собой сильно 

уширенные, но четко идентифицируемые ди-

фракционные максимумы, что указывает на 

кристаллическую структуру материала пленки. 

Кольцевая форма электронограмм свидетель-

ствует о взаимной кристаллографической разо-

риентации структурных составляющих (класте-

ров), то есть пленка не является монокристал-

лической. Радиальное размытие колец связано с 

малым размером зерен. Расшифровка электро-

нограммы показала, что материал пленки имеет 

решетку алмаза, кольца соответствуют дифрак-

ции от плоскостей (111) и (220). Межплоскост-

ные расстояния имеют значения d111=0,207 нм, 

d220=0,119 нм. Полученные величины близки к 

табличным значениям макроскопических кри-

сталлов алмаза (d111=0,205 нм и d220=0,125 нм) 

[]. 

Таким образом, электронная микроскопия 

и дифракция электронов позволяет нам одно-

значно трактовать структурное состояние угле-

родной пленки как алмазоподобная. Но сильно 

размытые рефлексы свидетельствую о крайне 

малых размерах алмазных кластеров и сильном 

искажении межатомных расстояний. 

3.2. КРС-спектроскопия алмазоподобных 

тонких пленок 

Спектры КРС, измеренные в 14 точках, 

расположенных равномерно с интервалом 5мм 

вдоль прямой, параллельной длинному ребру 

стеклянной подложки, приведены на Рис.2 

 

Рис. 2. Спектры КРС, полученные при возбуждении 

лазерным излучением с длиной волны 325 нм в 14 

точках вдоль алмазоподобной тонкой пленки.  

Хорошо идентифицируются G- и D-линии с  

максимумами 1610 и 1393 см-1. 

Fig 2. Raman spectra obtained with excitation by laser 

radiation with a wavelength of 325 nm at 14 points 

along a diamond-like thin film. G- and D-lines with 

maxima at 1610 and 1393 cm-1 are well identified. 

Как следует из приведенных данных, спек-
тра КРС свидетельствует о наличии как линии 
D, соответствующей разупорядоченному гра-
фиту, так и линия G от бездефектного кристал-
лического графита. Более того, анализ спектров 
КРС свидетельствует о равномерном распреде-
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лении углеродных неискаженных (линия G) и 
искаженных (линия D) sp2-связей по поверхно-
сти алмазоподобной пленки. Линия КРС, ха-
рактерная для алмаза (1332,5±0,5 см-1), отсут-
ствует. Однако считается, что уширенная D-
линия (D-полоса) в алмазоподобных ta-C (тет-
раэдрический аморфный углерод) пленках ха-
рактеризует наличие sp3-связей [13]. 

Известно, что высокая симметрия решетки 
алмаза определяют простоту колебательного 
спектра. В спектре КРС нет колебательной мо-
ды первого порядка, но присутствует одно 
трижды вырожденное фундаментальное коле-
бание, которое для структурно совершенной 
алмазной решетки при 300 К существует для 
1332,5±0,5 см-1 [14]. При переходе же к нано-
кристаллическому алмазу ширина данного пика 
увеличивается, а в тетрагональных и аморфных 
пленках этот пик не проявляется совсем [14]. 
Действительно, для нанокристаллов детонаци-
онного алмаза в спектре КРС на рис. 3 присут-
ствует уширенная линия 1322 см-1, которая 
наложена на широкополосный спектр графита с 
основными максимумами 1317 и 1613 см-1 (D и 
G, соответственно). Положение максимумов 
этих полос существенно зависит от конфигура-
ции sp2 углерода [15] и размеров зерен графита. 

 

Рис. 3. Спектр КРС для детонационного наноалмаза 
(1) и алмазоподобной пленки (2). 

Fig 3. Raman spectrum for detonation nanodiamond (1) 
and diamond-like film (2). 

Таким образом, данные электронной мик-
роскопии и спектров комбинационного рассея-
ния света свидетельствуют о равновероятном 

распределении алмазоподобных и графитопо-
добных кластеров в структуре углеродных пле-
нок. 

4. Обсуждение 
Проблема низкой теплопроводности кла-

стерного композита углеродной алмазоподоб-
ной пленки может быть связана с другим меха-
низмом распространения тепла через границу 
алмазоподобный-графитопподобный кластеры, 
определяемым теплосопротивлением Капицы 
[10]. В рассматриваемом случае механизм теп-
лоповодности границы алмазоподобные-
графитоподобные кластеры фактически являет-
ся механизмом теплопроводности границы ме-
талл−диэлектрик [10]. При тепловом потоке че-
рез границу металла и диэлектрика температу-
ры электронов и фононов различны. Это при-
водит к дополнительному вкладу в сопротивле-
ние Капицы из-за того, что электроны, перено-
сящие тепло в металле, не переносят его через 
границу, а вовлечены в перенос тепла только на 
некотором расстоянии от нее. Поэтому перенос 
тепла вблизи границы оказывается менее эф-
фективным. 

Однако в наших работах было показано, 
что границы раздела между алмазлплдобными 
и графитоподобными кластерами отсутствует. 
Связь между кластерами осуществляется как 
sp3-, так и sp2-связями [16]. Такая ситуация 
неминуемо приводит к появлению в запрещен-
ной зоне алмазоподобного кластера локализо-
ванных электронных состояний, по которым 
могут быть распределены π-электроны [17] 
Концентрация локализованных электронных 
состояний в запрещенной зоне алмазоподобно-
го кластера может быть велика, вплоть до ее 
полного заполнения [18] Таким образом, алма-
зоподобный кластер представляет собой не со-
всем диэлектрик, запрещенная зона которого 
может быть заполнена электронными состоя-
ниями, а электроны из графитоподобной обла-
сти после распада электрон-фононной пары 
все-таки проникают в алмазоподобный кластер, 
еще более уменьшая теплопроводность кла-
стерного композита.  

Учтем (добавим) в таблице теплопроводно-
сти алмазных материалов [19] теплопровод-
ность углеродных алмазоподобных пленок. 

Таблица 1. Теплопроводность алмазных материалов. 

Table 1. Thermal conductivity of diamond materials. 

Монокристалл 

алмаза системы 

Fe-Al-C 

Монокрсталл ал-

маза системы Fe-

Ni-C 

Металлоал-

мазный ком-

позит  

Композит на основе 

детонационного 

наноалмаза 

Алмазоподобный-графитоподобный 

кластерный композит углеродных 

пленок [1-3] 

2089 Вт/мК 606,7 Вт/мК 485,6 Вт/мК 9 -18 Вт/мК 0,3 – 1,0 Вт/мК [1] 0,2 – 3,5 Вт/мК [2] 

0,2 – 2,2 Вт/мК [3] 
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Выводы 

Приведенные обзорные данные свидетель-

ствуют о существенно низкой теплопроводно-

сти углеродных алмазоподобных пленок, до-

стигающей 0,2 – 2,0 Вт\(мК), что на три и даже 

четыре порядка ниже теплопроводности алмаз-

ных монокристаллов. Столь низкая теплопро-

водность, очевидно, обусловлена особенностя-

ми структуры углеродных тонких пленок, 

представляющей собой фактически композит 

из алмазоподобных и графитоподобных кла-

стеров размером от 0,5 до 1,0 нм. Сильная связь 

между кластерами приводит к появлению лока-

лизованных электронных состояний в запре-

щенной зоне алмазоподобного кластера. Нали-

чие локализованных электронных состояний 

естественно приводит к усложнению механиз-

ма теплопроводности в углеродном тонкопле-

ночном композите. Наряду с преимущественно 

электронной проводимостью графитоподобно-

го кластера, в алмазоподобном кластере фо-

нонный механизм усложняется наличием лока-

лизованных электронных состояний. 
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