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Аннотация. Целью данного исследования являлось проведение сравнительного анализа влияния кон-

центрации точечных дефектов (вакансий) и армирования углеродными нанотрубками (УНТ) на деформаци-

онное поведение и механические свойства монокристалла титана (α-Ti) при одноосном растяжении. Иссле-

дование выполнено методом молекулярной динамики в программном комплексе LAMMPS. Для всех моде-

лей проведено одноосное растяжение с постоянной скоростью деформации при температуре 300 K. Опреде-

лены ключевые механические характеристики: предел прочности, предел текучести и модуль Юнга. Уста-

новлено немонотонное влияние вакансий на прочность α-Ti. Показано, что концентрация вакансий равная 

0,5% приводит к дисперсионному упрочнению матрицы (предел прочности =14.75 ГПа, для бездефектного 

кристалла = 14.43 ГПа). Введение УНТ стабилизирует предел прочности на уровне ~12 ГПа для всех кон-

центраций вакансий, нивелируя их влияние. Обнаружено, что модуль Юнга композита возрастает с увели-

чением доли вакансий (до 103.13 ГПа при 1.0%), что свидетельствует о доминирующей роли УНТ в упругой 

деформации. Выявлено, что разрушение композита происходит по механизму интерфазного отслоения на 

границе раздела, что приводит к снижению предела текучести. Для моделей с внедренной УНТ ключевым 

фактором, определяющим механические свойства композита, является прочность границы раздела «матри-

ца-УНТ».  

Ключевые слова: углеродные нанотрубки, армирование, моделирование, механические свойства, ме-

тод молекулярной динамики, вакансии, предел прочности, одноосное растяжение, титан, LAMMPS 

Благодарности. Исследование выполнено за счет гранта Российского научного фонда № 24-22-20038 

(https://rscf.ru/project/24-22-20038/) и гранта Санкт-Петербургского научного фонда № 24-22-20038. 

_____________________________________________________________________________________________ 

Для цитирования: Янковская У.И., Старостенков М.Д., Нарасеев А.С., Ганин С.В., Захаров П.В. Молеку-

лярно-динамическое моделирование влияния концентрации вакансий и углеродных нанотрубок на механи-

ческие свойства Ti при одноосном растяжении // Фундаментальные проблемы современного материаловеде-

ния. 2025. Т. 22, № 4. С. 445-455. doi: 10.25712/ASTU.1811-1416.2025.04.007. 

_____________________________________________________________________________________________ 



Янковская У.И., Старостенков М.Д., Нарасеев А.С., Ганин С.В., Захаров П.В. 

 

Фунд. пробл. совр. материаловед. 2025. Т. 22. № 3. С. 445-455 

446 

Original article 

MOLECULAR DYNAMICS MODELING OF THE EFFECT OF VACANCY  

CONCENTRATION ON THE MECHANICAL PROPERTIES OF CNT-REINFORCED  

Α-TI UNDER UNIAXIAL TENSION 

Ustina I. Yankovskaya 1, Michael D. Starostenkov 2, Alexander S. Naraseev 3, Sergey V.Ganin 4 

Pavel V. Zakharov 5 

1, 3, 4, 5 Peter the Great St.Petersburg Polytechnic University, 195251, Saint Petersburg, Russia 
2 Altai State Technical University named after I.I. Polzunov, 656038, Barnaul, Russia 

1 zalaevau@gmail.com (ORCID: https://orcid.org/0000-0002-6434-0747) 
2 genphys@mail.ru (ORCID: https://orcid.org/0000-0002-6326-7613) 
3 narseev.as@mail.ru 
4 ganin_sv@spbstu.ru (ORCID: https://orcid.org/0000-0002-2307-9319 ) 
5 zakharovpvl@rambler.ru (ORCID: https://orcid.org/0000-0002-6410-1594) 

Abstract. The aim of this study was to conduct a comparative analysis of the influence of point defect (vacan-

cy) concentration and carbon nanotube (CNT) reinforcement on the deformation behavior and mechanical properties 

of a titanium single crystal under uniaxial tension. The study was performed using the molecular dynamics method 

in the LAMMPS software package. For all models, uniaxial stretching was performed with a constant strain rate at a 

temperature of 300 K. Key mechanical characteristics were determined: tensile strength, yield strength, and Young's 

modulus. A non-monotonic effect of vacancies on the strength of α-Ti has been established. It has been shown that a 

vacancy concentration of 0.5% leads to dispersion strengthening of the matrix (ultimate strength = 14.75 GPa, for a 

defect-free crystal = 14.43 GPa). The introduction of CNTs stabilizes the ultimate strength at a level of ~12 GPa for 

all vacancy concentrations, leveling their influence. It was found that the Young's modulus of the composite in-

creases with an increase in the proportion of vacancies (up to 103.13 GPa at 1.0%), which indicates the dominant 

role of CNTs in elastic deformation. It was found that the composite destruction occurs by the mechanism of inter-

phase delamination at the interface, which leads to a decrease in the yield strength. For models with embedded CNT, 

the key factor determining the mechanical properties of the composite is the strength of the matrix-CNT interface. 

Keywords: carbon nanotubes, reinforcement, modeling, mechanical properties, molecular dynamics method, 

vacancies, tensile strength, uniaxial tension, titanium, LAMMPS. 
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Введение 

Титан и его сплавы являются критически 

важными конструкционными материалами в 

аэрокосмической, медицинской и энергетиче-

ской отраслях благодаря уникальному сочета-

нию высокой удельной прочности, коррозион-

ной стойкости и биосовместимости [1]. Однако 

эксплуатация титановых деталей в экстремаль-

ных условиях – под действием высоких меха-

нических нагрузок, повышенных температур и 

радиационного облучения – приводит к накоп-

лению структурных дефектов, в первую оче-

редь, точечных (вакансий) [2]. Высокая кон-

центрация вакансий служит источником зарож-

дения дислокаций, микропор и трещин, что в 

конечном итоге инициирует преждевременное 

разрушение материала и ограничивает срок его 

службы [3]. 

Традиционными методами повышения 

прочности и радиационной стойкости металлов 

являются легирование и термомеханическая 

обработка. Однако эти подходы зачастую недо-

статочно эффективны для подавления негатив-

ного влияния высокой концентрации точечных 

дефектов. Одним из наиболее перспективных 

путей создания материалов нового поколения 

является дисперсное упрочнение за счет введе-

ния наноразмерных армирующих элементов, 

таких как углеродные нанотрубки [4]. Они об-
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ладают исключительными прочностными ха-

рактеристиками и модулем упругости, что де-

лает их идеальными кандидатами для создания 

металл-матричных нанокомпозитов с улучшен-

ными механическими свойствами [5].  

В работах [6, 7] демонстрируется механизм 

миграции вакансий к УНТ и их "захват". Ряд 

экспериментальных и теоретических работ был 

посвящен исследованию композитов на основе 

алюминия, меди и никеля, армированных УНТ 

[8 - 13]. Молекулярно-динамическое моделиро-

вание для этих систем показало, что УНТ не 

только эффективно перераспределяют нагруз-

ку, но и могут влиять на поведение дефектов 

кристаллической решетки, например, способ-

ствуя миграции вакансий к своей поверхности 

[11-13]. В отличие от хорошо изученных си-

стем (таких как Al или Cu), взаимодействие де-

фектной титановой матрицы с углеродными 

нанотрубками исследовано в значительно 

меньшей степени. Особую сложность пред-

ставляет прогнозирование механических 

свойств такого композита в зависимости от ис-

ходной дефектности матрицы, что требует де-

тального изучения на атомарном уровне. Авто-

рами [14, 15] исследована система Ti-УНТ, 

особое внимание уделено дефектности матри-

цы. 

Целью данной работы является молекуляр-

но-динамическое исследование влияния кон-

центрации вакансий и армирования углерод-

ными нанотрубками на механические свойства 

и механизм деформации монокристалла титана 

при одноосном растяжении. Для достижения 

этой цели были смоделированы процессы од-

ноосного растяжения бездефектного монокри-

сталла α-Ti и определены его эталонные меха-

нические характеристики. Далее исследованы 

влияния различной концентрации вакансий (от 

0,1% до 1%) на предел прочности, предел теку-

чести и модуль Юнга титановой матрицы. 

Материалы и методы 

Имитационная модель. В рамках данного 

исследования методом молекулярной динамики 

были изучены три группы атомистических мо-

делей на основе α-Ti с гексагональной плотно-

упакованной (ГПУ) кристаллической решеткой: 

1. Бездефектный монокристалл Ti. 

2. Кристалл с точечными дефектами, в ко-

тором атомы были случайным образом удалены 

для создания заданной объемной концентрации 

вакансий: 0,1%, 0,2%, 0,3%, 0,4%, 0,5%, 0,6%, 

0,7%, 0,8%, 0,9% и 1,0%. 

3. Композитная система, состоящая из де-

фектной титановой матрицы (с концентрацией 

вакансий, указанной выше), армированной од-

ной однослойной углеродной нанотрубкой 

(УНТ) типа «зигзаг» с хиральными индексами 

(10,0). 

Все начальные атомарные конфигурации, 

созданные с использованием программного па-

кета собственной разработки [16], представле-

ны на рисунке 1. 

 

Рис.1. Срез модели α-Ti: а) идеальный кристалл; б) с точечными дефектами (вакансии 0,5%, вакансии  

обозначены красными кругами); в) с точеными дефектами (вакансии – 0,5%) и внедренной УНТ. 

Fig. 1. Section of the α-Ti model: a) ideal crystal; b) with point defects (vacancies 0.5%, vacancies are indicated by 

red circles); c) with pointed defects (vacancies – 0.5%) and embedded CNT.
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Все расчеты были выполнены в программ-

ном комплексе LAMMPS [17]. Визуализация 

результатов осуществлялась с помощью про-

граммного обеспечения OVITO [18]. 

Выбор потенциалов взаимодействия. 

Для описания межатомных взаимодействий 

использовались следующие потенциалы: 

- для титановой матрицы — потенциал EAM 

(Embedded Atom Method), адекватно описыва-

ющий металлическую связь и пластическую 

деформацию [19]. 

- для углеродной нанотрубки — потенциал 

AIREBO, хорошо воспроизводящий упруго-

прочностные характеристики ковалентных уг-

леродных структур. 

- взаимодействие на границе раздела «титан–

углерод» описывалось потенциалом Леннард-

Джонса, параметры которого были подобраны 

в соответствии с данными работ авторов [20, 

21].  

Процедура одноосной нагрузки для каждой 

модели состояла из трех последовательных 

этапов. Минимизация энергии системы прово-

дилась алгоритмом сопряженных градиентов 

для достижения равновесного состояния и сня-

тия начальных внутренних напряжений. Далее 

изотермо-изобарческая (NPT) релаксация, в ко-

торой система релаксировала в течение 50 пс 

при температуре 300 К и нулевом давлении для 

стабилизации термодинамического состояния. 

И уже далее следовало одноосное растяжение, 

в котором к релаксированной модели вдоль за-

данного кристаллографического направления 

([001]) прикладывалась одноосная деформация 

с постоянной скоростью 10⁻⁹ пс⁻¹ при темпера-

туре 300 К (контролируемой термостатом Но-

зе–Гувера). Временной шаг интегрирования 

уравнений движения составлял 0,5 фс. 

Для анализа результатов фиксировались 

параметры деформации, на основе которых 

строились диаграммы «напряжение–

деформация». Атомарная конфигурация визуа-

лизировалась и анализировалась в OVITO при 

помощи DXA анализа. 

Результаты и обсуждение 

Для количественной оценки влияния де-

фектов и армирования на механический отклик 

материала были построены кривые зависимо-

сти напряжения от деформации при одноосном 

растяжении. На рисунке 2 представлены срав-

нительные кривые для рассматриваемых моде-

лей. 

 

Рис. 2. Кривые напряжения-деформации а) «чистый» α-Ti в сравнении с моделями с различным процентным 

содержанием вакансий; б) модель Ti с различным процентным содержанием вакансий, армированная УНТ. 

Fig. 2. Stress-strain curves of a) “pure” α-Ti compared to models with different percentages of vacancies; b) Ti 

model with different percentages of vacancies, reinforced with CNTs.

Кривые демонстрируют классическое по-

ведение: упругий участок, переход в пластиче-

скую область и последующее разрушение. Ви-

зуальный анализ графиков позволяет выявить 

существенные различия в поведении моделей. 

В результате исследования было отмечено, что 

введение 0,5% вакансий приводит к увеличе-

нию прочности исследуемого кристалла. 

Наблюдаемое увеличение предела текучести и 

предела прочности при концентрации вакансий 

0,5% согласуется с общепринятыми представ-

лениями о дисперсионном упрочнении [22]. 

Согласно классической теории, точечные де-

фекты и их наноразмерные кластеры создают 
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поля упругих напряжений, которые являются 

эффективными барьерами для движения дисло-

каций [23]. Для преодоления этих барьеров 

требуется повышение прикладываемого напря-

жения, что макроскопически проявляется как 

рост предела текучести. Данный эффект широ-

ко документирован в контексте радиационного 

упрочнения материалов [24], а также подтвер-

жден атомистическим моделированием [25]. 

При низких концентрациях дефектов упрочня-

ющий эффект преобладает над процессом за-

рождения повреждений, в то время как при бо-

лее высоких концентрациях (>0.5%) начинает 

доминировать механизм объединения вакансий 

в поры, что и приводит к последующему паде-

нию прочности. 

Сравнивая результаты одноосного нагру-

жения модели с вакансиями и внедренными 

УНТ отмечается падение прочности металличе-

ской матрицы. Исследования показывают, что 

УНТ могут повышать твёрдость и прочность 

[11, 13], но их эффективность зависит от дис-

персности и качества интерфейса, а дефекты 

потенциально снижают эффективность УНТ, 

создавая локальные точки напряжения. Пред-

полагается, что в данном случае доминирую-

щим механизмом разрушения является декоге-

зия на границе раздела фаз «матрица-УНТ». 

Нанотрубка выступает как концентратор 

напряжений, инициирующий преждевременное 

зарождение трещины в условиях слабой адге-

зии. Наличие вакансий в матрице усугубляет 

этот процесс, мигрируя к интерфейсу и допол-

нительно ослабляя его. Полученный результат 

наглядно демонстрирует, что ключевым факто-

ром, определяющим эффективность армирова-

ния, является не столько прочность самого 

наполнителя, сколько прочность его сцепления 

с матрицей.  

Для детальной характеристики были опре-

делены ключевые механические свойства: мо-

дуль Юнга, предел текучести и предел прочно-

сти. Значения этих параметров для всех иссле-

дованных систем суммированы в таблице 1. 

Таблица 1. Механические свойства α-Ti и α-Ti с различной процентной долей вакансий. 

Table 1. Mechanical properties of α-Ti and α-Ti with different percentages of vacancies 

 Чистый 

α-Ti 

α-Ti с вакансиями 

0,1% 0,2% 0,3% 0,4% 0,5% 0,6% 0,7% 0,8% 0,9% 1% 

Предел 

прочности, 

ГПа 

14,43 12,65 11,77 12,99 13,95 14,75 13,34 12,59 12,98 13,42 13,16 

Предел те-

кучести, ГПа 

11,27 11,08 10,67 10,98 11,13 12,20 10,52 10,44 10,63 10,43 10,81 

Модуль Юн-

га, ГПа 

94,41 91,82 91,78 91,28 90,23 93,28 90,18 90,54 90,28 90,43 90,28 

По данным таблицы отмечается наличие 

нелинейного влияния вакансий на предел проч-

ности. Наблюдается немонотонная зависимость 

предела прочности от концентрации вакансий. 

При концентрации 0,1–0,2% наблюдается ожи-

даемое снижение прочности. Однако последу-

ющий рост значения предела прочности с до-

стижением максимума 14,75 ГПа при концен-

трации 0,5%, с последующим спадом, может 

свидетельствовать о сложной конкуренции 

двух процессов, таких как упрочняющий меха-

низм (при низких и средних концентрациях 

(~0,3–0,5%) вакансии и их мелкие кластеры 

эффективно блокируют движение дислокаций, 

играя роль дисперсионных упрочнителей, что 

требует приложения большего напряжения для 

продолжения деформации) и разупрочняющий 

механизм (при высоких концентрациях (>0.6%) 

преобладает процесс объединения вакансий в 

субнаноразмерные поры, которые становятся 

зародышами трещин и инициируют прежде-

временное разрушение) [22]. 

Значения модуля Юнга для всех исследо-

ванных моделей с вакансиями остаются в узком 

диапазоне ~90–93 ГПа, демонстрируя незначи-

тельное снижение по сравнению с бездефект-

ным кристаллом.  

Предел текучести монотонно снижается 

при увеличении концентрации вакансий, за ис-

ключением 0,5%. Это указывает на то, что то-

чечные дефекты облегчают начало пластиче-

ской деформации, выступая в качестве центров 

зарождения дислокаций. Локальное увеличение 

предела текучести при 0,5% также коррелирует 

с пиком предела прочности, что дополнительно 

подтверждает гипотезу об упрочняющей роли 

вакансий в этой точке. 
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Механические свойства моделей с ваканси-

ями  

и внедренной УНТ представлены в таблице 2. 

Таблица 2. Механические свойства α-Ti различной процентной долей вакансий+УНТ 

Table 2. Mechanical properties of α-Ti with different percentages of vacancies + CNTs 

α-Ti(вакансии)+УНТ Предел прочности, ГПа Предел текучести, ГПа Модуль Юнга, ГПа 

0,1% 11,96 11,35 94,92 

0,2% 11,80 11,39 98,38 

0,3% 11,87 11,13 92,3 

0,4% 12,11 11,19 93,17 

0,5% 11,80 11,2 95,65 

0,6% 12,42 10,11 96,29 

0,7% 12,42 10,15 97,97 

0,8% 11,94 10,07 100,47 

0,9% 11,94 10,04 100,87 

1% 11,96 10,55 103,13 

По данным таблицы 2 наблюдается стаби-

лизация значений предела прочности для всех 

исследованных концентраций вакансий. В от-

личие от значений таблицы 1, где предел проч-

ности варьировался от ~11,77 до ~14,75 ГПа, 

система с УНТ демонстрирует значительно 

меньший разброс данных. Это указывает на то, 

что УНТ нивелирует влияние концентрации ва-

кансий, выступая как стабилизирующий струк-

турный элемент. Система перестает быть чув-

ствительной к колебаниям содержания точеч-

ных дефектов. Модуль Юнга системы увеличи-

вается при росте концентрации вакансий. Зна-

чение для системы с 1% вакансий превышает 

модуль упругости бездефектного образца. На 

основании данного результата можно утвер-

ждать, что углеродная нанотрубка играет клю-

чевую роль в восприятии упругой нагрузки. 

Высокий модуль упругости УНТ "компенсиру-

ет" разупрочняющее влияние вакансий в мат-

рице и доминирует в упругой деформации ком-

позита, повышая общую жесткость системы. 

Механизмы разрушения. На рисунке 3 при-

ведена эволюция дислокаций для моделей без 

УНТ и с УНТ под действием растягивающей 

нагрузки. 



Молекулярно-динамическое моделирование влияния концентрации вакансий и  

углеродных нанотрубок на механические свойства Ti при одноосном растяжении 

 

BPMS. 2025; 22(4): 445-455 

451 

 

Рис. 3.  Этапы одноосного растяжения кристалла а) α-Ti с 0,5% вакансиями; б) α-Ti с 0,5% вакансиями+УНТ 

под действием растягивающей нагрузки. 

Fig. 3. Stages of uniaxial tension of a crystal a) α-Ti with 0.5% vacancies; b) α-Ti with 0.5% vacancies + CNT un-

der the action of a tensile load

Из рисунка 3 (а) отмечается, что прило-

жение нагрузки вызывает упругую деформа-

цию решетки. Вакансии, как несовершенства 

решетки, создают вокруг себя локальные поля 

упругих напряжений. Механизм дисперсионно-

го упрочнения, обусловленный вакансиями, за-

ключается в блокировке движения дислокаций 

и затруднении их зарождения. Это требует по-

вышения напряжения для пластической дефор-

мации, что и вызывает наблюдаемый при кон-

центрации ~0,5% рост предела текучести и 

прочности. При дальнейшем увеличении кон-

центрации вакансий (>0,6%) их роль меняется 

на противоположную: они начинают способ-

ствовать зарождению дислокаций.Образование 

дислокационной петли в идеальной решетке 

требует значительных энергетических затрат. 

Дислокации, пришедшие в движение, взаимо-

действуют с вакансиями. Они могут поглощать 

их, менять свою структуру (например, форми-

ровать ступеньки) или обходить их, изгибаясь. 

Под действием нагрузки и благодаря повышен-

ной подвижности атомов вакансии мигрируют, 

образуют поры. Растущие поры служат концен-

траторами напряжений, что приводит к локаль-

ному зарождению новых дислокаций и их 

скоплению вокруг пор. Дислокационная актив-

ность вокруг трещины обеспечивает ее рост. 

Разрушение происходит путем слияния микро-

пор и распространения трещины через весь 

кристалл. 

Что касается модели с УНТ, то мы получа-

ем доминирующий элемент – границу раздела. 

Вакансии концентрируются в местах начально-

го утончения УНТ при деформации. Пластиче-

ская деформация начинается не в объеме мат-

рицы, а на интерфейсе. При сравнительно низ-

ком напряжении происходит отслоение – раз-

рыв связи между атомами Ti и C. Это объясняет 
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снижение и стабилизацию предела текучести в 

композитных системах – разрушение интер-

фейса требует меньшего напряжения, чем пла-

стическое течение упрочненной дисперсными 

частицами матрицы. Образовавшиеся в этих 

местах полости (зоны отслоения) являются 

сверхэффективными концентраторами напря-

жений. Дислокации, зародившиеся в матрице, 

движутся к этим зонам и не могут передать 

нагрузку на УНТ. Происходит быстрое слияние 

зон отслоения вдоль всей поверхности нано-

трубки, формируя непрерывную трещину. Ва-

кансии в матрице, мигрируя к этой трещине, 

ускоряют ее рост. 

Выводы 

На основе проведенного молекулярно-

динамического моделирования одноосного рас-

тяжения дефектного монокристалла α-Ti, арми-

рованного углеродной нанотрубкой, были 

сформулированы следующие выводы: 

1. установлено сложное нелинейное влия-

ние концентрации вакансий на механические 

свойства монокристалла α-Ti. Обнаружено, что 

при концентрации 0,5% вакансии и их кластеры 

выступают в роли дисперсионных упрочните-

лей, повышая предел прочности и предел теку-

чести, что превышает аналогичные показатели 

бездефектного кристалла. Этот эффект объяс-

няется блокировкой движения дислокаций по-

лями упругих напряжений вокруг дефектов.  

2. введение УНТ в дефектную матрицу 

приводит к стабилизации предела прочности 

для всех исследованных концентраций вакан-

сий. Это свидетельствует о том, что УНТ ниве-

лирует влияние вакансий, и механические 

свойства системы начинают определяться не 

объемом матрицы, а прочностью границы раз-

дела. 

3. показано, что высокий модуль упруго-

сти УНТ доминирует в упругой деформации 

композита, что проявляется в росте модуля 

Юнга системы с увеличением концентрации 

вакансий. Этот результат доказывает, что УНТ 

эффективно воспринимает упругую нагрузку, 

однако для реализации ее упрочняющего по-

тенциала необходимо обеспечить прочное 

сцепление с матрицей. 

Определены конкурирующие механизмы 

влияния вакансий. В объеме матрицы вакансии 

могут как упрочнять материал (образуя барье-

ры для дислокаций), так и разупрочнять его. На 

границе с УНТ мигрирующие вакансии высту-

пают исключительно как ослабители интерфей-

са, снижая адгезию и способствуя интерфазно-

му разрушению. 
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