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Аннотация. Выполнены экспериментальные исследования процесса лазерной термической обработки 

поверхности жаропрочного литейного сплава ВХ9Л в режиме импульсной генерации излучения. Путем ла-

зерного импульсного сканирования получены оксидные покрытия толщиной 20-30 мкм с микротвердостью 

8-11 ГПа. Методом растровой электронной микроскопии исследована структура сформированных термиче-

ских оксидов в зависимости от мощности импульсного излучения. Построена кинетическая модель лазерно-

го оксидирования металлов в составе сплава ВХ9Л на воздухе по механизму поверхностного зародышеобра-

зования. При увеличении мощности лазера с 150 Вт до 200 Вт степень оксидирования металлической по-

верхности уменьшается с 26% до 12% вследствие повышения температуры металла и тенденции формируе-

мого оксида к разложению. Расчетные значения соответствуют полученным экспериментальным данным 

при размере критических зародышей 0,3 нм, теплоте десорбции атомарного кислорода 350000 Дж/моль и 

общем времени обработки 0,02 с. Установлено, что при лазерном оксидировании образцов из сплава ВХ9Л 

образованная оксидная фаза включает, в основном, оксиды хрома и титана. Содержание в составе модифи-

цированной поверхности оксидов железа и никеля незначительна и соответствует «следовым» микроколи-

чествам. Показано, что лазерное импульсное оксидирование может применяться как перспективный способ 

модифицирования при получении на изделиях механически прочных и коррозионноустойчивых металлоок-

сидных пленок и покрытий. 

Ключевые слова: сплав ВХ9Л, кинетическая модель лазерного оксидирования, механизм поверхност-

ного зародышеобразования, оксидированная поверхность, режимы лазерного импульсного модифицирова-

ния. 
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MODIFICATION SURFACE OF HEAT-RESISTANT VH9L CASTING ALLOY BY LASER 
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Abstract. Experimental studies of the process of laser thermal treatment of the surface of the heat-resistant 

casting alloy VН9L in the mode of pulsed radiation generation have been carried out. By means of laser pulse scan-

ning oxide coatings with thickness of 20-30 μm with microhardness of 8-11 GPa are obtained. Using raster electron 

microscopy, the structure of the formed thermal oxides was studied depending on the power of pulsed radiation. A 

kinetic model of laser oxidation of metals in the composition of the VН9L alloy in air was built by the mechanism 

of surface nucleation. By increasing the laser power from 150 W to 200 W, the degree of oxidation of the metal sur-

face decreases from 26% to 12% due to an increase in the metal temperature and the tendency of the formed oxide 

to decompose. The calculated values correspond to the obtained experimental data with a critical nucleus size of 0.3 

nm, atomic oxygen desorption heat of 350,000 J/mol and a total processing time of 0.02 s. It was found that during 

laser oxidation of samples from alloy VН9L, the formed oxide phase mainly includes chromium and titanium ox-

ides. The content of iron and nickel oxides in the modified surface composition is insignificant and corresponds to 

trace micro-quantities. It has been shown that laser pulse oxidation can be used as a promising modification method 

when producing mechanically strong and corrosion-resistant metal oxide films and coatings on articles. 

Keywords: VН9L alloy, laser oxidation kinetic model, surface nucleation mechanism, oxidized surface, laser 

pulse modification modes. 
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Введение 

Традиционным методам оксидирования 
металлов и сплавов посвящено большое коли-
чество научных работ. Они раскрывают техно-
логические и физико-химические особенности 
таких процессов как оксидирование на воздухе, 
в атмосфере перегретого водяного пара, в сме-
си инертных и реакционных газов, в водных 
растворах различных кислот (анодирование, 
микродуговая обработка) с формированием ок-
сидных пленок и покрытий самого разного 
функционального назначения [1-10]. 

С развитием лазерных технологий разраба-
тываются новые способы и раскрываются пер-
спективные возможности применения лазерно-
го излучения для обработки конструкционных 
материалов [11-19]. Сегодня активно проводят-
ся исследования по упрочнению поверхностей 
металлов и сплавов с помощью воздействия ла-
зера [20-22]. Известно, что при  упрочнении 

поверхностного слоя изделий применяют меха-
нически прочные и высокотвердые металлоок-
сидные соединения, которые могут быть полу-
чены, в том числе путем лазерной обработки в 
условиях сканирования поверхности импульс-
ными либо непрерывными световыми потока-
ми. 

Настоящие исследования посвящены про-
цессу лазерного импульсного оксидирования 
конструкционного сплава марки ВХ9Л для 
обоснования принципиальной возможности по-
лучения упрочняющего оксидного слоя с опре-
делением особенностей механизма его форми-
рования. 

Целью данной работы является построение 
кинетической модели лазерного оксидирования 
металлов на воздухе по механизму поверхност-
ного зародышеобразования при импульсном 
сканировании подложки из сплава ВХ9Л. Осо-
бенностью такой обработки является быстрое 
изменение температуры во времени и по про-
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странственным координатам. Известные моде-
ли зародышеобразования и роста зародышей 
металлооксидов не учитывают этой особенно-
сти. Модель включает такие параметры, как 
поверхностное натяжение оксида, теплоту ад-
сорбции атомарного кислорода, активность 
кислорода, оксидов и металлов, высоту ступе-
нек на поверхности. Эти параметры в большин-
стве случаев не определены и в модели они 
подбираются по экспериментальным данным 
по общей степени оксидирования, которая за-
висит от числа технологических проходов и 
скоростей нагрева и охлаждения подложки в 
процессе лазерной импульсной обработки. 

Коэффициент отражения от гладких чи-
стых металлических поверхностей близок к 
единице. Для уменьшения этого коэффициента 
на поверхность металла наносят различные по-
глощающие покрытия. Отражение и поглоще-
ние зависит от толщины, диэлектрических и 
проводящих свойств этих покрытий. Выбор оп-
тимальных параметров материалов покрытий 
позволяет существенно снизить отражение и 
уменьшить мощность лазера, например, для 
плавления слоев металла, т.е. для наплавки раз-
личных функциональных материалов. В про-
цессе наплавки свойства материалов покрытий 
существенно изменяются в зависимости от 
температуры. Поэтому под параметрами моде-
ли понимаются усредненные значения в диапа-
зоне температур от нормальной до плавления. 
Коэффициент отражения изменяется в зависи-
мости от толщины покрытия с периодом по-
рядка длины волны. Поэтому необходимо так-
же проводить усреднение по высоте микроне-
ровностей получаемого профиля. 

Методика исследования 

Экспериментальные металлические пла-
стины подвергались ультразвуковой очистке, 
промывке и сушке. Для модифицирующей ла-
зерной обработки использовался твердотель-
ный лазер на алюмоиттриевом гранате, активи-
рованном неодимом, с длиной волны излучения 
λ=1,064 мкм (частота 3·1014 Гц, круговая часто-
та 1,8·1015 с-1), диаметром фокусного пятна 0,5 
мм в плоскости металлической подложки и 
длительностью импульса 2 мс в одноимпульс-
ном режиме. Мощность импульсного излуче-
ния при обработке составляла значения 150 Вт, 
170 Вт и 200 Вт. 

Определение характера плавления метал-
лической подложки в зависимости от мощности 
лазера осуществлялось методом оптической 
микроскопии с применением микроскопов 

МБС-10М и Levenhuk D50L NG, а также мето-
дом электронной микроскопии с использовани-
ем сканирующего электронного микроскопа 
«Aspex EXplorer».  

Металлографический анализ проводился по 
стандартной методике подготовки и исследова-
ния поперечных микрошлифов образцов с 
определением особенностей объемной структу-
ры (формы и размера зерен, границ раздела фаз, 
геометрии замкнутых и открытых пор) и тол-
щины поверхностного слоя. При измерениях 
глубины проплавления и определении толщины 
оксидных слоев дополнительно использовался 
цифровой толщиномер VOGEL. Для определе-
ния микротвердости оксидированной лазерным 
облучением поверхности применялся прибор 
ПМТ-3М с четырехгранным алмазным инден-
тором. Измерения проводились при нагрузке на 
индентор, составляющей 50 гс. 

Степень оксидирования определялась как 
отношение пика кислорода экспериментально-
го образца к пику кислорода с окисленного эта-
лона с толщиной оксидной пленки 1,5 мкм при 
рентгеноспектральном анализе в процессе 
электронной микроскопии. 

Результаты и их анализ 

В процессе облучения поверхности образ-
цов лазерными импульсами формировалась ок-
сидная пленка толщиной до 30 мкм при 
наибольшем задаваемом значении мощности 
лазера 200 Вт.  

Степень окисления поверхности устанав-
ливалась в ходе рентгеноспектрального анализа 
по изменению относительной интенсивности 
спектра содержания кислорода на исследуемых 
образцах (рис.1, 2, табл.). 

 

Рис. 1. Спектральный состав поверхности исходного 

образца 

Fig. 1.  Spectral composition of the initial sample sur-

face 
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Рис. 2. Спектральный состав поверхности сплава 

ВХ9Л после лазерного импульсного оксидирования 

Fig. 2. Spectral composition of VH9L alloy surface  

after laser pulse oxidation 

В каждой точке плана обрабатывались 

4 образца. Среднее квадратичное отклонение 

степени оксидирования составляло 15% во 

всех точках плана. 

Табл. Экспериментальные значения степени  

окисления металлической подложки 

Tabl. Experimental values oxidation state of metal  

substrate 

Степень 

окисления 

Мощность 

лазера, Вт 

Общее время 

обработки, с 

0,24 150 0,02 

0,17 170 0,02 

0,12 200 0,02 

 

Морфология пленок отличалась в зависи-

мости от мощности импульсного излучения, 

что отчетливо визуализировалось при скани-

рующей электронной микроскопии (рис. 3). 

 

Рис. 3. Структура оксидных пленок при сканирующей электронной микроскопии подложек во вторичных 

электронах: 1 – образец №1, оксидированный при мощности лазера 150 Вт; 2 – образец №2,  

оксидированный при мощности лазера 170 Вт; 3 – образец №3, оксидированный при мощности  

лазера 200 Вт 

Fig. 3.  Structure oxide films during scanning electron microscopy of substrates in secondary electrons: 

1 – sample No.1 oxidized at а 150 W laser power; 2 – sample No.2 oxidized at а 170 W laser power;  

3 – sample No.3 oxidized at а 200 W laser power

При мощности 200 Вт структура оксидов 

характеризовалась более высокой однородно-

стью и равномерностью профиля с минималь-

ным количеством поверхностных дефектов.  

Микротвердость оксидных слоев также от-

личалась в зависимости от режима облучения и 

достигала значений 8 ГПа при мощности 150 

Вт, 8,8 ГПа при мощности 170 Вт и 11 ГПа при 

мощности 200 Вт, тогда как микротвердость 

контрольного образца составляла порядка 4,5 

ГПа. 

Кинетическая модель лазерного 

оксидирования  

Скорость образования зародышей оксида на 

поверхности сплава равна [23]: 

 

где  - тепловая скорость молекул, 

м/c; 

- поверхностная концентрация 

адсорбированных атомов кислорода, м-2; 

 - число мест адсорбции на по-

верхности, м-2; 

- степень покрытия поверхности; 

- адсорбционный коэффи-

циент, Па-1; 
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 - теплота десорбции атомарного кис-

лорода, Дж/атом; 

- парциальное давление атомар-

ного кислорода, атм; 

- парциальное давление атомарного 

кислорода, Па; 

 - константа равновесия реак-

ции диссоциации молекулярного кислорода О2 

= 2О; 

 - стандартная энергия 

Гиббса реакции О2 = 2О; 

- объемная энергия Гиббса 

образования оксида, Дж/м3; 

 - мо-

лярная энергия Гиббса образования оксида хМ 

+ у/2 О2 = МхОу, Дж/моль; 

аМ – активность металла;  – парциальное 

давление кислорода, атм; 

 - стандартная энергия 

Гиббса образования оксида из простых ве-

ществ, Дж/моль; 

  - плотность критических 

зародышей на поверхности, м-2; 

- энергетический барьер для 

образования зародышей, Дж;   

- поверхностное натяже-

ние оксида, Дж/м2; 

  - молекулярный объем, м3;  

Линейная скорость роста зародышей по 

механизму полизародышевого двумерного за-

рождения равна: 

 
где  

  - радиус критического зародыша, м;  

 - высота зародыша, м; 

- постоянная Планка, постоянная 

Больцмана; число Авогадро, универсальная га-

зовая постоянная; 

- плотность и молярная масса оксида. 

Термодинамические данные брались из ра-

боты [24]. Активности металлов в сплаве при-

нимались равными их мольным долям. 

При действии точечного источника на по-

верхности полубесконечного тела распределе-

ние температуры имеет вид [25]: 

, 

где     

  - коэффициент температуропровод-

ности, м2/с;  

 - функция распределения 

стандартной нормальной случайной величины; 

r – расстояние до точки наблюдения, м; t – вре-

мя, с; То – начальная температура, К; 

- эффективная мощность источни-

ка нагрева в металле, Вт [26, 27]; 

 - эффективная плот-

ность мощность источника нагрева в металле, 

Вт; 

 - площадь лазерного пятна, м2; 

  - напряженность поля в металле, 

В/м; 

  - коэффициент прохождения 

волны в металл; 

- напряженность поля в падаю-

щей волне, В/м. 

- плотность мощности в лазерном 

пятне, Вт/м2; 

- скорость света в вакууме и диэлектриче-

ская постоянная; 

- показатели преломления в металле и в 

воздухе; 

 волновые числа в металле и воздухе; 

- мощность лазера, Вт. 

Количество оксида, образовавшегося за 

время t в кольце с радиусами ro и rn равно (в 

кг): 

. 

На рис. 4, 5 показаны зависимости массо-

вой доли оксидов, образуемых в расплаве, от 

времени при лазерном оксидировании подлож-

ки с разной мощностью излучения. 

Модельные данные учитывают оксидиро-

вание поверхности в условиях нагрева метал-

лической подложки. С учетом окисления при 

охлаждении, а также количества проходов, со-

держание оксидов увеличится в 3-4 раза. Рас-

четные значения соответствуют эксперимен-

тальным при времени обработки 0,02 с, высоте 

критических зародышей 0,3 нм и теплоте де-

сорбции атомарного кислорода 350000 

Дж/моль. 
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Рис. 4. Зависимость массовой доли оксидов титана, 

хрома и железа в расплаве от времени (с) 

при лазерном оксидировании сплава ВХ9Л при 

мощности лазера 200 Вт: 

1 – TiO; 2 – Cr2O3; 3 – FeO 

Fig. 4. Dependence mass fraction of titanium, 

chromium and iron oxides in melt on time (s) 

at laser oxidation of VH9L alloy at laser power 200 W: 

1 – TiO; 2 – Cr2O3; 3 – FeO 

 

Рис. 5. Зависимость массовой доли оксидов титана, 

хрома и железа в расплаве от времени (с) при лазер-

ном оксидировании сплава при мощности лазера 

150 Вт: 1 – TiO; 2 – Cr2O3; 3 – FeO 

Fig. 5. Dependence mass fraction of titanium,  

chromium and iron oxides in melt on time (c) at laser 

oxidation of alloy at laser power 150 W: 1 – TiO; 2 – 

Cr2O3; 3 – FeO 

С увеличением мощности лазера степень 

оксидирования уменьшается. Это связано с тем, 

что при температуре выше 1800  К скорость 

образования зародышей оксида существенно 

уменьшается (рис. 6) вследствие уменьшения 

степени покрытия поверхности кислородом, а 

температура обработки снижается при умень-

шении мощности лазера (рис. 7). Оксидная фаза 

включает оксиды хрома и титана. Содержание 

оксидов железа и никеля является незначитель-

ным. 

 

Рис. 6. Зависимость скорости образования 

зародышей оксидов (м-2) от температуры (К): 

1 – TiO; 2 – Cr2O3; 3 – FeO 

Fig. 6. Oxide nucleation rate (m-2) versus 

temperature (K): 

1 – TiO; 2 – Cr2O3; 3 – FeO 

 

Рис. 7. Зависимость температуры (К) на расстоянии 

0,15 мм от центра пятна фокусировки от времени (с) 

при разной мощности лазера: 

1 – 200 Вт; 2 – 150 Вт 

Fig. 7. Dependence temperature (K) at a distance 0.15 

mm from the center of focusing spot on time (s) at dif-

ferent laser power: 

1 – 200 W; 2 – 150 W 

Оксид разлагается, если фактическое дав-

ление кислорода меньше равновесного давле-

ния при данной температуре, определяемого по 

выражению (рис. 8):  

pO2p n s aM T 
aMO

aM

xos
n s

Kos T n s( )











2

yos
n s



. 

 

Так, для оксида титана TiO и оксида хрома 

Cr2O3 равновесное давление превышает факти-
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ческое давление кислорода (0,2 атм) при темпе-

ратуре выше 2400 К, т.е. температура разложе-

ния этих оксидов при обработке на воздухе 

равна 2400 К. Температура разложения оксидов 

железа составляет 1300 К. 

 

Рис. 8. Зависимость равновесного давления  

кислорода (атм) над оксидами в зависимости от 

температуры (К): 1 – TiO; 2 – T2O3; 3 – Cr2O3; 4 – 

FeO;  5 – Fe2O3; 6 – Fe3O4; 7 – фактическое давление 

кислорода 0,2 атм 

Fig. 8. Equilibrium pressure (atm) over oxides versus 

temperature (K): 

1 – TiO; 2 – T2O3; 3 – Cr2O3; 4 – FeO;  5 –  Fe2O3; 

6 – Fe3O4; 7 –  actual oxygen pressure 0.2 atm 

Толщина материала не влияет на про-

цесс, если эта толщина больше глубины про-

плавления. Неоднородность поверхности (ше-

роховатость) не влияет на процесс, если высота 

неровностей меньше длины волны излучения. 

Угол падения волны и шероховатость могут 

быть учтены при корректировке коэффициента 

прохождения волны в сплав. 

Модель применима для жаропрочных 

сплавов разного химического состава. В про-

цессе моделирования достаточно указать состав 

конкретного сплава и стандартные энергии 

Гиббса образования оксидов из простых ве-

ществ. Поверхностные натяжения, размер кри-

тических зародышей оксида, высота ступени 

роста примерно одинаковы для всех прочных 

оксидов. Модель позволяет также определять 

степень оксидирования в зависимости от пар-

циального давления кислорода. 

Температурная неравномерность учи-

тывается при одноимпульсной обработке. При 

многоимпульсной обработке модель справед-

лива при  скорости обработки менее 5 мм/с и 

скважности импульсов более 10, когда после 

каждого импульса сплав успевает охладиться. 

Физические особенности модифициру-

емой поверхности не влияют на процесс, если 

толщина измененного поверхностного слоя на 

порядок меньше глубины проплавления.  

Проведенные экспериментальные исследо-

вания и анализ рассмотренной кинетической 

модели показывают, что процесс получения 

функциональных оксидных пленок и покрытий 

с помощью облучения металлической подлож-

ки импульсным лазером является самодоста-

точным и может применяться в технологиях 

оксидирования конструкционных металличе-

ских материалов наравне с распространенными 

методами газотермического и электрохимиче-

ского оксидирования. 

Заключение 

В работе построена одноимпульсная модель 

лазерного оксидирования жаропрочного сплава 

ВХ9Л. Модель позволяет определить зависи-

мость степени оксидирования от времени взаи-

модействия лазерного пучка с поверхностью по 

механизму двумерного зародышеобразования с 

учетом распределения температуры в зоне вза-

имодействия. Параметрами модели являются 

мощность и диаметр лазерного пучка, парци-

альное давление кислорода в газовой фазе, 

комплексный показатель преломления луча в 

металле и в среде, поверхностное натяжение 

оксидных включений, активности металлов в 

сплаве. По экспериментальным данным о сте-

пени окисления в зависимости от мощности ла-

зерного пучка модель позволяет определить та-

кие параметры процесса, как теплоту десорб-

ции атомарного кислорода с поверхности, раз-

мер критических зародышей, поверхностное 

натяжение и др. Объяснен эффект снижения 

степени оксидирования при повышении мощ-

ности излучения. Так, при увеличении мощно-

сти лазера с 150 Вт до 200 Вт степень оксиди-

рования уменьшается с 26 до 12% вследствие 

тенденции оксидов  к разложению при повы-

шении температуры. Расчетные значения соот-

ветствуют экспериментальным при размере 

критических зародышей 0,3 нм, теплоте де-

сорбции атомарного кислорода 350000 

Дж/моль и общем времени обработки 0,02 с. 

Оксидные фазы сплава ВХ9Л включают окси-
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ды хрома и титана вследствие их низкой (отри-

цательной) энергии образования. 

Уточнение модели связано с учетом рас-

пределения температуры при многоточечной 

лазерно-импульсной обработке. 
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