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Аннотация. Молекулярная динамика (МД) – мощный инструмент для исследования материалов, позволя-

ющий работать с миллионами и более атомов. Однако в молекулярной динамике качество межатомного по-

тенциала имеет ключевое значение. Для анализа и тестирования широкого спектра потенциалов предлагает-

ся использовать делокализованные нелинейные колебательные моды (ДНКМ). ДНКМ представляют собой 

точные решения уравнения движения атомов, полученные на основе симметрии структуры, и, в отличие от 

анализа, основанного исключительно на фононных модах, допускают колебания в широком диапазоне ам-

плитуд и включают как линейную (фононную), так и нелинейную части колебания. Такой подход позволяет 

тестировать потенциалы как с точки зрения линейной, так и нелинейной физики. Потому в данной работе 

представлен обзор на две работы с исследованием ДНКМ в ОЦК вольфраме. В одной из которых проводит-

ся сравнение существующих потенциалов относительны данных ab initio, а в другой уже представлен ма-

шинно-обученный потенциал с применением ДНКМ и показана разница в воспроизводимости ДНКМ в ши-

роком спектре амплитуд. 
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Abstract. Molecular dynamics (MD) is a powerful tool for materials research, allowing one to work with mil-

lions or more atoms. However, in molecular dynamics, the quality of the interatomic potential is crucial. To analyze 

and test a wide range of potentials, we propose using delocalized nonlinear vibrational modes (DNVMs). DNVMs 

are exact solutions to the equation of atomic motion obtained based on the symmetry of the structure and, unlike 

analysis based solely on phonon modes, allow vibrations over a wide range of amplitudes and include both the linear 

(phonon) and nonlinear parts of the vibration. This approach allows testing potentials from both linear and nonlinear 

physics perspectives. Therefore, this paper presents a review of two studies investigating DNVMs in BCC tungsten. 

One of them compares existing potentials with respect to ab initio data, while the other already presents a machine-

trained potential using DNVM and shows the difference in DNVM reproducibility over a wide range of amplitudes. 
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Введение 

Молекулярная динамика является одним из 

важных методов современного теоретического 

материаловедения [1, 2]. Этот метод основан на 

потенциале, описывающем межатомные взаи-

модействия. Поэтому качество потенциала 

имеет решающее значение для изучения мате-

риала. Существует два типа потенциалов: 

немашинно-обученные [3, 4] и машинно-

обученные [5, 6]. Немашинно-обученные по-

тенциалы представляют собой предопределен-

ные аналитические функции с настраиваемыми 

параметрами или же сплайн-аппроксимации с 

настраиваемыми коэффициентами. Эти пара-

метры и коэффициенты могут быть основаны 

на экспериментальных или теоретических дан-

ных, а иногда и объединять их. Немашинно-

обученные потенциалы часто имеют узкую об-

ласть применимости, в пределах которой полу-

ченные данные как качественно, так и количе-

ственно воспроизводятся экспериментальными 

данными. Однако это приводит к противоречи-

ям при использовании для других целей. Ма-

шинно-обученные потенциалы в основном обу-

чаются на данных ab initio. Такой подход обес-

печивает хорошую качественную воспроизво-

димость широкого спектра характеристик ма-

териалов по сравнению с экспериментами. Од-

нако существуют количественные расхождения 

из-за расхождений между ab initio и экспери-

ментальными данными. Тем не менее, потенци-

алы машинного обучения зависят от выбора 

обучающих данных; следовательно, они могут 

не обеспечить желаемого соответствия в обла-

стях, где обучающий набор данных не содер-

жит данных.  

Оба метода многократно сравнивались [7, 

8], но независимо от метода, существует необ-

ходимость в проверке существующих потенци-

алов в широком диапазоне применимости. Для 

этой цели предлагается использование делока-

лизованных нелинейных колебательных мод 

(ДНКМ/DNVM) [9]. ДНКМ являются точными 

решениями уравнения движения, зависящего от 

симметрии молекул [10] и кристаллов [11–15]. 

Конечно, сами частоты колебаний зависят от 

материала, но используемые паттерны колеба-
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ний характерны для всех материалов с одина-

ковой симметрией, например, одни и те же 

ДНКМ использовались для вольфрама [16] и 

ванадия [17]. ДНКМ получены из теории фазо-

вых переходов и допускают колебания как в 

линейном (гармоническом), так и в нелинейном 

(ангармоническом) приближениях. В линейном 

приближении ДНКМ являются фононными мо-

дами, в то время как несколько различных 

ДНКМ могут представлять одну и ту же фо-

нонную моду в линейном приближении и быть 

разными в нелинейном [18].  

Таким образом, ДНКМ позволяют тестиро-

вать потенциалы в широком диапазоне ампли-

туд, используя точные решения уравнений 

движения. При этом в линейной части анализи-

руются сразу несколько вариантов одной и той 

же фононной моды, что позволяет анализиро-

вать адекватность применяемого межатомного 

потенциала. Ещё одним преимуществом метода 

является анализ различных точек первой зоны 

Бриллюэна, анализируются как точки высокой 

симметрии на границе зоны Бриллюэна, так и в 

глубине. Обычно данные о дисперсионных 

кривых фононов внутри зоны Бриллюэна полу-

чают интерполяцией, но ДНКМ позволяют ана-

лизировать их напрямую и сравнивать данные 

из первых принципов с данными молекулярной 

динамики. ДНКМ отражают гамильтониан как 

функцию амплитуды одновременно в широком 

диапазоне. Таким образом, ДНКМ позволяют 

анализировать потенциал не только в терминах 

амплитудно-частотных характеристик (АЧХ), 

но и в виде энергетических профилей смеще-

ний, соответствующих определённым колеба-

ниям, а также профилей сил. Нахождение 

длинноволновых ДНКМ также позволяет оце-

нить упругие компоненты в материале. Ранее 

ДНКМ уже использовались для построения 

дискретных бризеров [19–23] в скалярной 

квадратной решетке [24], в треугольных и 

квадратных β-FPUT-решетках [25, 26], в ОЦК-

металлах [27] и в структуре B2 [28]. 

Как упоминалось ранее, одним из совре-

менных методов создания межатомных потен-

циалов является машинное обучение (МО). МО 

демонстрирует отличную сходимость с данны-

ми, на которых оно обучалось. Обычно в каче-

стве основы выбираются данные ab-initio рас-

четов, поскольку они дают наиболее полную 

картину поведения материала, а для МО важно, 

чтобы в данных не было пробелов. В то же 

время существуют различные модели МО. Од-

ной из самых ранних моделей является нейрон-

ная сеть Белера-Парринелло [29]. Основная 

идея этой модели заключается в использовании 

искусственных нейронных сетей для сравнения 

описания локального окружения атома с его 

вкладом в атомную энергию. Другой класс мо-

делей — модели на основе ядра [30]. Основная 

идея заключается в использовании ядерной ре-

грессии (например, регрессии гауссовского 

процесса — GPR) для прогнозирования энер-

гии. Сходство атомных окружений (измеренное 

функцией ядра) определяет прогнозирование. В 

данной работе мы будем использовать один из 

потенциалов, представляющих эту модель, – 

потенциалы гауссовой аппроксимации (GAP) 

[31]. Другая модель – линейные модели с мно-

гомерными дескрипторами [32, 33]. Эта модель 

использует линейную регрессию (или полино-

миальную регрессию низкого порядка) с очень 

сложными многомерными дескрипторами, ко-

торые неявно отражают сложные атомные вза-

имодействия. В качестве дескриптора мы мо-

жем использовать потенциал тензора момента 

(MTP). Ранее была проделана работа по созда-

нию межатомного потенциала с учётом ДНКМ-

зависимой модели [34] с использованием меж-

атомного потенциала машинного обучения 

(MLIP) [35, 36]. 

Сравнение АЧХ существующих потен-

циалов относительно расчётов ab-initio на 

примере вольфрама 

В работе [16] на примере вольфрама про-

анализированы 14 однокомпонентных коротко-

волновых ДНКМ объемно-центрированной ре-

шётки, волновые вектора которых при малых 

амплитудах принадлежат точкам на границе 

зоны Бриллюэна. Сравнивались 9 потенциалов, 

один из которых машинно-обученный [37-44] и 

данные ab-initio молекулярной динамики 

(AIMD). При этом показано, что эти 14 ДНКМ 

выделяются в 4 группы при малых амплитудах. 

Рассмотрим ДНКМ 2 из группы 1 на рис. 1. 
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Рис. 1. Сравнение АЧХ ДНКМ 2 для МД  

потенциалов и расчётов AIMD, в легенде буквами 

обозначена первая буква фамилии автора  

потенциала, а цифрами год публикации, данные 

AIMD обозначены DFT (density functional theory) 

[16]. 

Fig. 1. Comparison of the frequency response of 
DNVM 2, the letters indicate the first letter of the  
author's surname of the potential, and the numbers  
indicate the year of publication, ab-initio data are  
designated DFT (density functional theory) [16]. 

На рис. 1 приводится сравнение АЧХ 

ДНКМ 2 для девяти потенциалов и данных ab-

inito. В линейной (гармонической) части, кото-

рой соответствуют малые амплитуды характер-

но можно наблюдать «полочку», область, где 

частота не зависит от амплитуды. Затем прояв-

ляется нелинейность (ангармонизм) колебания 

и мы видим нелинейность. Нелинейность быва-

ет жёсткого и мягкого типов. Жесткий тип не-

линейности подразумевает увеличение частоты 

с увеличением амплитуды, а мягкий наоборот 

уменьшение частоты с ростом амплитуды. 

Для большинства потенциалов и данных 

DFT мы видим данную «полочку» и последу-

ющее проявление нелинейности. При этом 

наилучшее качественное соответствие данным 

DFT для ДНКМ 2 показывают потенциалы Z2001 

и O2018, а потенциалы A2009 и машинно-

обученный B2020 и вовсе демонстрируют отсут-

ствие «полочки» и линейную зависимость ча-

стоты от амлитуды. При этом по большей части 

все потенциалы показывают жесткий тип нели-

нейности. В качестве исключений можно выде-

лить L2001 и H2022, у которых очень слабая нели-

нейность, однако всё же жесткого типа, а вто-

рой L2017, у которого тип нелинейности меняет-

ся несколько раз с ростом амплитуды. 
Перейдём к рассмотрению группы 2 на примере 
ДНКМ 6 на рис. 2. 

 

Рис. 2. Сравнение АЧХ ДНКМ 6 для МД  

потенциалов и расчётов AIMD, в легенде буквами 

обозначена первая буква фамилии автора  

потенциала, а цифрами год публикации, данные 

AIMD обозначены DFT (density functional theory) 

[16]. 

Fig. 2. Comparison of the frequency response of 
DNVM 6, the letters indicate the first letter of the  
author's surname of the potential, and the numbers  

indicate the year of publication, ab-initio data are desig-
nated DFT (density functional theory) [16]. 

Почти все потенциалы и данные AIMD де-

монстрируют мягкий тип нелинейности, за ис-

ключением A2009, который демонстрирует 

жёсткий тип нелинейности вплоть до больших 

частот, где демонстрирует мягкий тип нели-

нейности. При этом остальные потенциалы и 

AIMD демонстрируют увеличение нелинейно-

сти с ростом амплитуды, за исключением по-

тенциалов M2017 и L2017. Стоит отметить, что та-

кое однозначное поведение ДНКМ в модах 

данной группы является характерным и под-

тверждается на примере ванадия в работе [17]. 

При этом видно, что МО потенциал B2020 де-

монстрирует не только качественную сходи-

мость, но и полную количественную сходи-

мость. 

Анализ машинно-обученного межатом-

ного потенциала вольфрама с применением 

ДНКМ 

В работе [16] также анализируются и 

остальные группы мод, однако уже на приве-

дённых примерах видно, что даже МО потен-

циалы не всегда полностью воспроизводят не-

линейную компоненту колебаний. Что подни-

мает вопрос о расширении данных и подходов 

как к анализу существующих, так и к созданию 

новых потенциалов. 



Косарев И. В., Хазимуллин М. В., Дмитриев С.В. 

 

Фунд. пробл. совр. материаловед. 2025. Т. 22. № 4. С. 396-403 

400 

В работе [34] была проведена работа по 

машинному обучению межатомного потенциа-

ла с учётом упомянутых ранее 14 коротковол-

новых ДНКМ.  

В данной работе был развит метод приме-

нения ДНКМ при обучении потенциала, а так-

же приведён машинно-обученный потенциал, 

обученный на случайных конфигурациях, по-

добных ДНКМ по количеству смещаемых ато-

мов, чтобы продемонстрировать влияние 

ДНКМ и отсутствие случайной воспроизводи-

мости ДНКМ. 
На рис. 3 из работы [34] приведены срав-

нения данных АЧХ для четырёх ДНКМ, при-
надлежащих разным группам, между МО по-
тенциалом с применением ДНКМ 
(MLIPDNVM(W)), МО потенциалом на аналогич-
ном количестве конфигураций без ДНКМ 
(MLIPw), сторонним МО обученным потенциа-
лом (B2020 GAP) [44], который также ранее 
упоминался в данной работе и демонстриро-
вался на рисунках 1 и 2, как B2020. Все эти по-
тенциалы сравнивались с данными ab-initio, по-
лученными на основе статичных расчётов 
(SCF). 

 

Рис. 3.  АЧХ ДНКМ (a) #1, (b) #5, (c) #9 и (d) #11  

полученных с помощью DFT SCF, MLIPDNVM(W), 

MLIPW и B2020 GAP [34]. 

Fig. 3. Frequency response of DNVMs (a) #1, (b) #5, 
(c) #9 and (d) #11 obtained via DFT SCF, 

MLIPDNVM(W), MLIPW and B2020 GAP. [34]. 

Как видно из рис. 3 некоторые моды всё 

ещё не удалось воспроизвести полностью, од-

нако заметно, что потенциал MLIPDNVM(W) вос-

производит ДНКМ однозначно лучше, чем дру-

гой МО потенциал B2020 GAP и потенциал без 

ДНКМ MLIPW. При этом наилучшее воспроиз-

ведение достигнуто в области высоких ампли-

туд, что является ключевым для исследований 

явлений нелинейной физики кристалла. А все 

несоответствия приходятся на область низких 

амплитуд, что связано с большим влиянием 

точности расчётов при низких амплитудах и 

сглаживанием некоторых данных полиномами 

при обучении. 

Выводы 

Рассмотрены две работы, посвящённые 

изучению ДНКМ и межатомным потенциалам. 

В первой работе продемонстрированы суще-

ствующие проблемы существующих потенциа-

лов при рассмотрении их поведения в широком 

спектре амплитуд. Во второй работе продемон-

стрирован МО потенциал с учётом ДНКМ. 

Из работы [16] видно, что потенциалы, без 

учёта ДНКМ не воспроизводят нелинейную 

компоненту. Иногда наблюдалась линейная за-

висимость частоты от амплитуды, что катего-

рически разнилось с данными ab initio. В неко-

торых случаях потенциалы демонстрировали 

другой тип нелинейности. 

В работе [34] показано, что учёт ДНКМ 

при создании потенциала позволяет воспроиз-

вести нелинейную компоненту колебания, что 

является ключевым в исследованиях явлений 

нелинейной физики, а также важным для более 

полного исследования и понимания материа-

лов. 
Рассмотренные работы поднимают важный 

вопрос более полного исследования существу-
ющих потенциалов и создания новых. А также, 
как упоминалось ранее выявлении общих зако-
номерностей между материалами одинаковой 
структуры. Как, например, группа ДНКМ 2 в 
вольфраме, одна из мод которых продемон-
стрирована на рис. 2, демонстрирует аналогич-
ное поведение и в ванадии [17], при этом такое 
поведение демонстрируют большинство потен-
циалов, а также потенциал MLIPW из работы 
[34], который не обучался на ДНКМ, что при-
водит нас к выводу, что данное поведение яв-
ляется скорее свойством структуры, нежели 
особенностью ДНКМ. 
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