ИССЛЕДОВАНИЯ ФОРМИРОВАНИЯ МИКРОСТРУКТУРЫ И СВОЙСТВ ПРИ ПРОИЗВОДСТВЕ ЛЕНТЫ ИЗ СПЛАВА AL-2CU-2MN

HNJCCF

Авторы

  • Алина Александровна Левагина Сибирский государственный индустриальный университет https://orcid.org/0000-0002-7270-6008
  • Евгений Владимирович Арышенский Сибирский государственный индустриальный университет https://orcid.org/0000-0003-3875-7749
  • Сергей Валерьевич Коновалов Сибирский государственный индустриальный университет https://orcid.org/0000-0003-4809-8660
  • Александр Михайлович Дриц Самарский национальный исследовательский университет имени академика С.П. Королева https://orcid.org/0000-0002-9468-8736
  • Максим Сергеевич Тептерев Самарский национальный исследовательский университет имени академика С.П. Королева https://orcid.org/0000-0002-9018-1188

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2025.01.023

Аннотация

В работе исследовано формирование микроструктуры и физико-механических свойств при производстве холоднокатанной ленты из алюминиевого сплава Al-2Cu-2Mn. В частности, изучено влияние деформационной (горячая и холодная прокатка) и термической обработки на механические свойства и удельную электропроводность сплавов. Показано, что полученное изделие сохраняет структуру нерекристаллизованной до температуры отжига 450 ºС, а также имеет в составе мелкодисперсные вторичные выделения Al20Cu2Mn3, образующиеся при данной температуре и повышающими прочность. Кроме того, данный сплав после отжига имеет также высокие значения электропроводности, что подтверждает возможность его применения в качестве электротехнической ленты. Предел прочности и удельная электропроводность изготовленной ленты, отожженной при температуре 400 ºС, 3 часа составили 294 МПа и 29,3 МСм/м соответственно. Кроме того, установлено положительное влияние горячей прокатки на прочностные свойства, а именно на их термостабильность.

Библиографические ссылки

Shulginov, N. "The Russian fuel and energy complex in 2023 continued to reliably provide con-sumers" Ministry of Energy of the Russian Federation (2024). Retrieved from https: https://minenergo.gov.ru/press-center/news-and-events?news-item=nikolay-shulginov-rossiyskiy-tek-v-2023-godu-prodolzhil-nadyezhno-obespechivat-potrebiteley. (In Russ.).

Shulginov, N. "Growth of electricity con-sumption in the autumn-spring period" Ministry of Energy of the Russian Federation. (2024). Retrieved from https: https://minenergo.gov.ru/press-center/news-and-events?news-item=nikolay-shulginov-v-proshedshem-osenne-zimnem-sezone-elektropotreblenie-vyroslo-na-3-5- (In Russ.).

Kislitsyn, A.L. (2001). Transformers: a text-book on the course "electromechanics". (In Russ.).

Conductive conductors for cables, wires and cords. (2021). (HOST 22483-2021).

Non-insulated wires for overhead power lines. (2019). (HOST 839-2019).

Wires for overhead power lines twisted from profiled wires with concentric coils. (2014). (HOST 62219-2014).

Mustyats, A.V., Serokhvostov, A.A., Myaku-shko, R.V.  Ovchelupova, A.V. (2023). Methods of reducing the accident rate of overhead power lines by eliminating icy-frost deposits. Energynet, (1-2(1)), 43. (In Russ.). DOI: 10.57112/E231-957.

Tsarev, I.B. (2024). Galloping wires of over-head power lines and the fight against it. Scientific aspect - Electrical Engineering, (5), 3123. (In Russ.).

Fursanov, M.I., Farino, A.A. & Gorudko, P.S. (2017). Icy accidents at power lines are the causes and ways to prevent them. Energy and management, (2), 25-29. (In Russ.).

Tikhomirov, P.M. (1986). Calcula-tion of transformers: Textbook for universities. (In Russ.).

Nemontov, V.A. (2021). Electrical engineering materials in mechatronics: a textbook. (In Russ.).

Loparev, V.V. (2022). Aluminum and its alloys for the domestic cable industry. Cables and wires, (6), 12-25. (In Russ.). DOI: 10.52350/2072215Х_2022_6_12.

Filina, A.V. & Morozov, I.S. (2019). On the influence of the properties of electrical mate-rials on the efficiency of electrical devices. In pro-spects for the development of processing technolo-gies and equipment in mechanical engineering. 281-284. (In Russ.).

Filina, A.V. & Nosovets, A.A. (2019). Electrical materials as a means of improving the efficiency of electrical equipment. In Modern Tool Systems, Information technology and Innovation. 205-208. (In Russ.).

Antipov, V.V., Senatorova, O.G., Tkachenko, E.A. & Vakhromov, R.O. (2012). Alumi-num deformable alloys. Aviation Materials and Technologies, (5), 167-182. (In Russ.).

Kaufman, J.G. (2000). Introduction to aluminum alloys and tempers. ASM international.

Belov, N.A., Korotkova, N.O., Shurkin, P.K. & Aksenov, A.A. (2020). Substantiation of copper concentration in heat-resistant deformable aluminum alloys containing 2 wt.% Mn. Physics of Metals and Metallology, (121(12)), 1315-1323. (In Russ.).

Korotkova, N.O., Shurkin, P.K., Cherkasov, S.O., Aksenov, A.A. & Finogeev, A.S. (2022). Influence of copper concentration and an-nealing temperature on the structure and mechanical properties of ingots and cold-rolled sheets of al-2% mn alloy. Izvestiya Vuzov. Tsvetnaya Metallurgiya, (28(1)), 67-78. (In Russ.). DOI: 10.17073/0021-3438-2022-1-67-78.

Belov, N.A., Korotkova, N.O., Akopyan, T.K. & Pesin, A.M. (2019). Phase composi-tion and mechanical properties of Al-1.5% Cu-1.5% Mn-0.35% Zr (Fe, Si) wire alloy. Journal of Alloys and Compounds, (782), 735-746. DOI: 10.1016/j.jallcom.2018.12.240.

Petrova, A.N., Rasposienko, D.Y., Astafyev, V.V. & Yakovleva, A.O. (2023). Structure and strength of Al-Mn-Cu-Zr-Cr-Fe ALTEC alloy after radial-shear rolling. Letters on Materials, (13(2)), 177-182. DOI: 10.22226/2410-3535-2023-2-177-182.

Belov, N., Akopyan, T., Tsydenov, K., Cherkasov, S. & Avxentieva, N. (2023). Effect of Fe-Bearing Phases on the Mechanical Properties and Fracture Mechanism of Al-2wt.% Cu-1.5 wt.% Mn (Mg, Zn) Non-Heat Treatable Sheet Alloy. Metals, (13(11)), 1911. DOI: 10.3390/met13111911.

Belov, N., Korotkova, N., Akopyan, T. & Tsydenov, K. (2019). Simultaneous increase of electrical conducti¬vity and hardness of Al-1.5 wt.% Mn alloy by addition of 1.5 wt.% Cu and 0.5 wt.% Zr. Metals, (9(12)), 1246. DOI: 10.3390/met9121246.

Belov, N.A. (2011). Economically alloyed heat-resistant aluminum alloys: principles of optimization of phase composition. Aviation materi-als and technologies, (2 (19)), 6-11. (In Russ.).

Chirkov, E.F. (2002). On the nature of the effects of Cu and Mg on the evolution of the structure and heat resistance of aluminum alloys of the Al-Cu-Mg system. Technology of light alloys, (4), 64-68. (In Russ.).

Glukhikh, Ya.M. (2023). The effect of annealing on the mechanical properties of sheets and welded joints of the alloy Al-2% Cu-2% Mn-2% Mg. SMIs-2023. Quality Ma¬nagement Technolo-gy=SMaC 2023. Quality management technology: materials of the International, 242. (In Russ.).

Zupanič, F. & Bončina, T. (2022). Heat-Resistant Al-Alloys with Quasicrystalline and L12-Precipitates. Solid State Phenomena, (327), 26-32. DOI. 10.4028/www.scientific.net/ SSP.327.26.

Toleuova, A., Balbekova, B. & Erakhtina, I. (2019, March). Optimization of the Com-position and Structure of Deformable Heat Resistant Aluminum Alloy. In Materials Science Forum (Vol. 946, pp. 156-161). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/MSF.946.156.

Dar, S.M. & Liao, H. (2019). Creep behavior of heat resistant Al-Cu-Mn alloys strength-ened by fine (θ′) and coarse (Al20Cu2Mn3) second phase particles. Materials Science and Engineering: A, (763), 138062. DOI: 10.1016/j.msea.2019.138062.

Belov, N., Cherkasov, S., Korotkova, N. & Tsydenov, K. Manufacturability and structure evolution of cylindrical ingots of al-2% cu-2% mn alloy during pressure treatment. Non-ferrous metals, (1), 77-82. (In Russ.). DOI: 10.17580/ tsm.2023.01.10.

Korotkova, N.O., Shurkin, P.K., Cherkasov, S.O., Aksenov, A.A. & Finogeev, A.S. (2022). Influence of copper concentration and an-nealing temperature on the structure and mechanical properties of ingots and cold-rolled sheets of al-2% mn alloy. Izvestiya Vuzov. Tsvetnaya Metallurgiya, 28(1), 67-78. (In Russ.). DOI: 10.17073/0021-3438-2022-1-67-78.

35. Belov, N.A., Korotkova, N.O., Cherkasov, S.O. & Aksenov, A.A. (2020). Electrical conductivity and hardness of Al-1.5% Mn and Al-1.5% Mn-1.5% Cu (wt.%) cold-rolled sheets: com-parative analysis. Tsvetnye Metally, (4), 70-76. (In Russ.). DOI: 10.17580/tsm.2020.04.0.

Belov, N.A. & Alabin, A.N. (2013, September). Energy efficient technology for Al-Cu-Mn-Zr sheet alloys. In Materials Science Forum (Vol. 765, pp. 13-17). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/ MSF.765.13.

Tsydenov, K., Belov, N. (2023). In-vestigation of the effect of magnesium and zinc on the structure and mechanical properties of al-2% cu-1.5% mn alloy sheets. Llc "Zanevskaya site", a com-pany for the production of modern high-entropy ma-terials, 153-154.

Belov, N.A. (2022). Substantiation of the composition and structure of deformable al-loys based on the Al-Cu-Mn (Zr) system, which do not require homogenization and quenching. In Mashtech 2022. Innovative technologies, equipment and material blanks in mechanical engineering, 10-13. (In Russ.).

Naizabekov, A.B., Lezhnev, S.N., Ainabekova, S.S., Koinov, T.A. & Yordanova, R.M. (2019). Technology of processing non-ferrous met-als and alloys.

Mallesham, P. & Babu, V.R. (2016). Cold rolling mill for aluminium sheet. International Journal of Engineering and Applied Sciences, 3(2), 257728.

Hirsch, J. (2011). Aluminium sheet fabrication and processing. In fundamentals of alu-minium metallurgy (pp. 719-746). Woodhead Pub-lishing. DOI: 10.1533/ 9780857090256.3.719.

Hirsch, Yu., Grechnikova, A.F., Ar-yshensky, E.V. & Drits, A.M. (2018). Features of the evolution of microstructure and crystallographic tex-ture in the manufacture of aluminum tapes for the production of food containers. Part 2. Non-ferrous metals, (11), 62-69. (In Russ.). DOI: 10.17580/ tsm.2018.11.09.

Aryshenskii, E., Lapshov, M., Konovalov, S., Hirsch, J., Aryshenskii, V. & Sbitneva, S. (2021). The casting rate impact on the microstruc-ture in Al-Mg-Si alloy with silicon excess and small Zr, Sc additives. Metals, 11(12), 2056. DOI: 10.3390/met11122056.

Aryshenskii, E., Lapshov, M., Hirsch, J., Konovalov, S., Bazhenov, V., Drits, A. & Zaitsev, D. (2021). Influence of the small Sc and Zr additions on the as-cast microstructure of Al-Mg-Si alloys with excess silicon. Metals, 11(11), 1797. DOI: 10.3390/met11111797.

Aryshenskii, E., Lapshov, M., Konovalov, S., Hirsch, J., Aryshenskii, V. & Sbitneva, S. (2021). The casting rate impact on the microstruc-ture in Al-Mg-Si alloy with silicon excess and small Zr, Sc additives. Metals, 11(12), 2056. DOI: 10.3390/met11122056.

Belov, N., Akopyan, T., Tsydenov, K., Cherkasov, S. & Avxentieva, N. (2023). Effect of Fe-Bearing Phases on the Mechanical Properties and Fracture Mechanism of Al-2wt.% Cu-1.5 wt.% Mn (Mg, Zn) Non-Heat Treatable Sheet Alloy. Metals, 13(11), 1911. DOI: 10.3390/met13111911.

Belov, N., Akopyan, T., Tsydenov, K., Letyagin, N. & Fortuna, A. (2023). Structure evolution and mechanical properties of sheet Al-2Cu-1.5 Mn-1Mg-1Zn (wt.%) alloy designed for Al20Cu2Mn3 dis-peroids. Metals, 13(8), 1442. DOI: 10.3390/met13081442.

Загрузки

Опубликован

04/14/2025

Как цитировать

Левагина, А. А. . ., Арышенский, Е. В. . ., Коновалов , С. В. ., Дриц , А. М. ., & Тептерев , М. С. . (2025). ИССЛЕДОВАНИЯ ФОРМИРОВАНИЯ МИКРОСТРУКТУРЫ И СВОЙСТВ ПРИ ПРОИЗВОДСТВЕ ЛЕНТЫ ИЗ СПЛАВА AL-2CU-2MN: HNJCCF. Ползуновский ВЕСТНИК, (1), 187–196. https://doi.org/10.25712/ASTU.2072-8921.2025.01.023

Выпуск

Раздел

РАЗДЕЛ 2. ХИМИЧЕСКИЕ ТЕХНОЛОГИИ, НАУКИ О МАТЕРИАЛАХ, МЕТАЛЛУРГИЯ

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>