STUDIES OF MICROSTRUCTURE AND PROPERTIES FORMATION DURING PRODUCTION OF AL-2CU-2MN ALLOY STRIP

HNJCCF

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2025.01.023

Abstract

The paper investigates microstructure as well as physical and mechanical properties formation during production of cold-rolled strip from Al-2Cu-2Mn aluminum alloy. Specifically, the effect of deformation (hot and cold rolling) and heat treatment on alloys mechanical properties and electrical conductivity has been studied. It is demonstrated, that the produced article retains its non-recrystallized structure up to the annealing temperature of 450°C, and also contains finely dispersed secondary Al20Cu2Mn3 precipitates, formed at this temperature and increasing alloy strength. In addition, this alloy has high electrical conductivity value after annealing, justifying its application as EC grade material. The produced strip, annealed during 3 hours at 400°C, has ultimate strength and electrical conductivity of 294 MPa and 29.3 MS/m, respectively. In addition, it was established, that hot rolling had positive effect on strength properties, thermal stability, specifically.

 

References

Shulginov, N. "The Russian fuel and energy complex in 2023 continued to reliably provide con-sumers" Ministry of Energy of the Russian Federation (2024). Retrieved from https: https://minenergo.gov.ru/press-center/news-and-events?news-item=nikolay-shulginov-rossiyskiy-tek-v-2023-godu-prodolzhil-nadyezhno-obespechivat-potrebiteley. (In Russ.).

Shulginov, N. "Growth of electricity con-sumption in the autumn-spring period" Ministry of Energy of the Russian Federation. (2024). Retrieved from https: https://minenergo.gov.ru/press-center/news-and-events?news-item=nikolay-shulginov-v-proshedshem-osenne-zimnem-sezone-elektropotreblenie-vyroslo-na-3-5- (In Russ.).

Kislitsyn, A.L. (2001). Transformers: a text-book on the course "electromechanics". (In Russ.).

Conductive conductors for cables, wires and cords. (2021). (HOST 22483-2021).

Non-insulated wires for overhead power lines. (2019). (HOST 839-2019).

Wires for overhead power lines twisted from profiled wires with concentric coils. (2014). (HOST 62219-2014).

Mustyats, A.V., Serokhvostov, A.A., Myaku-shko, R.V.  Ovchelupova, A.V. (2023). Methods of reducing the accident rate of overhead power lines by eliminating icy-frost deposits. Energynet, (1-2(1)), 43. (In Russ.). DOI: 10.57112/E231-957.

Tsarev, I.B. (2024). Galloping wires of over-head power lines and the fight against it. Scientific aspect - Electrical Engineering, (5), 3123. (In Russ.).

Fursanov, M.I., Farino, A.A. & Gorudko, P.S. (2017). Icy accidents at power lines are the causes and ways to prevent them. Energy and management, (2), 25-29. (In Russ.).

Tikhomirov, P.M. (1986). Calcula-tion of transformers: Textbook for universities. (In Russ.).

Nemontov, V.A. (2021). Electrical engineering materials in mechatronics: a textbook. (In Russ.).

Loparev, V.V. (2022). Aluminum and its alloys for the domestic cable industry. Cables and wires, (6), 12-25. (In Russ.). DOI: 10.52350/2072215Х_2022_6_12.

Filina, A.V. & Morozov, I.S. (2019). On the influence of the properties of electrical mate-rials on the efficiency of electrical devices. In pro-spects for the development of processing technolo-gies and equipment in mechanical engineering. 281-284. (In Russ.).

Filina, A.V. & Nosovets, A.A. (2019). Electrical materials as a means of improving the efficiency of electrical equipment. In Modern Tool Systems, Information technology and Innovation. 205-208. (In Russ.).

Antipov, V.V., Senatorova, O.G., Tkachenko, E.A. & Vakhromov, R.O. (2012). Alumi-num deformable alloys. Aviation Materials and Technologies, (5), 167-182. (In Russ.).

Kaufman, J.G. (2000). Introduction to aluminum alloys and tempers. ASM international.

Belov, N.A., Korotkova, N.O., Shurkin, P.K. & Aksenov, A.A. (2020). Substantiation of copper concentration in heat-resistant deformable aluminum alloys containing 2 wt.% Mn. Physics of Metals and Metallology, (121(12)), 1315-1323. (In Russ.).

Korotkova, N.O., Shurkin, P.K., Cherkasov, S.O., Aksenov, A.A. & Finogeev, A.S. (2022). Influence of copper concentration and an-nealing temperature on the structure and mechanical properties of ingots and cold-rolled sheets of al-2% mn alloy. Izvestiya Vuzov. Tsvetnaya Metallurgiya, (28(1)), 67-78. (In Russ.). DOI: 10.17073/0021-3438-2022-1-67-78.

Belov, N.A., Korotkova, N.O., Akopyan, T.K. & Pesin, A.M. (2019). Phase composi-tion and mechanical properties of Al-1.5% Cu-1.5% Mn-0.35% Zr (Fe, Si) wire alloy. Journal of Alloys and Compounds, (782), 735-746. DOI: 10.1016/j.jallcom.2018.12.240.

Petrova, A.N., Rasposienko, D.Y., Astafyev, V.V. & Yakovleva, A.O. (2023). Structure and strength of Al-Mn-Cu-Zr-Cr-Fe ALTEC alloy after radial-shear rolling. Letters on Materials, (13(2)), 177-182. DOI: 10.22226/2410-3535-2023-2-177-182.

Belov, N., Akopyan, T., Tsydenov, K., Cherkasov, S. & Avxentieva, N. (2023). Effect of Fe-Bearing Phases on the Mechanical Properties and Fracture Mechanism of Al-2wt.% Cu-1.5 wt.% Mn (Mg, Zn) Non-Heat Treatable Sheet Alloy. Metals, (13(11)), 1911. DOI: 10.3390/met13111911.

Belov, N., Korotkova, N., Akopyan, T. & Tsydenov, K. (2019). Simultaneous increase of electrical conducti¬vity and hardness of Al-1.5 wt.% Mn alloy by addition of 1.5 wt.% Cu and 0.5 wt.% Zr. Metals, (9(12)), 1246. DOI: 10.3390/met9121246.

Belov, N.A. (2011). Economically alloyed heat-resistant aluminum alloys: principles of optimization of phase composition. Aviation materi-als and technologies, (2 (19)), 6-11. (In Russ.).

Chirkov, E.F. (2002). On the nature of the effects of Cu and Mg on the evolution of the structure and heat resistance of aluminum alloys of the Al-Cu-Mg system. Technology of light alloys, (4), 64-68. (In Russ.).

Glukhikh, Ya.M. (2023). The effect of annealing on the mechanical properties of sheets and welded joints of the alloy Al-2% Cu-2% Mn-2% Mg. SMIs-2023. Quality Ma¬nagement Technolo-gy=SMaC 2023. Quality management technology: materials of the International, 242. (In Russ.).

Zupanič, F. & Bončina, T. (2022). Heat-Resistant Al-Alloys with Quasicrystalline and L12-Precipitates. Solid State Phenomena, (327), 26-32. DOI. 10.4028/www.scientific.net/ SSP.327.26.

Toleuova, A., Balbekova, B. & Erakhtina, I. (2019, March). Optimization of the Com-position and Structure of Deformable Heat Resistant Aluminum Alloy. In Materials Science Forum (Vol. 946, pp. 156-161). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/MSF.946.156.

Dar, S.M. & Liao, H. (2019). Creep behavior of heat resistant Al-Cu-Mn alloys strength-ened by fine (θ′) and coarse (Al20Cu2Mn3) second phase particles. Materials Science and Engineering: A, (763), 138062. DOI: 10.1016/j.msea.2019.138062.

Belov, N., Cherkasov, S., Korotkova, N. & Tsydenov, K. Manufacturability and structure evolution of cylindrical ingots of al-2% cu-2% mn alloy during pressure treatment. Non-ferrous metals, (1), 77-82. (In Russ.). DOI: 10.17580/ tsm.2023.01.10.

Korotkova, N.O., Shurkin, P.K., Cherkasov, S.O., Aksenov, A.A. & Finogeev, A.S. (2022). Influence of copper concentration and an-nealing temperature on the structure and mechanical properties of ingots and cold-rolled sheets of al-2% mn alloy. Izvestiya Vuzov. Tsvetnaya Metallurgiya, 28(1), 67-78. (In Russ.). DOI: 10.17073/0021-3438-2022-1-67-78.

35. Belov, N.A., Korotkova, N.O., Cherkasov, S.O. & Aksenov, A.A. (2020). Electrical conductivity and hardness of Al-1.5% Mn and Al-1.5% Mn-1.5% Cu (wt.%) cold-rolled sheets: com-parative analysis. Tsvetnye Metally, (4), 70-76. (In Russ.). DOI: 10.17580/tsm.2020.04.0.

Belov, N.A. & Alabin, A.N. (2013, September). Energy efficient technology for Al-Cu-Mn-Zr sheet alloys. In Materials Science Forum (Vol. 765, pp. 13-17). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/ MSF.765.13.

Tsydenov, K., Belov, N. (2023). In-vestigation of the effect of magnesium and zinc on the structure and mechanical properties of al-2% cu-1.5% mn alloy sheets. Llc "Zanevskaya site", a com-pany for the production of modern high-entropy ma-terials, 153-154.

Belov, N.A. (2022). Substantiation of the composition and structure of deformable al-loys based on the Al-Cu-Mn (Zr) system, which do not require homogenization and quenching. In Mashtech 2022. Innovative technologies, equipment and material blanks in mechanical engineering, 10-13. (In Russ.).

Naizabekov, A.B., Lezhnev, S.N., Ainabekova, S.S., Koinov, T.A. & Yordanova, R.M. (2019). Technology of processing non-ferrous met-als and alloys.

Mallesham, P. & Babu, V.R. (2016). Cold rolling mill for aluminium sheet. International Journal of Engineering and Applied Sciences, 3(2), 257728.

Hirsch, J. (2011). Aluminium sheet fabrication and processing. In fundamentals of alu-minium metallurgy (pp. 719-746). Woodhead Pub-lishing. DOI: 10.1533/ 9780857090256.3.719.

Hirsch, Yu., Grechnikova, A.F., Ar-yshensky, E.V. & Drits, A.M. (2018). Features of the evolution of microstructure and crystallographic tex-ture in the manufacture of aluminum tapes for the production of food containers. Part 2. Non-ferrous metals, (11), 62-69. (In Russ.). DOI: 10.17580/ tsm.2018.11.09.

Aryshenskii, E., Lapshov, M., Konovalov, S., Hirsch, J., Aryshenskii, V. & Sbitneva, S. (2021). The casting rate impact on the microstruc-ture in Al-Mg-Si alloy with silicon excess and small Zr, Sc additives. Metals, 11(12), 2056. DOI: 10.3390/met11122056.

Aryshenskii, E., Lapshov, M., Hirsch, J., Konovalov, S., Bazhenov, V., Drits, A. & Zaitsev, D. (2021). Influence of the small Sc and Zr additions on the as-cast microstructure of Al-Mg-Si alloys with excess silicon. Metals, 11(11), 1797. DOI: 10.3390/met11111797.

Aryshenskii, E., Lapshov, M., Konovalov, S., Hirsch, J., Aryshenskii, V. & Sbitneva, S. (2021). The casting rate impact on the microstruc-ture in Al-Mg-Si alloy with silicon excess and small Zr, Sc additives. Metals, 11(12), 2056. DOI: 10.3390/met11122056.

Belov, N., Akopyan, T., Tsydenov, K., Cherkasov, S. & Avxentieva, N. (2023). Effect of Fe-Bearing Phases on the Mechanical Properties and Fracture Mechanism of Al-2wt.% Cu-1.5 wt.% Mn (Mg, Zn) Non-Heat Treatable Sheet Alloy. Metals, 13(11), 1911. DOI: 10.3390/met13111911.

Belov, N., Akopyan, T., Tsydenov, K., Letyagin, N. & Fortuna, A. (2023). Structure evolution and mechanical properties of sheet Al-2Cu-1.5 Mn-1Mg-1Zn (wt.%) alloy designed for Al20Cu2Mn3 dis-peroids. Metals, 13(8), 1442. DOI: 10.3390/met13081442.

Published

2025-04-14

How to Cite

Levagina А. А. . ., Aryshenski Е. В. . ., Konovalov С. В. ., Drits А. М. ., & Tepterev М. С. . (2025). STUDIES OF MICROSTRUCTURE AND PROPERTIES FORMATION DURING PRODUCTION OF AL-2CU-2MN ALLOY STRIP: HNJCCF. Polzunovskiy VESTNIK, (1), 187–196. https://doi.org/10.25712/ASTU.2072-8921.2025.01.023

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)

1 2 > >>