OPTIMIZATION OF SUNFLOWER HUSK ENZYMOLYSIS PARAMETERS THROUGH USE OF MATHEMATICAL MODELING METHODS
USIKBN
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.01.012Keywords:
sunflower husks, enzymatic preparations, mathematical modeling, recyclable raw materials, enzymatic hydrolysis, reducing agentsAbstract
The study is focused on optimizing the parameters of the process of enzymatic hydrolysis through the use of mathematical modeling methods. The subject of the study was the husks obtained as a result of sunflower seed hulling. Cellulolytic, β-glucanasic, xylanasic and glucoamylasic enzyme preparations produced by Sibbiopharm Production Association, OOO [Limited Liability Company] (city of Berdsk) and Biopreparat Trading House, OAO [Open Joint-Stock Company] (city of Moscow) were used in the process of enzymolysis, namely Cellolux-A, β-glucanase-CL, Cellulase, and Xylanase. During the experiment, the sunflower husks were subjected to alkaline delignification in advance, then mixed with water at a 1:5 ratio. Upon introducing the enzyme preparations, the resulting suspension was maintained at the temperature of 50 °С for 20 hours, with samples drawn every 4 hours. After centrifugation the supernatant fluid was filtered and used to determine the concentration of reducing agents. When setting up the four-factor experiment (24 full factorial experiment), the following optimization criteria were selected: hydrolysis duration and enzymatic preparation activity. Based on the results of a series of experiments, a linear regression equation which described the processes of reducing agent accumulation, with both factors mentioned above in co-operation, was deduced. The resulting mathematical model was shown to be adequate by passing the F‑test and was tested experimentally. Solving the regression equation allowed us to determine the duration of hydrolysis, amounting to 20 hours, and the level of enzymatic preparation activity was found to be 75 u/g. Given the factor ratios, the amount of reducing agents was expected to reach 28.19 g/l, actually amounting to 28.01 g/l.
References
Муха Д.В., Картамышева И.Н. Технология производства, хранения и переработки продукции растениеводства и основы земледелия. М., 2007. 580 с.
Arshad M., Amjad M. Medicinal use of sunflower oil and present status of sunflower in Pakistan: A review study // Sci. Tech. Dev. 2012. Vol. 3. Рp. 99–106.
Харьков В.В., Тунцев Д.В., Кузнецов М.Г. Термохимическая переработка лузги подсолнечника // Вестник Казанского ГАУ. 2018. №4(51). С. 130–134.
Тунцев Д.В., Харьков В.В., Кузнецов М.Г. Переработка лузги подсолнечника в угольные брикеты высокой прочности // Вестник Казанского ГАУ. 2019. №4(56). С. 86–90.
Ваншин В.В. Производство растительных масел : учеб. пособие. Оренбург: ОГУ, 2015. 243 с.
Технологические приемы биоконверсии лузги подсолнечника / С.А. Сашенкова, Г.В. Ильина, Д.Ю. Ильин, А.Р. Дашкина // Нива Поволжья. 2020. №2. С. 52–57.
Кормление бройлеров при использовании комбикормов, содержащих соевый и подсолнечный шроты / И.Н. Никонов // Технологии пищевой и перерабатывающей промышленности АПК – продукты здорового питания. 2017. № 5. С. 34–38.
Хусид, С.Б. Подсолнечная лузга как источник получения функциональных кормовых добавок / С.Б. Хусид, А.Н. Гнеуш, Е.Е. Нестеренко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2015. № 107. С. 142–155.
Разработка мультиэнзимной композиции для гидролиза пивной дробины с использованием методов математического моделирования / В.П. Ви-стовская [и др.] // Ползуновский вестник. 2023. № 3. С. 134–141.
Фоменко И.А. Делигнификация подсолнечной лузги как исходная стадия ферментативного гидролиза / И.А. Фоменко, Л.А. Иванова,А. А Мижева // Проблемы развития АПК региона. 2021. № 3. С.170–175.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Victoria P. Vistovskaya, Denis S. Kozhemyakin, Elena P. Kamenskaya

This work is licensed under a Creative Commons Attribution 4.0 International License.