EFFECT OF THE CARBON, MANGANESE AND SILICON CONTENT IN CARBON STEELS ON THE DIFFUSION PARAME-TERS OF THE DIFFUSION BORONIZING LAYER

HSLCXM

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2025.01.024

Abstract

The paper presents systematic statistical data on the effect of the content of carbon and the main alloying elements (silicon and manganese) on the diffusion parameters and the thickness of the boride layer for most grades of carbon steels used in industry, starting with low-carbon steel 15 and ending with hypereutectoid tool steels up to including U10. The saturation of the steel surface with boron was carried out at temperatures of 850, 950 and 1050 °C in a previously developed and patented original saturating medium. It is shown that an increase in the carbon content in real steels leads to a decrease in the activation energy of boron diffusion. According to the study, the decrease in the activation energy is not monotonous and depends primarily on the carbon content, the maximum rate of decrease in the activation energy of boron diffusion is observed in the range of carbon concentrations from 0.45 to 0.60 wt. %. A comparison of the obtained data with the data of other researchers showed a high convergence of the obtained activation energy values. The range of values defined in this work, which the activation energy function can take for various grades of carbon steel, depending on the content of carbon, silicon and manganese, has prospects for use in practical work to predict the thickness of the diffusion boride layer. This will make it possible to predict the performance characteristics of borated parts, as well as to select the material of the part and optimize the boronizing process in order to obtain an optimal price-quality ratio in relation to finished hardened parts

References

Davis J.R. Bonding. Surface Hardening of Steels - Under-standing the Basics, 1st ed. ASM International: Novelty, OH, USA, 2002. 349 p.

Ghalehbandi S.M., Biglari F. Predicting damage and fail-ure under thermomechanical fatigue in hot forging tools // Engineer-ing Failure Analysis. 2020. V. 113. P. 104545. https://doi.org/ 10.1016/j.engfailanal.2020.104545.

Advances in Ceramic Armor XI: A Collection of Papers Presented at the 39th International Conference on Advanced Ceram-ics and Composites / Editor: Jerry C. La Salvia, 15.10.2015. 147 p. DOI: 10.1002/9781119211549.

Ворошнин Л.Г. Многокомпонентные диффузионные покрытия. Минск : Наука и техника, 1981. 296 с.

ASM International Handbook Comitee. ASM Handbook. Volume 5. Surface Engineering. 1994. 2535 р.

Химико-термическая обработка металлов и сплавов: Справочник / Г.В. Борисенок, Л.А. Васильев, Л.Г. Ворошнин [и др.]. Москва : Металлургия, 1981. 424 с.

Ворошнин Л.Г. Борирование промышленных сталей и чугунов. Минск : Наукова думка, 1981. 205 с.

Kulka M., Pertek A., Klimek L. The influence of carbon con-tent in the borided Fe-alloys on the microstructure of iron borides // Materials Characterization. 2006. Vol. 56. № 3. P. 232–240. DOI: 10.1016/j.matchar.2005.11.013.

Мельник П.И. Диффузионное насыщение железа и твердофазные реакции в сплавах. Москва : Металлургия, 1993. c128.

Способ упрочнения деталей из конструкционных и инструментальных сталей: пат. 2345175 Рос. Федерация №20070403, заявл. 03.04.2007; опубл. 27.01.2009. Бюл. № 3. 7 с.

Бокштейн Б.С. Диффузия в металлах. М. : Металлур-гия, 1978. 248 с.

Пригожин И., Дефэй Р. Химическая термодинамика. Пер. с англ. Москва : Бином. Лаборатория знаний, 2010. 533 с.

Оура К., Лифшиц В.Г., Саранин А.А. Введение в физи-ку поверхности. Москва : Наука, 2006. 490 с.

Павлов П.В., Хохлов А.Ф. Физика твердого тела. 3-е изд. Москва : Высшая школа, 2000. 494 с.

Ролдугин В.И. Физикохимия поверхности. Долго-прудный: ИД "Интеллект", 2008. 568 с.

ASM International Handbook Committee. ASM Hand-book. Volume 4. Heat Treating. 1991. 2173 p.

Физические основы термоциклического борирова-ния сталей / Гурьев А.М. [и др.]. Барнаул, АлтГТУ, 2000. 216 c.

Влияние содержания углерода в стали на параметры диффузии бора и толщину диффузионного покрытия при борировании / Гурьев М. А. [и др.] // Вестник Сибирского госу-дарственного индустриального университета. 2024. Т. 49. № 3. С. 95–106.

Pack-boriding of low alloy steel: microstructure evolution and migration behaviour of alloying elements / A. K. Litoria [et al.] // Philosophical Magazine. 2019. DOI: 10.1080/14786435.2019. 1680890.

Guerri Y.El., Mebarek B., Keddam M. Confrontation of line-ar versus nonlinear approach in Fe2B boridelayer thickness predic-tions // Zastita Materijala 2024. V. 65. № 1. P. 97–109.

Bouarour B., Keddam M., Boumaali B. Growth kinetics of diiron boride (Fe2B) layer on a carbon steel by four approaches // Koroze a Ochrana Materialu. 2022. Vol. 66. № 1. P. 1–6.

El G.Y., Mebarek B., Keddam M. Impact of the diffusion co-effi-cient calculation on predicting Fe2B boride layer thickness // Koroze a Ochrana Materialu. 2022. Vol. 66. № 1. P. 25–35.

Evaluating the Corrosion Behaviour of Borided Carbon Steel C35 / Kaouka A. [et al.] // Materials Research. 2022. V. 25. P. 37–44.

Türkmen I., Yalamaç E., Boumaali B. Investigation of tribo-logical behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel // Surface and Coatings Technology. 2019. V. 377. p. 124888.

Türkmen I., Yalamaç E. Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method // Journal of Alloys and Compounds. 2018. V. 744. P. 658–666.

Kaouka A., Allaoui O., Keddam M. Growth kinetics of the boride layers formed on SAE 1035 steel // Materiaux et Techniques. 2014. V. 101. № 7. P. 705.

Şen Ş., Şen U., Bindal C. An approach to kinetic study of borided steels // Surface and Coatings Technology. 2005. V. 191. № 2–3. P. 274–285.

Brakman C.M., Gommers A.W.J., Mittemeijer E.J. Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinet-ics // Journal of Materials Research. 1989. V. 4. № 6. P. 1354–1370.

Kinetic Analysis of Pack-Borided Gray Cast Iron / Azouani O. [et al.] // Materials Performance and Characterization. 2021. V. 10. № 1. P. 20200176.

Boronizing mechanism of cemented carbides and their wear resistance / Lin G. [et al.] // Intern. J of Refractory Metals and Hard Materials. 2013. V. 41. P. 351‒355. DOI: 10.1016/j.ijrmhm.2013.05.008.

Delai O., Xia C., Shiqiang L. Growth kinetics of the FeB/Fe2B boride layer on the surface of 4Cr5MoSiV1 steel: experi-ments and modelling // J. of Materials Research and Technology. 2021. V. 11. P. 1272–1280.

Mathew M., Rajendrakumar P. Optimization of process pa-rameters of boro-carburized low carbon steel for tensile strength by Taquchi method with grey relational analysis // Materials & Design. 2011. V. 32. P. 3637–3644.

Pertek A., Kulka M. Two-step treatment carburizing fol-lowed by boriding on medium-carbon steel // Surface and Coatings Technology. 2003. V. 173. Р 309–314. DOI: 10.1016/j.optlastec. 2011.11.016.

FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics / Yu L. [et al.] // Acta Materialia. 2005. V. 53. Р. 2361l‒2368. DOI: 10.1016/j.actamat.2005.01.043.

Published

2025-04-14

How to Cite

Ivanov С. Г. ., Guriev М. А. ., Zemljakov С. А. . ., Zenin М. Н. ., & Guriev А. М. . (2025). EFFECT OF THE CARBON, MANGANESE AND SILICON CONTENT IN CARBON STEELS ON THE DIFFUSION PARAME-TERS OF THE DIFFUSION BORONIZING LAYER: HSLCXM. Polzunovskiy VESTNIK, (1), 197‒202. https://doi.org/10.25712/ASTU.2072-8921.2025.01.024

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY