INFLUENCE OF CAVITATION PHENOMENA AND SECONDARY ACOUSTIC EFFECTS ON THE PROCESS OF POLYMERIC MATERIALS DEFORMATION IN THE PRESENCE OF HIGH-INTENSITY ULTRASONIC OSCILLATIONS
BJQTQJ
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.01.033Abstract
The article is devoted to the study of the cavitation phenomena influence and secondary acoustic effects on the process of polymeric materials deformation in the presence of high-intensity ultrasonic oscillations. The research is based on the analysis of the deformation dynamics of acrylonitrile butadiene styrene test samples under various conditions (different amplitudes of ultrasonic action, different static forces of action on the sample under study). The research results illustrate the distortions of thedeformation rate dynamics of test samples in the range of their fluid state in the presence of ultrasonic fields. The research results are aimed at maximizing the potential of ultrasonic welding of polymers, studying the contribution of cavitation phenomena to the welding process of polymeric materials, including those with different physical properties.
References
Prihod'ko, V.M., Nigmetzyanov, R.I., Simonov, D.S., Sundukov, S.K. & Fatyuhin, D.S. (2020). Ultrasound in combined mechanical engineering technologies. Science intensive technologies in mechanical engineering, (9), 21-26. (In Russ.). doi: 10.1063/5.0056988.
Asano, Y., Watanabe, H. & Noguchi, H. (2021). Effects of polymers on the cavitating flow around a cyl-inder: a large-scale molecular dynamics analysis. The journal of chemical physics, 155(1), e014905. doi: 10.1063/5.0056988.
Chen, Z., Wang, Y., Li, Z., Zhang, H., Wan, M., Zheng, N., Xiong, B. & Zhu, J. (2024). Control of nano-cavitation in semi-crystalline polymer nanocomposites during uniaxial tension: in situ synchrotron X-ray study. Polymer, (296), e126786. doi: 10.1016/j.polymer.2024.126786.
Ohlopkova, T.A., Borisova, R.V., Nikiforov, L.A., Spiridonov, A.M., Sharin, P.P. & Ohlopkova, A.A. (2016). Liquid phase combination technology ultra-high molec-ular polyethylene with nanoparticles of inorganic com-pounds under the influence of ultrasonic vibrations. The journal of applied chemistry, 89(9), 1179-1186. (In Russ.).
Qian, L., Zhang, Y., Zhao, X., Xiang, M., Lu, Y. & Men, Y. (2021). Temperature dependency of cavitation in impact copolymer polypropylene during stretching. Polymer, 217(1), e123428. doi: 10.1016/j.polymer.2021.123428.
Tzanakis, I., Khavari, M., Titze, M. & Eskin, D.G. (2022). Cavitation in thermoplastic melts: new insights into ultrasound-assisted fibre-impregnation. Composites Part B: Engineering, 229(6), e109480. doi: 10.1016/j.compositesb. 2021.109480.
Ultrasonic technologies and devices. Ultrason-ic technological device of the “Volna” series. (2024). Retrieved from https://u-sonic.ru/catalog/apparaty_dlya_uskoreniya_protsessov_v_ zhid-kikh_sredakh/volna_v6_/. (In Russ.).
Khmelev, V.N., Barsukov, R.V., Genne, D.V., Abramenko, D.S. Barsukov, A.R. (2021). Ultrasonic. Principles of construction, algorithms and control systems of ultrasonic devices. Biysk: AltSTU. (In Russ.).
Sackmann, J. [et al.]. (2015). Review on ultra-sonic fabrication of polymer micro devices. Ultrasonics, (56), 189-200. doi: 10.1016/j.ultras.2014.08.007.
Benatar, A. & Marcus, M. (2023). Ultrasonic welding of plastics and polymeric composites. Power Ultrasonics (Second Edition), 205-225. doi: 10.1016/B978-0-12-820254-8.00006-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Roman V. Barsukov, Roman N. Golykh, Aleksandr R. Barsukov, Alexey N. Slivin, Vladislav A. Shakura

This work is licensed under a Creative Commons Attribution 4.0 International License.