DRIED FERMENTED SEMI-FINISHED PRODUCT FROM PUMPKIN PULP AS A BASE FOR FOOD SYSTEMS
RNRMKD
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.01.006Keywords:
fermentolysis, pumpkin pulp, puree, vacuum drying, carotenoids, food systemsAbstract
The article is devoted to the production of a dried semi-finished product from pumpkin pulp with high biological value due to the destruction of native polymers of raw materials using the enzyme preparations Amilorizine and Protozyme. The fermentolysis of the native puree was carried out in a laboratory reactor with a volume of 2 dm3 at a temperature of 70 ± 2 °With continuous stirring for 60 minutes, drying – in a Labtex LT-VO/50 vacuum drying cabinet at a temperature of 60-80 ° C on silicone mats with a layer thickness of mashed potatoes 5-7 mm to a humidity of 5%. The effectiveness of the processes was assessed by the content of carotenoids. It was found that the complete hydrolysis of pumpkin pulp starch is provided by treatment for 60 minutes with a multienzyme composition with an Amylorizine content of 25 units. AC/g, Protozyme – 10 and 15 units. PS/g of raw materials, which allows to increase the content of β-carotene by 8.4-10.3% and improve organoleptic parameters – the texture acquires uniformity without the characteristic coarseness of the native puree, which makes the appearance and appetitiveness of the puree more attractive, there is no tone of raw vegetables in the flavor, the aroma and taste of steamed pumpkin are pleasant and harmonious. It has been proven that vacuum drying (at a residual pressure of 133 Pa) at a temperature of 70 ° C allows you to obtain a puree with a final moisture content of 5% and preservation of 96% β-carotene from the initial content in the fermentalized puree. It is shown that one of the promising directions in pumpkin processing can be a hybrid technology of fermentolysis and drying of puree at a temperature of 60-80 ° C to obtain the most optimal form of semi–finished product - puree, the use of which in food systems has significant prospects.
References
Структура урожая тыквы крупноплодной в Предуральской лесостепи / В.Б. Троц [и др.]. // Известия Оренбургского государственного аграрного университета. 2022. № 5(97). С. 63-67. doi: 10.37670/2073-0853-2022-97-5-63-67.
Биоморфологическая характеристика плодов сортообразцов тыквы (Cucurbita) для механизированного возделывания в умеренной зоне / А.В. Гончаров [и др.]. // Вестник Рязанского государственного агротехнологического университета им. П. А. Костычева. 2022. № 14(1). С. 168-174. doi: 10.36508/RSATU.2022.22.28.020.
Purification, structure and biological activity of pumpkin polysaccharides: a review / X. Ji [et al.]. // Food Reviews International. 2023. Vol. 39. Is. 1. P. 307-319. doi: 10.1080/87559129.2021.1904973.
A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential / F. Li [et al.]. // Carbohydrate Polymers. 2021. Vol. 251. Article: 117090. doi: 10.1016/j.carbpol.2020.117090.
Pumpkin polysaccharides: Purification, characterization and hypoglycemic potential / B. M. Khan [et al.]. // International journal of biological macromolecules. 2019. Vol. 139. P. 842-849. doi: 10.1016/j.ijbiomac.2019.08.053.
Synergistic hypoglycemic effects of pumpkin polysaccharides and puerarin on type II diabetes mellitus mice / X. Chen [et al.]. // Molecules. 2019. Vol. 24. № 5. Article: 955. doi: 10.3390/molecules24050955.
In Vitro role of pumpkin parts as pharma-foods: antihyperglycemic and antihyperlipidemic activities of pumpkin peel, flesh, and seed powders, in alloxan-induced diabetic rats / A. Hussain [et al.]. // International Journal of Food Science. – 2022. – Vol. 2022. – Article ID: 4804408. doi: 10.1155/2022/4804408.
Abd-elnoor E. V. Hypoglycemic and hypolipidemic effects of pumpkin seeds powder and oil on alloxan-induced diabetic in rats // Egyptian Journal of Food Science. 2019. Vol. 47. № 2. P. 255-269. doi: 10.21608/ejfs.2019.19348.1027.
Nutritional value, phytochemical potential, and therapeutic benefits of pumpkin (Cucurbita sp.) / M. Batool [et al.]. // Plants. 2022. Vol. 11. № 11. Article ID: 1394. doi: 10.3390/plants11111394.
Structure of pumpkin pectin and its effect on its technological properties / B. Salima [et al.]. // Applied Rheology. 2022. Vol. 32. № 1. P. 34-55. doi: 10.1515/arh-2022-0124.
Design, Simulation, Manufacturing: The Innovation Exchange. Research of Wheat Fiber with Pumpkin Pectin Plant Additive / M. Zheplinska [et al.]. Cham : Springer International Publishing, 2022. – P. 237-246. doi: 10.1007/978-3-031-06044-1_23.
Holistic review of polysaccharides isolated from pumpkin: Preparation methods, structures and bioactivities / F. Li [ et al.] // International Journal of Biological Macromolecules. 2021. Vol. 193. P. 541-552. doi: 10.1016/j.ijbiomac.2021.10.037.
Sequential extraction, characterization, and analysis of pumpkin polysaccharides for their hypoglycemic activities and effects on gut microbiota in mice / H. Wu [et al.] // Frontiers in nutrition. – 2021. – Vol. 8. – Article ID: 769181. doi: 10.3389/fnut.2021.769181
Tan H., Nie S. Deciphering diet-gut microbiota-host interplay: Investigations of pectin // Trends in Food Science & Technology. 2020. Vol. 106. P. 171-181. doi: 10.1016/j.tifs.2020.10.010.
Microbiota response of pectin determined by its structural characteristics during in vitro fecal fermentation: A comparative study of various pectin sources / Y. Zhao [et al.] // // Food Hydrocolloids. – 2024. – Т. 150. – С. 109730. doi: 10.1016/j.foodhyd.2024.109730.
Carotenoid Content and Profiles of Pumpkin Products and By-Products / A. Ninčević Grassino [et al.]. // Molecules. 2023. Vol. 28. № 2. – Article ID: 858. doi: 10.3390/molecules28020858.
Нилова, Л.П., Потороко И.Ю. Каротиноиды в растительных пищевых системах // Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2021. Т. 9. № 4. С. 54-69. doi: 10.14529/food210407.
Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima) / A. Hussain [et al.]. // Journal of Food Processing and Preservation. 2021. Vol. 45. № 6. Article ID: e15542. doi: 10.1111/jfpp.15542
Elvira-Torales L. I., García-Alonso J., Periago-Castón M. J. Nutritional importance of carotenoids and their effect on liver health: A review // Antioxidants. 2019. Vol. 8. № 7. – Article ID: 229. doi: 10.3390/antiox8070229.
A carotenoid-enriched extract from pumpkin delays cell proliferation in a hu-man chronic lymphocytic leukemia cell line through the modulation of autophagic flux / S. Moccia [et al.]. // Current Research in Biotechnology. 2020. Vol. 2. P. 74-82. doi: 10.1016/j.crbiot.2020.05.001.
Macro‐and microelements in pumpkin seed oils: Effect of processing, crop season, and country of origin / N. Martinec [et al.]. // Food Science & Nutrition. 2019. Vol. 7. № 5. P. 1634-1644. doi: 10.1002/fsn3.995.
Budak E., Güneş A. The Effects Of Potassium Applied at Different Doses and Times on The Yield and Nutrient Content of Pumpkin Seed (Cucurbita pepo L.) // Gesunde Pflanzen. 2023. Vol. 75. P. 2879–2887. doi: 10.1007/s10343-023-00865-w.
Dietary factors, risk of developing depression, and severity of its symptoms in older adults—A narrative review of current knowledge / Z. Chrzastek [et al.]. // Nutrition. 2023. Vol. 106. Article ID: 111892. doi: 10.1016/j.nut.2022.111892.
The role of macronutrients, micronutrients and flavonoid polyphenols in the prevention and treatment of osteoporosis / M. Martiniakova [et al.]. // Nutrients. 2022. Vol. 14. № 3. Article ID: 523. doi: 10.3390/nu14030523.
Impact of micronutrients on hypertension: Evidence from clinical trials with a special focus on meta-analysis / H. F. Chiu [et al.]. // Nutrients. 2021. Vol. 13. № 2. Article ID: 588. doi: 10.3390/nu13020588.
El Khatib S., Muhieddine M. Nutritional profile and medicinal properties of pumpkin fruit pulp / The Health Benefits of Foods-Current Knowledge and Further Development. – 2020. – P. 79-97.
Effects of Pumpkin (Cucurbita pepo L.) Seed Protein on Blood Pressure, Plasma Lipids, Leptin, Adiponectin, and Oxidative Stress in Rats with Fructose-Induced Metabolic Syndrome / A. Chenni [et al.]. // Preventive Nutrition and Food Science. 2022. Vol. 27. № 1. P. 78-88. doi: 10.3746/pnf.2022.27.1.78.
Manshi N. C., Sahrawat N. Effect of processing on nutraceutical profile and amino acid content on pumpkin (Сucurbita pepo L.) seeds // Plant Archives. 2023. Vol. 23. № 1. P. 358-362. doi: 10.51470/PLANTARCHIVES.2023.v23.no1.058.
Vinayashree S., Vasu P. Biochemical, nutritional and functional properties of protein isolate and fractions from pumpkin (Cucurbita moschata var. Kashi Harit) seeds // Food Chemistry. 2021. Vol. 340. Article ID: 128177. doi: 10.1016/j.foodchem.2020.128177.
Szerszunowicz I., Kozicki S. Plant-Derived Proteins and Peptides as Potential Immunomodulators // Molecules. 2023. Vol. 29. № 1. Article ID: 209. doi: 10.3390/molecules29010209.
Immunomodulatory potential of vegetables vis-à-vis human health / H. Krishna [et al.]. // The Journal of Horticultural Science and Biotechnology. 2022. Vol. 97. № 5. P. 560-579. doi: 10.1080/14620316.2022.2046508.
A review on biochemical constituents of pumpkin and their role as pharma foods; a key strategy to improve health in post COVID 19 period / A. Hussain [et al.]. // Food Production, Processing and Nutrition. 2023. Vol. 5. № 1. Article ID: 22. doi: 10.1186/s43014-023-00138-z.
Characterization of recombinant pumpkin 2S albumin and mutation studies to unravel potential DNA/RNA binding site / B.K. Savita [et al.]. // Biochemical and Biophysical Research Communications. 2021. Vol. 580. P. 28-34. doi: 10.1016/j.bbrc.2021.09.076.
Dotto J. M., Chacha J. S. The potential of pumpkin seeds as a functional food ingredient: A review // Scientific African. 2020. Vol. 10. Article ID: e00575. doi: 10.1016/j.sciaf.2020.e00575.
Hashem T., Ahmed M. M. M. Microbial and Molecular Studies of Pumpkin Fruit Extract Effect on Candida albicans Disease // Advances in Environmental Biology. 2023. Vol. 17. № 6. P. 1-8.
Evaluation of chemical composition, antioxidant activity, and gut microbiota associated with pumpkin juice fermented by Rhodobacter sphaeroides / Y. Wang [et al.]. // Food Chemistry. 2023. Vol. 401. Article ID: 134122. doi: 10.1016/j.foodchem.2022.134122.
Спектрофотометрическое определение крахмала в томатных продуктах с антроновым реактивом / В.П. Рачкова [и др.]. / Вестник Красноярского государственного аграрного университета. 2018. № 6 (141). С. 187-193.
Panato K., Muller C. M. O. Drying kinetics and physicochemical and technological properties of pumpkin purée flour dried by convective and foam‐mat drying // Journal of Food Processing and Preservation. 2022. Vol. 46. № 2. Article ID: e16264. doi: /10.1111/jfpp.16264.
Effect of pectin oligosaccharide on quality control of quick‐frozen pumpkin puree / W. Li [et al.]. // International Journal of Food Science & Technology. 2022. Vol. 57. № 2. P. 1061-1073. doi: 10.1111/ijfs.15469.
Colin-Henrion M., Cuvelier G., Renard C. Texture of pureed fruit and vegetable foods // Stewart Postharvest Review. 2007. Vol. 5. № 3. С. 1-14. doi: 10.2212/spr.2007.5.3.
The effect of enzyme concentration on physcical characteristics of pumpkin (Cucurbita moschata) puree and its dried extract / F. Kormin [et al.]. // IOP Conference Series: Earth and Environmental Science. – IOP Publishing. 2021. Vol. 736. № 1. Article ID: 012031. doi: 10.1088/1755-1315/736/1/012031.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Evgeny D. Rozhnov, Marina N. Shkolnikova, Venera N. Abbazova, Vyacheslav L. Zakharov

This work is licensed under a Creative Commons Attribution 4.0 International License.