POSSIBILITY OF POLYMER MACROMOLECULS STRUCTURE DIAGNOSTICS BY DIELECTRIC SPECTROSCOPY METHOD

IJMIJH

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2025.01.031

Keywords:

dielectric spectroscopy, polymeric materials, polymer macromolecules structure

Abstract

The conformation of polymers macromolecules and there changes under the polymer deformation are determine the polymers polarizability change. So, the entropy and internal energy of polymers macromolecules system are change under the deformation. The dependent of internal energy variation by polymer deformation under the temperature are considered in that paper. The polymers with different structure of macromolecules are considered in that paper: polymethyl methacrylate, polyvinyl chloride, ABS plastic, polyvinylidene fluoride. It has been show that the greatest changes of internal energy variation by polymer deformation with temperature increasing correspond to polymers with a branched structure of macromolecules and macromolecules in the form of coils.

References

DiMarzio E.A., Bishop M. Connection between the macroscopic electric and mechanical susceptibilities // The Journal of chemical physics. 1974. V. 60, № 10. P. 3802–3811. https://doi.org/10.1063/1.1680822

Dı́az-Calleja R., Riande E. Comparative study of mechanical and dielectric relaxations in polymers // Materials Science and Engineering: A. 2004. V. 370. № 1. P. 21–33. https://doi.org/10.1016/j.msea.2003.08.069

Fractional Fokker–Planck equation approach for the interconversion between dielectric and mechanical measurements / Garcia-Bernabé A. [и др.]. // Journal of Applied Physics. 2009. V. 106. № 1. P. 014912. https://doi.org/10.1063/1.3158555

Калибровка метода диэлектрической спектроскопии при диагностике упругих свойств полярных полимеров / Данилаев М.П. [и др.]. // Контроль. Диагностика. 2023. Т. 26. №7. С. 43-49. https://doi.org/10.14489/td.2023.07.pp.044-050

Interconversion of mechanical and dielectrical relaxation measurements for dicyclohexylmethyl-2-methyl succinate / Díaz-Calleja R. [и др.]. // Phys. Rev. E. American Physical Society. 2005. V. 72. № 5. P. 051505. https://doi.org/10.1103/PhysRevE.72.051505

Cohen N., Oren S. S., deBotton G. The evolution of the dielectric constant in various polymers subjected to uniaxial stretch // Extreme Mechanics Letters. 2017. V. 16. P. 1–5. https://doi.org/10.1016/j.eml.2017.08.003

Jiménez S. M. A., McMeeking R. M. Deformation dependent dielectric permittivity and its effect on actuator performance and stability // International Journal of Non-Linear Mechanics. 2013. V. 57. P. 183–191. https://doi.org/10.1016/j.ijnonlinmec.2013.08.001

Stockmayer W. H. Dielectric dispersion in solutions of flexible polymers // Pure and Applied Chemistry. 1967. V. 15. № 3–4. P. 539–554. https://doi.org/10.1351/pac196715030539

Cohen N., Dayal K., deBotton G. Electroelasticity of polymer networks // Journal of the Mechanics and Physics of Solids. 2016. V. 92. P. 105–126. https://doi.org/10.1016/j.jmps.2016.03.022

Зависимость оптической разности хода от упругой и высокоэластической деформации для сетчатых полимеров / Зуев Б. М. [и др.]. // Высокомолекулярные соединения. Серия А. 1994. Т. 36. № 3. С. 402–406.

How does static stretching decrease the dielectric constant of VHB 4910 elastomer? / Vu-Cong T. [и др.]. // Electroactive Polymer Actuators and Devices (EAPAD). 2014. V. 9056. P. 411–418. https://doi.org/10.1117/12.2045042

Schomaker E., Challa G. Complexation of stereoregular poly(methyl methacrylates). 14. The basic structure of the stereocomplex of isotactic and syndiotactic poly(methyl methacrylate) // Macromolecules. 1989. V. 22. № 8. P. 3337–3341. https://doi.org/10.1021/ma00198a025

Wan C., Rhys Bowen C. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure // Journal of Materials Chemistry A. Royal Society of Chemistry. 2017. V. 5. № 7. P. 3091–3128. https://doi.org/10.1039/C6TA09590A

Salamone J. C. Polymeric materials encyclopedia, Twelve volume set. CRC press. 2020. V. 2. 554 p.

Popov I., Cheng S., Sokolov A. P. Broadband Dielectric Spectroscopy and Its Application in Polymeric Materials // Macromolecular Engineering. 1st ed. 2022. P. 1–39. https://doi.org/10.1002/9783527815562.mme0059

Havriliak S., Negami S. A complex plane analysis of α‐dispersions in some polymer systems // Journal of Polymer Science Part C: Polymer Symposia. 1966. V. 14. №. 1. P. 99–117. https://doi.org/10.1002/polc.5070140111

Swallowe G. M. Mechanical Properties and Testing of Polymers: an A–Z reference // Springer Science & Business Media. 2013. V. 3. 302 p.

Published

2025-04-14

How to Cite

Bobina Е. А., Danilaev М. П., Kuklin В. А., Lounev И. В., Fayzullin К. В., & Yamaev А. М. (2025). POSSIBILITY OF POLYMER MACROMOLECULS STRUCTURE DIAGNOSTICS BY DIELECTRIC SPECTROSCOPY METHOD: IJMIJH. Polzunovskiy VESTNIK, (1), 242–246. https://doi.org/10.25712/ASTU.2072-8921.2025.01.031

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)