POSSIBILITY OF POLYMER MACROMOLECULS STRUCTURE DIAGNOSTICS BY DIELECTRIC SPECTROSCOPY METHOD
IJMIJH
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.01.031Keywords:
dielectric spectroscopy, polymeric materials, polymer macromolecules structureAbstract
The conformation of polymers macromolecules and there changes under the polymer deformation are determine the polymers polarizability change. So, the entropy and internal energy of polymers macromolecules system are change under the deformation. The dependent of internal energy variation by polymer deformation under the temperature are considered in that paper. The polymers with different structure of macromolecules are considered in that paper: polymethyl methacrylate, polyvinyl chloride, ABS plastic, polyvinylidene fluoride. It has been show that the greatest changes of internal energy variation by polymer deformation with temperature increasing correspond to polymers with a branched structure of macromolecules and macromolecules in the form of coils.
References
DiMarzio E.A., Bishop M. Connection between the macroscopic electric and mechanical susceptibilities // The Journal of chemical physics. 1974. V. 60, № 10. P. 3802–3811. https://doi.org/10.1063/1.1680822
Dı́az-Calleja R., Riande E. Comparative study of mechanical and dielectric relaxations in polymers // Materials Science and Engineering: A. 2004. V. 370. № 1. P. 21–33. https://doi.org/10.1016/j.msea.2003.08.069
Fractional Fokker–Planck equation approach for the interconversion between dielectric and mechanical measurements / Garcia-Bernabé A. [и др.]. // Journal of Applied Physics. 2009. V. 106. № 1. P. 014912. https://doi.org/10.1063/1.3158555
Калибровка метода диэлектрической спектроскопии при диагностике упругих свойств полярных полимеров / Данилаев М.П. [и др.]. // Контроль. Диагностика. 2023. Т. 26. №7. С. 43-49. https://doi.org/10.14489/td.2023.07.pp.044-050
Interconversion of mechanical and dielectrical relaxation measurements for dicyclohexylmethyl-2-methyl succinate / Díaz-Calleja R. [и др.]. // Phys. Rev. E. American Physical Society. 2005. V. 72. № 5. P. 051505. https://doi.org/10.1103/PhysRevE.72.051505
Cohen N., Oren S. S., deBotton G. The evolution of the dielectric constant in various polymers subjected to uniaxial stretch // Extreme Mechanics Letters. 2017. V. 16. P. 1–5. https://doi.org/10.1016/j.eml.2017.08.003
Jiménez S. M. A., McMeeking R. M. Deformation dependent dielectric permittivity and its effect on actuator performance and stability // International Journal of Non-Linear Mechanics. 2013. V. 57. P. 183–191. https://doi.org/10.1016/j.ijnonlinmec.2013.08.001
Stockmayer W. H. Dielectric dispersion in solutions of flexible polymers // Pure and Applied Chemistry. 1967. V. 15. № 3–4. P. 539–554. https://doi.org/10.1351/pac196715030539
Cohen N., Dayal K., deBotton G. Electroelasticity of polymer networks // Journal of the Mechanics and Physics of Solids. 2016. V. 92. P. 105–126. https://doi.org/10.1016/j.jmps.2016.03.022
Зависимость оптической разности хода от упругой и высокоэластической деформации для сетчатых полимеров / Зуев Б. М. [и др.]. // Высокомолекулярные соединения. Серия А. 1994. Т. 36. № 3. С. 402–406.
How does static stretching decrease the dielectric constant of VHB 4910 elastomer? / Vu-Cong T. [и др.]. // Electroactive Polymer Actuators and Devices (EAPAD). 2014. V. 9056. P. 411–418. https://doi.org/10.1117/12.2045042
Schomaker E., Challa G. Complexation of stereoregular poly(methyl methacrylates). 14. The basic structure of the stereocomplex of isotactic and syndiotactic poly(methyl methacrylate) // Macromolecules. 1989. V. 22. № 8. P. 3337–3341. https://doi.org/10.1021/ma00198a025
Wan C., Rhys Bowen C. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure // Journal of Materials Chemistry A. Royal Society of Chemistry. 2017. V. 5. № 7. P. 3091–3128. https://doi.org/10.1039/C6TA09590A
Salamone J. C. Polymeric materials encyclopedia, Twelve volume set. CRC press. 2020. V. 2. 554 p.
Popov I., Cheng S., Sokolov A. P. Broadband Dielectric Spectroscopy and Its Application in Polymeric Materials // Macromolecular Engineering. 1st ed. 2022. P. 1–39. https://doi.org/10.1002/9783527815562.mme0059
Havriliak S., Negami S. A complex plane analysis of α‐dispersions in some polymer systems // Journal of Polymer Science Part C: Polymer Symposia. 1966. V. 14. №. 1. P. 99–117. https://doi.org/10.1002/polc.5070140111
Swallowe G. M. Mechanical Properties and Testing of Polymers: an A–Z reference // Springer Science & Business Media. 2013. V. 3. 302 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elena A. Bobina, Maxim P. Danilaev, Vladimir A. Kuklin, Ivan V. Lounev, Konstantin V. Fayzullin, Arthur M. Yamaev

This work is licensed under a Creative Commons Attribution 4.0 International License.