FORMATION OF PROTECTIVE CARBON FILM ON THE SURFACE OF GRAPHENE BY PLASMA DEPOSITION AND HEAT TREAT-MENT

ASGEOK

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2025.01.032

Keywords:

graphene, plasma, methane, carbon deposition, carbon film, heat treatment, oxygen plasma etching, surface morphology.

Abstract

A technique has been proposed for the formation of a protective carbon layer for graphene films based on a two-stage process, including the deposition of carbon atoms in methane plasma and heat treatment. A 200 W radio frequency inductively coupled plasma source was used to deposit carbon atoms. The duration of the deposition process in the methane plasma ranged from 3 to 6 minutes. Heat treatments were carried out in an inert gas atmosphere at temperatures from 750 °C to 800 °C for up to 25 minutes. To characterize the surface, methods of atomic force microscopy and Raman spectroscopy were used. Studies using atomic force microscopy have shown that the proposed technique makes it possible to successfully form carbon films several tens of nanometers thick on the surface of the original graphene film obtained by chemical vapor deposition. Etching the synthesized structure in oxygen plasma with a power of 200 W and a duration of up to 30 s leads to the formation of films with a thickness of several nanometers and a surface roughness of about 0.5 nm. Folds of the initial graphene film, which had a height of up to tens of nanometers, were not detected after the treatments. From the analysis of the Raman spectra it follows that after etching the synthesized structures in oxygen plasma to the initial thicknesses, the main graphene G- and 2D-peaks are restored. One can note a slight increase in the integral intensity of the D-band, due to the presence of defects and disturbances in the crystal lattice, which can be partially eliminated by heat treatment.

References

Cовместная интеркаляция ультратонких пленок Fe и Co под буферный слой графена на монокристалле SiC(0001) / Фильнов С. О. [и др.] // Письма в ЖЭТФ. – 2023. – Т. 117. – №. 5. – С. 369 – 376.

Colloquium: Spintronics in graphene and other two-dimensional materials / Avsar A. [и др.] //Reviews of Modern Physics. – 2020. – V. 92. – №. 2. – P. 021003. DOI: 10.1103/RevModPhys.92.021003.

Graphene-based ultracapacitors / Stoller M. D. [и др.] //Nano letters. – 2008. – V. 8. – №. 10. – P. 3498-3502. DOI:10.1021/nl802558y.

The thermal stability of graphene in air in-vestigated by Raman spectroscopy /Nan H. Y. [и др.] //Journal of Raman Spectroscopy. – 2013. – Т. 44. – №. 7. – С. 1018-1021. DOI: 10.1002/jrs.4312.

The effect of vacuum annealing on gra-phene / Ni Z. [и др.] // Journal of Raman Spectrosco-py – 2010. – Т. 41. – №. 5. – С. 479-483. DOI: 10.1002/jrs.2485.

Yang Y., Brenner K., Murali R. The influence of atmosphere on electrical transport in graphene //Carbon. – 2012. – Т. 50. – №. 5. – С. 1727-1733. DOI:10.1016/j.carbon.2011.12.008

Неустроев Е.П., Прокопьев А.Р. Свойства нанографита, образованного плазменным оса-ждением и последующей термообработкой / Межвузовский сборник научных трудов «Физико-химические аспекты изучения кластеров, нано-структур и наноматериалов», Тверь: Твер. гос. ун-т, 2019.  Вып. 11.  с. 629-635. DOI: 10.26456/pcascnn/2019.11.629.

Research of Properties of a Carbon Film Formed in Methane Plasma and the Following An-nealing / Neustroev E. P. [и др.] //IOP Conference Series: Materials Science and Engineering. – IOP Publishing, 2021. – Т. 1079. – №. 4. – С. 042086. DOI:10.1088/1757-899X/1079/4/042086.

Raman spectrum of graphene and gra-phene layers / Ferrari A. C. [и др.]. //Physical review letters. – 2006. – Т. 97. – №. 18. – С. 187401. DOI: 10.1103/PhysRevLett.97.18740.

Li Z., Kinloch I. A., Young R. J. Raman spec-troscopy of carbon materials and their composites: Graphene, nanotubes and fibres //Progress in Mate-rials Science. – 2023. – Т. 135. – С. 101089. DOI: 10.1016/j.pmatsci.2023.101089.

Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects / Eckmann A. [и др.] // Physical Review B. – 2013. – Т. 88. – №. 3. – С. 035426. DOI:https://doi.org/10.1103/PhysRevB.88.035426.

Self healing of defected graphene / Chen J. [и др.] //Applied Physics Letters. – 2013. – Т. 102. – №. 10. DOI: 10.1063/1.4795292.

Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials / Cançado L. G. [и др.] // 2D Materials. – 2017. – Т. 4. – №. 2. – С. 025039. DOI:10.1088/2053-1583/aa5e7.

Das A., Chakraborty B., Sood A. K. Raman spectroscopy of graphene on different substrates and influence of defects //Bulletin of Materials Science. – 2008. – Т. 31. – С. 579-584. DOI: https://doi.org/10.1007/s12034-008-0090-5

Published

2025-04-14

How to Cite

Neustroev Е. П., Kurkina И. И. ., & Nikolaev Д. В. . (2025). FORMATION OF PROTECTIVE CARBON FILM ON THE SURFACE OF GRAPHENE BY PLASMA DEPOSITION AND HEAT TREAT-MENT: ASGEOK. Polzunovskiy VESTNIK, (1), 247–250. https://doi.org/10.25712/ASTU.2072-8921.2025.01.032

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY