ПОЛУЧЕНИЕ УГЛЕРОДНЫХ ТОЧЕК В МАТРИЦЕ ПОЛИВИНИЛОВОГО СПИРТА И ИССЛЕДОВАНИЕ ИХ СВОЙСТВ

BNVSUS

Авторы

  • Марфа Никитична Егорова Северо-Восточный федеральный университет им. М.К. Аммосова
  • Ирина Ивановна Куркина Северо-Восточный федеральный университет им. М.К. Аммосова
  • Афанасий Алексеевич Дьяконов Северо-Восточный федеральный университет им. М. К. Аммосова https://orcid.org/0000-0002-6959-368X

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2023.01.031

Ключевые слова:

углеродные точки, лимонная кислота, этилендиамин, люминесценция, гидротермальный син-тез, светодиоды, электролюминесценция.

Аннотация

В работе приведены результаты исследования оптических и структурных свойств раствора углеродных точек, синтезированных из лимонной кислоты и этилендиамина гидротермальным методом. В ходе работы установлено, что фотолюминесценция углеродных точек зависит от изменения длины волны возбуждения, средний диаметр полученных углеродных точек составил 80 нм, с толщиной 4 нм. Также приведены результаты исследования оптических и электрических свойств пленок из поливинилового спирта, содержащих углеродные точки. Наибольшей электропроводностью и фотолюминесценцией обладают пленки с долей углеродных точек 10 %.

Библиографические ссылки

Dai, X., Deng, Y., Peng, X. & Jin, Y. (2017). Quantum‐dot light‐emitting diodes for large‐area displays: towards the dawn of commercialization. Advanced materials, 29(14), 1607022. https://doi.org/ 10.1002/adma.201607022.

Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X. & Peng, X. (2014). Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515(7525), 96-99. https://doi.org/ 10.1038/nature13829.

Pietryga, J.M., Park, Y.S., Lim, J., Fidler, A.F., Bae, W.K., Brovelli, S. & Klimov, V.I. (2016). Spectro-scopic and device aspects of nanocrystal quantum dots. Chemical reviews, 116(18), 10513-10622. https://doi.org/10.1021/acs.chemrev.6b00169.

Cho, H., Jeong, S.H., Park, M.H., Kim, Y.H., Wolf, C., Lee, C.L., ... & Lee, T.W. (2015). Overco-ming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 350(6265), 1222-1225. DOI: 10.1126/science.aad1818.

Cao, Y., Wang, N., Tian, H., Guo, J., Wei, Y., Chen, H. & Huang, W. (2018). Perovskite lighte-mitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 562(7726), 249-253. https://doi.org/10.1038/s41586-018-0576-2.

Lin, K., Xing, J., Quan, L.N., de Ar-quer, F.P.G., Gong, X., Lu, J., ... & Wei, Z. (2018). Per-ovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562(7726), 245-248. https://doi.org/10.1038/s41586-018-0575-3.

Zhao, B., Bai, S., Kim, V., Lamboll, R., Shivanna, R., Auras, F. & Di, D. (2018). High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nature Photonics, 12(12), 783-789. https://doi.org/10.1038/s41566-018-0283-4.

Xu, W., Hu, Q., Bai, S., Bao, C., Miao, Y., Yu-an, Z. & Gao, F. (2019). Rational molecular pas-sivation for high-performance perovskite light-emitting diodes. Nature Photonics, 13(6), 418-424. https://doi.org/10.1038/s41566-019-0390-x.

Yuan, F., Li, S., Fan, Z., Meng, X., Fan, L. & Yang, S. (2016). Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 11(5), 565-586. https://doi.org/10.1016/j.nantod. 2016.08.006.

Gao, F., Ma, S., Li, J., Dai, K., Xiao, X., Zhao, D. & Gong, W. (2017). Rational design of high quality citric acid-derived carbon dots by selecting efficient chemical structure motifs. Carbon, 112, 131-141. https://doi.org/10.1016/j.carbon.2016.10.089.

Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y. & Chen, G. (2012). Blue lumines-cent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 50 (12), 4738-4743. doi: 10.1016/ j.carbon. 2012.06.002.

Zhao, B., Wang, Z. & Tan, Z.A. (2020). Deep-blue carbon dots offer high colour purity. Na-ture Photonics, 14(3), 130-131. https://doi.org/10.1038/ s41566-020-0595-z.

Wang, Z., Yuan, F., Li, X., Li Y., Zhong, H., Fan, L. & Yang, S. (2017). 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white‐light‐emitting diodes. Advanced Materials, 29(37), 1702910. https://doi.org/10.1002/ adma.201702910.

Tian, Z., Zhang, X., Li, D., Zhou, D., Jing, P., Shen, D. & Rogach, A.L. (2017). Full‐color inorganic carbon dot phosphors for white‐light‐emitting diodes. Advanced Optical Materials, 5(19), 1700416. https://doi.org/10.1002/adom.201700416.

Wang, J., Zhang, F., Wang, Y., Yang, Y. & Liu, X. (2018). Efficient resistance against solid-state quenching of carbon dots towards white light emit-ting diodes by physical embedding into silica. Car-bon, 126, 426-436. https://doi.org/10.1016/j.carbon. 2017.10.041.

Liu, Y., Zhang, M., Wu, Y., Zhang, R., Cao, Y., Xu, X. & Xu, Q. (2019). Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes. Chemical Communications, 55(81), 12164-12167. https://doi. org/10.1039/C9CC05581A.

Wang, Q., Gao, Y., Wang, B., Guo, Y., Ah-mad, U., Wang, Y. & Zhou, G. (2020). S, N-Codoped oil-soluble fluorescent carbon dots for a high color-rendering WLED. Journal of Materials Chemistry C, 8(13), 4343-4349.https://doi.org/10.1039/D0TC00016G.

Bagheri, Z., Ehtesabi, H., Rahmandoust, M., Ahadian, M.M., Hallaji, Z., Eskandari, F. & Jokar, E. (2017). New insight into the concept of carbonization degree in synthesis of carbon dots to achieve facile smartphone based sensing platform. Scientificre-ports, 7(1), 1-11. DOI: 10.1038/s41598-017-11572-8.

Song, Y., Zhu, S., Zhang, S., Fu, Y., Wang, L., Zhao, X. & Yang, B. (2015). Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 3(23), 5976-5984. https://doi.org/10.1039/C5TC00813A.

Lin, C., Zhuang, Y., Li, W., Zhou, T.L. & Xie, R.J. (2019). Blue, green, and red full-color ultra-long afterglow in nitrogen-doped carbon dots. Na-noscale, 11(14), 6584-6590. https://doi.org/10.1039/ C8NR09672D.

Zhou, X., Zhao, G., Tan, X., Qian, X., Zhang, T., Gui, J. & Xie, X. (2019). Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluores-cent ink. Microchimica Acta, 186, 1-9. https://doi.org/10.1007/s00604-018-3176-9.

Zhang, W., Shi, L., Liu, Y., Meng, X., Xu, H., Xu, Y. & Ding, T. (2017). Supramolecular interactions via hydrogen bonding contributing to citric-acid de-rived carbon dots with high quantum yield and sensi-tive photoluminescence. RSC advances, 7(33), 20345-20353. DOI: 10.1039/C7RA02160G.

Xu, J., Wang, C., Li, H. & Zhao, W. (2020). Synthesis of green-emitting carbon quantum dots with double carbon sources and their application as a fluorescent probe for selective detection of Cu 2+ ions. RSC advances, 10(5), 2536-2544. DOI: 10.1039/C9RA08654D.

Li, C., Wang, Y., Zhang, X., Guo, X., Kang, X., Du, L. & Liu, Y. (2018). Red fluorescent car-bon dots with phenylboronic acid tags for quick de-tection of Fe (III) in PC12 cells. Journal of colloid and interface science, 526, 487-496. https://doi.org/ 10.1016/ j.jcis.2018.05.017.

Kim, M.C., Yu, K.S., Kim, J.J., Han, S.Y., Lee, N.S., Jeong, Y.G. & Kim, D.K. (2017). Highly Photoluminescent Nitrogen-Doped Carbon Dots Prepared by Hydrothermal Decomposition of Piper-azine Citrate. (preprint) doi: 10.20944/preprints201709. 0169.v1.

Ragazzon, G., Cadranel, A., Ushakova, E.V., Wang, Y., Guldi, D.M., Rogach, A.L. & Prato, M. (2021). Optical processes in carbon nanocolloids. Chem, 7(3), 606-628. https://doi.org/10.1016/ j.chempr.2020.11.012.

Загрузки

Опубликован

04/18/2023

Как цитировать

Егорова, М. Н. ., Куркина , И. И. ., & Дьяконов , А. А. . (2023). ПОЛУЧЕНИЕ УГЛЕРОДНЫХ ТОЧЕК В МАТРИЦЕ ПОЛИВИНИЛОВОГО СПИРТА И ИССЛЕДОВАНИЕ ИХ СВОЙСТВ: BNVSUS. Ползуновский ВЕСТНИК, (1), 245–251. https://doi.org/10.25712/ASTU.2072-8921.2023.01.031

Выпуск

Раздел

РАЗДЕЛ 2. ХИМИЧЕСКИЕ ТЕХНОЛОГИИ, НАУКИ О МАТЕРИАЛАХ, МЕТАЛЛУРГИЯ

Наиболее читаемые статьи этого автора (авторов)