ОБЗОР РАЗРАБОТОК БИОРАЗЛАГАЕМЫХ УПАКОВОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ

Авторы

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2023.01.012

Ключевые слова:

: биоразлагаемая упаковка, активная упаковка, биополимеры, индикаторы, антиоксиданты, наночастицы, смарт-пленки

Аннотация

Аннотация. Повышение заинтересованности потребителей в качественных и безопасных продуктах питания способствует развитию инноваций в области упаковочных материалов.  Целью работы является обзор последних разработок в области биоразлагаемой активной и интеллектуальной упаковки для пищевых продуктов, анализ  существующих проблем и ограничений в применении.В обзор включены статьи, опубликованные на английском и русском языках за период 2010–2022 гг. Для поиска были использованы базы данных Scopus, Web of Science, Elsevier, Elibrary. Проведенный обзор показал, что при разработке активных биоразлагаемых упаковок, для продуктов питания широкое применение находят эфирные масла и растительные экстракты. Ключевая роль принадлежит полифенолам и особенно антоцианам, которые показывают все происходящие изменения качественных характеристик продуктов питания и увеличивают при этом их срок хранения.  «Умная», биоразлагаемая упаковка является новой и перспективной областью научных исследований, которой за последние годы уделяется важное значение. С этой целью необходимо проводить дальнейшие исследования и разработки, направленные на улучшение качества биоразлагаемых видов упаковки, более полное высвобождение биологически активных соединений, снижение влияния pH в интеллектуальной упаковке, а также сохранении   целостности пленки в интеллектуальной упаковке.

Библиографические ссылки

Yates, J., Deeney, M., Rolker, H. B., White, H., Kalamatianou, S., & Kadiyala, S. A systematic scoping review of environmental, food security and health impacts of food system plastics. Nature Food. 2021.V. 2(2) 80–87. https://doi.org/10.1038/s43016021-00221-z

Eurostat. (2020). Packaging waste statistics - Statistics Explained. Retrieved from 〈 https://ec.europa.eu/eurostat/statistics explained/index.php/Packaging_waste_statistics 〉 . Acessed May 9. 2022.

Jancikova, S., Jamr´oz, E., Kulawik, P., Tkaczewska, J., & Dordevic, D.

Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials. International Journal of Biological Macromolecules. 2019. V.131.p. 19–28. https://doi.org/10.1016/j.ijbiomac.2019.03.050

Chen, S., Wu, M., Lu, P., Gao, L., Yan, S., & Wang, S. Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. International Journal of Biological Macromolecules. 2020. 149. 271–280. https://doi.org/10.1016/j.ijbiomac.2020.01.231

Li, Y., Ying, Y., Zhou, Y., Ge, Y., Yuan, C., Wu, C., et al. (2019). A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strength by surface-deacetylated chitin nanofibers. International Journal of Biological Macromolecules, 127, 376–384. https://doi.org/10.1016/j.ijbiomac.2019.01.060

Jamr´oz, E., Kulawik, P., Krzy´sciak, P., Talaga-´Cwiertnia, K., & Juszczak, L.

Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. International Journal of Biological Macromolecules .2019.V.122.p.745–757.https://doi.org/10.1016/j. ijbiomac.2018.11.008

Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. Biodegradable polymers and greenbased antimicrobial packaging materials: a mini-review. Advanced Industrial and Engineering Polymer Research. 2020.V.3(1).p. 27–35. https://doi.org/10.1016/j. aiepr.2019.11.002

Latos-Brozio, M., & Masek, A. The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials. Food and Chemical Toxicology.2020. 135. Article 110975. https://doi.org/10.1016/j. fct.2019.110975

Chen, X., Chen, M., Xu, C., & Yam, K. L. Critical review of controlled release packaging to improve food safety and quality. Critical Reviews in Food Science and Nutrition. 2019. 59(15). 2386–2399. https://doi.org/10.1080/10408398.2018.1453778

Jafarzadeh, S., Jafari, S. M., Salehabadi, A., Nafchi, A. M., Uthaya Kumar, U. S., Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their byproducts. Trends in Food Science and Technology.2020. v. 100. P. 262–277. https://doi.org/10.1016/j.tifs.2020.04.017

Haghighi, H., Licciardello, F., Fava, P., Siesler, H. W., & Pulvirenti, A. Recent advances on chitosan-based films for sustainable food packaging applications. Food Packaging and Shelf Life. 2020. 26. Article 100551. https://doi.org/10.1016/j. fpsl.2020.100551

Liu, J., Yong, H., Liu, Y., Qin, Y., Kan, J., & Liu, J. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packaging and Shelf Life. 2019. 22. Article 100417. https://doi.org/10.1016/J.FPSL.2019.100417

Wu, C., Li, Y., Sun, J., Lu, Y., Tong, C., Wang, L. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocolloids. 2020. 98. Article 105245. https://doi.org/10.1016/j.foodhyd.2019.105245

Ezati, P., & Rhim, J. W. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocolloids. 2020. 102, Article 105629. https://doi.org/10.1016/j.foodhyd.2019.105629

Qin, Y., Liu, Y., Zhang, X., & Liu, J. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids. 2020. 100. Article 105410. https:// doi.org/10.1016/j.foodhyd.2019.105410

Ding, L., Li, X., Hu, L., Zhang, Y., Jiang, Y., Mao, Z. A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydrate Polymers. 2020. 233, Article 115859. https://doi.org/10.1016/j.carbpol.2020.115859

Kimbuathong, N., Leelaphiwat, P., & Harnkarnsujarit, N. Inhibition of melanosis and microbial growth in Pacific white shrimp (Litopenaeus vannamei) using high CO2 modified atmosphere packaging. Food Chemistry. 2020. 312. Article 126114. https://doi. org/10.1016/j.foodchem.2019.126114

Saliu, F., & Pergola, R. D. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators B: Chemical. 2018. V. 258. P.1117–1124. https://doi.org/10.1016/j. snb.2017.12.007

Lyu, J. S., Choi, I., Hwang, K. S., Lee, J. Y., Seo, J., Kim, S. Y., et al. Development of a BTB− /TBA + ion-paired dye-based CO 2 indicator and its application in a multilayered intelligent packaging system. Sensors and Actuators, B: Chemical. 2019. 282.p. 359–365. https://doi.org/10.1016/j.snb.2018.11.073

Wan, X., He, Q., Wang, X., Liu, M., Lin, S., Shi, R. Water-soluble chitosanbased indicator label membrane and its response behavior to carbon dioxide. Food Control. 2021. 130. Article 108355. https://doi.org/10.1016/j.foodcont.2021.108355

Liu, Y., Zhang, X., Li, C., Qin, Y., Xiao, L., Liu, J. Comparison of the structural, physical and functional properties of κ-carrageenan films incorporated with pomegranate flesh and peel extracts. International Journal of Biological Macromolecules.2020.V.147.p.1076–1088. https://doi.org/10.1016/j.ijbiomac.2019.10.075

Jung, J., Puligundla, P., Ko, S. Proof-of-concept study of chitosan-based carbon dioxide indicator for food packaging applications. Food Chemistry. 2012.V.135(4). P.2170–2174. https://doi.org/10.1016/j.foodchem.2012.07.090

Maciel, V. B. V., Yoshida, C. M. P., Franco, T. T. Development of a prototype of a colourimetric temperature indicator for monitoring food quality. Journal of Food Engineering. 2012.v. 111(1).p. 21–27. https://doi.org/10.1016/j.jfoodeng.2012.01.037

Maciel, V. B. V., Yoshida, C. M. P., Franco, T. T. Development of temperature indicator prototype: Cardpaper coated with chitosan intelligent films. Journal of Agricultural Chemistry and Environment.2014.V.03(01).p.5–10. https://doi.org/10.4236/ jacen.2014.31b002

Pereira, V. A., de Arruda, I. N. Q., Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time-Temperature Indicators for application in intelligent food packaging. Food Hydrocolloids.2015. V. 43.p. 180–188. https://doi.org/10.1016/j.foodhyd.2014.05.014

Mills, A., Tommons, C., Bailey, R. T., Tedford, M. C., & Crilly, P. J. UV-activated luminescence/colourimetric O 2 indicator. International Journal of Photoenergy. 2008. https://doi.org/10.1155/2008/547301

Deshwal, G. K., Panjagari, N. R., Badola, R., Singh, A. K., Minz, P. S., Ganguly, S. Characterization of biopolymer-based UV-activated intelligent oxygen indicator for food-packaging applications. Journal of Packaging Technology and Research. 2018. V.2(1).p. 29–43. https://doi.org/10.1007/s41783-018-0029-2

Vu, C. H. T., & Won, K. Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chemistry. 2013. V.140(1–2).p. 52–56. https://doi.org/10.1016/j.foodchem.2013.02.056

Wells, N., Yusufu, D., & Mills, A. Colourimetric plastic film indicator for the detection of the volatile basic nitrogen compounds associated with fish spoilage. Talanta. 2019. V.194. p.830–836. https://doi.org/10.1016/j.talanta.2018.11.020

Ma, Q., Du, L., & Wang, L. Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging. Sensors and Actuators B: Chemical. 2017.v. 244. p. 759–766. https://doi.org/10.1016/j.snb.2017.01.035

Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids. 2019.v. 87. p. 858–868. https://doi.org/10.1016/j.foodhyd.2018.08.028

Wu, C., Sun, J., Zheng, P., Kang, X., Chen, M., Li, Y. Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydrate Polymers. 2019. 222. Article 115006. https://doi.org/10.1016/j.carbpol.2019.115006

Bekhit, A. E. D. A., Holman, B. W. B., Giteru, S. G., & Hopkins, D. L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends in Food Science and Technology.2021. v. 109.p. 280–302. https://doi.org/10.1016/j.tifs.2021.01.006

Yang, Z., Wu, R., Wei, X., Zhang, Z., Wang, W., Liu, A. Moderate fermentation contributes to the formation of typical aroma and good organoleptic properties: A study based on different brands of Chouguiyu. LWT - Food Science and Technology.2021.V. 152. Article 112325. https://doi.org/10.1016/j.lwt.2021.112325

Yang, B., Tan, Y., & Kan, J. Regulation of quality and biogenic amine production during sufu fermentation by pure Mucor strains. LWT - Food Science and Technology.2020. 117. Article 108637. https://doi.org/10.1016/j.lwt.2019.108637

Zhai, X., Li, Z., Shi, J., Huang, X., Sun, Z., Zhang, D., et al. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chemistry. 2019.v. 290. P.135–143. https://doi.org/10.1016/j.foodchem.2019.03.138

Sukhavattanakul, P., & Manuspiya, H. Fabrication of hybrid thin film based on bacterial cellulose nanocrystals and metal nanoparticles with hydrogen sulfide gas sensor ability. Carbohydrate Polymers. 2020. 230. Article 115566. https://doi.org/10.1016/ j.carbpol.2019.115566

Koskela, J., Sarfraz, J., Ihalainen, P., M¨a¨att¨anen, A., Pulkkinen, P., Tenhu, H., et al. Monitoring the quality of raw poultry by detecting hydrogen sulfide with printed sensors. Sensors and Actuators B: Chemical. 2015.V. 218.p. 89–96. https://doi.org/ 10.1016/j.snb.2015.04.093

Domínguez, R., Barba, F. J., G´omez, B., Putnik, P., Kovaˇcevi´c, D. B., Pateiro, M., et al. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International. 2018.v. 113.p. 93–101. https://doi.org/10.1016/j. foodres.2018.06.073

Pateiro, M., Barba, F. J., Domínguez, R., Sant’Ana, A. S., Mousavi Khaneghah, A., Gavahian, M., et al. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Research International. 2018. v. 113.p 156–166. https://doi.org/10.1016/j.foodres.2018.07.014

Jiang, J., & Xiong, Y. L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Science. 2016.v. 120. P. 107–117. https://doi.org/10.1016/j.meatsci.2016.04.005

Lorenzo, J. M., Batlle, R., & G´omez, M. Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT - Food Science and Technology. 2014.V. 59(1).p. 181–188. https://doi.org/10.1016/J.LWT.2014.04.061

Pateiro, M., Domínguez, R., Bermúdez, R., Munekata, P. E. S., Zhang, W., Gagaoua, M., et al. Antioxidant active packaging systems to extend the shelf life of sliced cooked ham. Current Research in Food Science. 2019. v. 1.p 24–30. https://doi.org/10.1016/j. crfs.2019.10.002

Xu, D., Chen, T., & Liu, Y. The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polymer Bulletin. 2021.v.78(7).p. 3607–3624. https://doi.org/10.1007/s00289-02003294-1

Wu, H., Lei, Y., Zhu, R., Zhao, M., Lu, J., Xiao, D., et al. Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocolloids. 2019. v. 90. p. 41–49. https://doi.org/10.1016/j.foodhyd.2018.12.016

Ja´skiewicz, A., Budryn, G., Nowak, A., & Efenberger-Szmechtyk, M. Novel biodegradable starch film for food packaging with antimicrobial chicory root extract Amin et al.Food Packaging and Shelf Life 33 (2022) 100903 and phytic acid as a cross-linking agent. Foods. 2020.v. 9(11). 1696. https://doi.org/10.3390/foods9111696

Crizel, T., de, M., Rios, A., de, O., Alves, V. D., Bandarra, N., Hickmann Flˆores, S. Biodegradable films based on gelatin and papaya peel microparticles with antioxidant properties. Food and Bioprocess Technology. 2018. v. 11(3).p. 536–550. https://doi. org/10.1007/s11947-017-2030-0

Yuan, G., Lv, H., Yang, B., Chen, X., & Sun, H. Physical properties, antioxidant and antimicrobial activity of chitosan films containing carvacrol and pomegranate peel extract. Molecules. 2015. V.20(6). P.11034–11045. https://doi.org/10.3390/ molecules. 200611034

Ju, A., & Song, K. B. Incorporation of yellow onion peel extract into the funoranbased biodegradable films as an antioxidant packaging material. International Journal of Food Science and Technology. 2020. V.55(4).p. 1671–1678. https://doi.org/10.1111/ ijfs.14436

Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life. 2018.v. 16.p. 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006

Pateiro, M., Munekata, P. E. S., Sant’Ana, A. S., Domínguez, R., Rodríguez-L´azaro, D., & Lorenzo, J. M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. International Journal of Food Microbiology. 2021. 337. Article 108966. https://doi.org/10.1016/j. ijfoodmicro.2020.108966

Umaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science and Technology. 2020. V. 98. P. 10–24. https:// doi.org/10.1016/j.tifs.2020.01.032

Jamr´oz, E., Juszczak, L., & Kucharek, M.Investigation of the physical properties, antioxidant and antimicrobial activity of ternary potato starch-furcellaran-gelatin films incorporated with lavender essential oil. International Journal of Biologica.. Macromolecules. 2018. 114.1094-1101.https://doi.org/10.1016/j.ijbiomac.2018.04.014

Sarıcaoglu, F. T., & Turhan, S. Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packaging and Shelf Life. 2020. 25. Article 100527. https://doi. org/10.1016/j.fpsl.2020.100527

Lian, H., Shi, J., Zhang, X., & Peng, Y. Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film. Food Packaging and Shelf Life. 2020. 23. Article 100467. https://doi.org/10.1016/j. fpsl.2020.100467

Priyadarshi, R., Sauraj, Kumar, B., Deeba, F., Kulshreshtha, A., & Negi, Y. S..Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocolloids. 2018. V.85. p. 158–166. https://doi.org/10.1016/j.foodhyd.2018.07.003

Luís, A., Ramos, A., & Domingues, F. Pullulan films containing rockrose essential oil for potential food packaging applications. Antibiotics. 2020.V. 9(10). p. 1–20. https://doi. org/10.3390/antibiotics9100681

Moghimi, R., Aliahmadi, A., & Rafati, H. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydrate Polymers .2017. v.175. p. 241–248. https://doi.org/10.1016/j. carbpol.2017.07.086

Wu, Z., Wu, J., Peng, T., Li, Y., Lin, D., Xing, B. Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. 2017. Polymers. 9(3). 102. https://doi.org/10.3390/polym9030102

El-Fawal, G. Preparation, characterization and antibacterial activity of biodegradable films prepared from carrageenan. Journal of Food Science and Technology. 2014. V.51(9).p. 2234–2239. https://doi.org/10.1007/s13197-013-1255-9

Kumar, S., Mudai, A., Roy, B., Basumatary, I. B., Mukherjee, A., & Dutta, J. Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods. 2020. 9(9). 1143. https://doi.org/10.3390/ foods9091143

Abutalib, M. M., & Rajeh, A. Preparation and characterization of polyaniline/ sodium alginate-doped TiO2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications. Journal of Materials Science: Materials in Electronics. 2020. V.31(12).p. 9430–9442. https://doi.org/ 10.1007/s10854-020-03483-8

Chougule, S. S., Gurme, S. T., Jadhav, J. P., Dongale, T. D., & Tiwari, A. P. Low density polyethylene films incorporated with biosynthesised silver nanoparticles using Moringa oleifera plant extract for antimicrobial, food packaging, and photocatalytic degradation applications. Journal of Plant Biochemistry and Biotechnology. 2021. v. 30(1).p. 208–214. https://doi.org/10.1007/s13562-020-00584-7

Saravanakumar, K., Sathiyaseelan, A., Mariadoss, A. V. A., Xiaowen, H., & Wang, M. Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. International Journal of Biological Macromolecules/ 2020. v. 153. p. 207–214. https://doi.org/10.1016/j.ijbiomac.2020.02.250

M˜archidanu, C.-A., Lungu, M.-V., Gheorghe, I., Hussien, M. D., Telcian, A., Pîrc˜al˜abioru, G. G. Cytotoxicity and genotoxicity aspects of ZnO and silver nanoparticles designed for antimicrobial applications. Romanian Archives. 2017. V.76(2).p. 91–101

Almasi, H., Oskouie, M. J., & Saleh, A. A review on techniques utilized for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition. 2021. 61(15). 2601–2621. https://doi.org/10.1080/10408398.2020.1783199

Gim´enez, B., L´opez de Lacey, A., P´erez-Santín, E., L´opez-Caballero, M. E., & Montero, P. Release of active compounds from agar and agar-gelatin films with green tea extract. Food Hydrocolloids. 2013. V. 30(1).p. 264–271. https://doi.org/10.1016/j. foodhyd.2012.05.014

Caro, N., Medina, E., Díaz-Dosque, M., L´opez, L., Abugoch, L., & Tapia, C. Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tripolyphosphate-thymol nanoparticles via thermal ink-jet printing. Food Hydrocolloids. 2016.V. 52.p. 520–532. https://doi.org/10.1016/j.foodhyd.2015.07.028

Bierhalz, A. C. K., Da Silva, M. A., & Kieckbusch, T. G. Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering. 2012.V.110(1). P. 18–25. https://doi.org/10.1016/j.jfoodeng.2011.12.016

Arrieta, M. P., Castro-L´opez, M. D. M., Ray´on, E., Barral-Losada, L. F., L´opezVilari˜no, J. M., L´opez, J., et al. Plasticized poly(lactic acid)-poly (hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. Journal of Agricultural and Food Chemistry. 2014. V.62(41). p.10170–10180. https://doi.org/10.1021/jf5029812

Requena, R., Vargas, M., & Chiralt, A. Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal. 2017.V. 92. p. 185–193. https://doi.org/10.1016/j. eurpolymj.2017.05.00812

Rodríguez-Martínez, A. V., Send´on, R., Abad, M. J., Gonz´alez-Rodríguez, M. V., BarrosVel´azquez, J., Aubourg, S. P., et al. Migration kinetics of sorbic acid from polylactic acid and seaweed based films into food simulants. LWT - Food Science and Technology. 2016.v. 65.p. 630–636. https://doi.org/10.1016/j.lwt.2015.08.029

Fajardo, P., Martins, J. T., Fuci˜nos, C., Pastrana, L., Teixeira, J. A., & Vicente, A. A.

Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering. 2010.v. 101(4).p. 349–356. https://doi.org/10.1016/j.jfoodeng.2010.06.029

Wu, S., Wang, W., Yan, K., Ding, F., Shi, X., Deng, H., et al. Electrochemical writing on edible polysaccharide films for intelligent food packaging. Carbohydrate Polymers. 2018.V. 186. P.236–242. https://doi.org/10.1016/j.carbpol.2018.01.058

Ezati, P., & Rhim, J. W. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocolloids. 2020. 102. Article 105629. https://doi.org/10.1016/j.foodhyd.2019.105629

Schaefer, D., & Cheung, W. M. Smart packaging: Opportunities and challenges. Procedia CIRP. 2018.V. 72.p. 1022–1027. https://doi.org/10.1016/j.procir.2018.03.240

Liu, J., Yong, H., Liu, Y., Qin, Y., Kan, J., & Liu, J. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packaging and Shelf Life. 2019. 22. Article 100417. https://doi.org/10.1016/J.FPSL.2019.100417

Pepper, I. L., Gerba, C. P., Gentry, T. J., & Maier, R. M. In I. Pepper, C. Gerba,T. Gentry, & R. Maier (Eds.), Environmental Microbiology (second ed.) Burlington: Academic Press. 2011.

ISO 14855–1:2012 Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions - Method by analysis of evolved carbon dioxide - Part 1: General method. ISO. 2012.

Munhoz, D. R., Moreira, F. K. V., Bresolin, J. D., Bernardo, M. P., De Sousa, C. P., & Mattoso, L. H. C. Sustainable Production and in vitro Biodegradability of Edible Films from Yellow Passion Fruit Coproducts via Continuous Casting. ACS Sustainable Chemistry and Engineering. 2018.v. 6(8). p.9883–9892. https://doi.org/10.1021/ acssuschemeng.8b01101

Ceballos, R. L., Ochoa-Yepes, O., Goyanes, S., Bernal, C., & Fam´a, L. Effect of yerba mate extract on the performance of starch films obtained by extrusion and compression molding as active and smart packaging. Carbohydrate Polymers. 2020. 244. Article 116495. https://doi.org/10.1016/j.carbpol.2020.116495

Guti´errez, T. J. Are modified pumpkin flour/plum flour nanocomposite films biodegradable and compostable. Food Hydrocolloids. 2018. V. 83.p. 397–410. https://doi.org/10.1016/j.foodhyd.2018.05.035

Guti´errez, T. J., Toro-M´arquez, L. A., Merino, D., & Mendieta, J. R. Hydrogenbonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocolloids. 2019. V. 89.p. 283–293. https://doi.org/10.1016/j.foodhyd.2018.10.058

Ochoa-Yepes, O., Medina-Jaramillo, C., Guz, L., & Fam´a, L. Biodegradable and edible starch composites with fiber-rich lentil flour to use as food packaging. Starch/ Staerke. 2019.V. 70(7–8). Article 1700222. https://doi.org/10.1002/star.201700222

Загрузки

Опубликован

04/18/2023

Как цитировать

Бурак, Л. Ч. (2023). ОБЗОР РАЗРАБОТОК БИОРАЗЛАГАЕМЫХ УПАКОВОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ. Ползуновский ВЕСТНИК, (1), 91–105. https://doi.org/10.25712/ASTU.2072-8921.2023.01.012

Выпуск

Раздел

РАЗДЕЛ 1. ТЕХНОЛОГИЯ ПРОДУКТОВ ПИТАНИЯ