OPTICAL SPECTRAL STUDIES OF THE FRACTIONAL COMPOSITION OF MILK

DKQECX

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2025.02.008

Keywords:

fractionation of milk, fats, luminescence, optical monitoring, photoluminescence flux, asymmetry, kurtosis

Abstract

Fractionation of milk is widely used for the production of various products. Visible and near-infrared spectroscopy can be used for qualitative assessment of milk fractions. The aim of the work is to study the fractional composition of milk using optical photoluminescence spectroscopy and determine the most informative spectral ranges and parameters. In this study, milk fractions with higher and lower fat content were obtained by ultrasound separation. The spectral characteristics of whole milk and the resulting fractions were measured in the range of 230-650 nm on a CM2203 diffraction spectrofluorimeter. The excitation spectra of milk and the obtained fractions do not differ significantly from each other and contain four maxima: 290 nm, 324 nm, 360 nm and 445 nm. The differences are manifested in the quantitative ratio of maxima and integral parameters. The integral absorption capacity H, of the lower fraction of milk exceeds the same parameter for the upper one by 31,2 % in the entire spectral range and by 24-44 % in certain ranges of the studied spectrum. The spectral photo-luminescent properties of fractionated milk depend on the fat content. For the lower fraction, the best photoluminescent properties (spectral characteristics and energy parameters) are caused by a decrease in luminescence quenching due to a change in the concentration of milk fat. Photoluminescence fluxes excited at 290 nm, 360 nm, and 445 nm statistically significantly decrease linearly with increasing fat content in the fraction or milk. The most informative wavelength of milk excitation during fractionation is 360 nm. The results obtained can be used to develop a methodology for fat content control in milk processing by fractionation.

References

Тихомиров И.А. Комплексный подход в применении инновационных технологий производства молока // Техника и технологии в животноводстве. 2021. № 1(41). С. 17–21. DOI: 10.51794/27132064-2021-1-17.

Скоркин В.К., Гаджиев А.М. Модернизация технологи-ческих процессов молочного скотоводства // Техника и технологии в животноводстве. 2021. № 1(41). С. 12–16. DOI: 10.51794/27132064-2021-1-12.

Abdelmoneim H., Wei A., Xingguo W. Characterisation of bovine and buffalo anhydrous milk fat fractions along with infant formulas fat: Application of differential scanning calorimetry, Fourier transform infrared spectroscopy, and colour attributes 2020 // Food Science and Technology. 2020. № 129. DOI: 10.1016/j.lwt.2020.109542.

Rapid classification of whole milk powder and skimmed milk powder by laser-induced breakdown spectroscopy combined with feature processing method and logistic regression / Yu. Ding [et al.] // Analytical sciences. 2024. № 3. P. 399–411. DOI: 10.1007/s44211-023-00467-6.

Integrating Mid-Infrared Spectroscopy, Machine Learning, and Graphical Bias Correction for Fatty Acid Prediction in water Buffa-lo Milk / Y. Zhiqiu [et al.] // Science of Food and Agriculture. 2024. DOI: https://doi.org/10.1002/jsfa.13471.

Прогнозирование количественных характеристик мо-лока на основе инфракрасной спектроскопии с применением методов машинного обучения / Л.В. Легашев [и др.] // Вестник Южно-Уральского государственного университета. 2022. № 3. С. 47–56. DOI: 10.14529/ctcr220305.

Photoluminescence Spectral Patterns and Parameters of Milk While Souring / M.V. Belyakov [et al.] // Agriculture. 2023. № 5. P. 1054. DOI: 10.3390/agriculture13051054.

Изменение спектральных фотолюминесцентных свойств молока при скисании / М.В. Беляков [и др.] // Инженерные технологии и системы. 2022. № 3. С. 460–475. DOI: 10.15507/2658-4123.032.202203.460-475.

Identification of Milk Adulteration in Camel Milk Using FT-Mid-Infrared Spectroscopy and Machine Learning Models / Zh. Yao, X. [et al.] // Foods. 2023. № 24. P. 4517. DOI: 10.3390/foods12244517.

Detection and quantification of corn starch and wheat flour as adulterants in milk powder by near- and mi¬dinfrared spectroscopy coupled with chemometric routines / E.R. Caballero-Agosto [et al.] // Food Chemistry Advances. 2024. DOI: 10.1016/j.focha.2023.100582.

Detection of common adulterants in bulk bo-vine milk using fourier transformed mid-infrared spec-troscopy / A. Guerra [et al.] // Acta IMEKO. 2024. № 1. DOI: https://doi.org/10.21014/actaimeko.v13i1.1648.

Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel / T. Leong [et al.] // Ultrasonics Sonochemistry. 2016. № 28, P. 118–129, DOI: https://doi.org/10.1016/j.ultsonch.2015.06.023.

Design parameters for the separation of fat from natural whole milk in an ultrasonic litrescale vessel / T. Leong [et al.] // Ultrasonics Sonochemistry. 2014. Vol. 21(4). P. 1289–1298, DOI: https://doi.org/10.1016/j.ultsonch.2014.01.007.

Apparent ζ-potential as a tool to assess me-chanical damages to the milk fat globule membrane / M.C. Michalski [et al.] // Colloids and Surfaces B: Bioin-terfaces, 2002. Vol. 23(1). P. 23–30, DOI: https://doi.org/10.1016/S0927-7765(01)00203-X.

Microfiltration of Raw Whole Milk to Select Fractions with Different Fat Globule Size Distributions: Process Optimization and Analysis / M.C. Michalski [et al.] //Journal of Dairy Science. 2006. Vol. 89(10). P. 3778–3790. DOI: https://doi.org/10.3168/jds.S0022-0302(06)72419-5.

Published

2025-06-23

How to Cite

Belyakov М. В. . ., & Efremenkov И. Ю. . (2025). OPTICAL SPECTRAL STUDIES OF THE FRACTIONAL COMPOSITION OF MILK: DKQECX. Polzunovskiy VESTNIK, (2), 53–58. https://doi.org/10.25712/ASTU.2072-8921.2025.02.008

Issue

Section

SECTION 1. FOOD TECHNOLOGY