SOLIDAGO CANADENSIS L. MEALS FLAVONOIDS BINDING 5-HYDROXYMETHYLFURFURAL
YOVVFK
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.04.009Keywords:
flavonoids, Solidago canadensis L, extracts, meals, non-enzymatic browning, 5-hydroxymethylfurfural, UV-Vis-spectroscopy, infrared spectroscopy.Abstract
The phenolic nature components of plant raw materials are important biologically active substances with a wide range of functionality. One of the promising areas of application of polyphenols as regulators of the dynamics of non-enzymatic staining reactions through interaction with intermediates, in particular with 5-hydroxymethylfurfural. In this work, the component composition of Solidago canadensis L. subcritical CO2 extraction meal and the interaction of flavonoids identified by thin-layer chromatography and vibrational spectroscopy (quercetin, rutin, hesperidin, hyperoside) with 5-hydroxymethylfurfural were studied. IR and UV spectroscopy have shown that the binding of 5-hydroxymethylfurfural is realized by condensation of the latter along the carbonyl group with the participation of A-cycles of flavonoid molecules. The leaves and inflorescences of Solidago canadensis are similar in structural and group composition, while the inflorescences are characterized by a higher content of flavonoids, which allows them to be recommended as a more perspective source for the development of food system.
References
Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food / G. Teng [et al.] // Front. Agr. Sci. Ing. 2018. Vol. 3. Issue 5. PP. 321–329. DOI: 10.15302/J-FASE-2017182.
Structure guided unraveling: Phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure-activity relationship modelling / Y. Zhang [et al.] // Food Chem. 2016. Vol. 199. PP. 492–501. DOI: 10.1016/j.foodchem. 2015.12.038.
Novel roles of hydrocolloids in foods: inhibition of toxic Maillard reaction products formation and attention of their harmful effects / N. Zhang [et al.] // Trends Food Sci. Technol. 2021. Vol. 111. PP. 706–715. DOI: 10.1016/j.tifs.2021.03.020.
Черепанов И.С., Тарасова Д.А., Егорова А.И. Оценка изменения структурно-группового состава продукта сопигментации L-аскорбиновой кислоты и D-глюкозы в условиях окислительного стресса // Вестник ВСГУТУ. 2023. № 4. С. 25–32. DOI: 10.53980/24131997_2023_4_25.
Essential oil quality and purity evaluation via FT-IR spectroscopy and pattern recognition techniques / S. Agatonovic-Kustrin [et al.] // Appl. Sci. 2020. Vol. 10. PP. 7294. DOI: 10.3390/app10207294.
Biocomposites of silk-elastin and essential oil from Mentha piperita display antibacterial activity / D. Gomes [et al.] // ASC Omega. 2022. Issue 7. PP. 6568–6578. DOI: 10.1021/ acsomega.1c05704.
Epicatechin adduction of 5-hydroxymethylfurfural as an inhibitory mechanism against acrylamide formation in Maillard reaction / Y. Qi [et al.] // J. Agric. Food Chem. 2018. Vol. 66. PP. 12536–12543. DOI: 10.1021/acs.jafc.8b03952.
Isolation and structural characterization of an-thocyanin-furfuryl pigments / A. Sousa [et al.] // J. Agric. Food Chem. 2010. Vol. 58. PP. 5664–5669. DOI: 10.1021/jf1000327.
Verma V., Yadav N. Effect of plant extracts on the reduction of acrylamide and hydroxymethylfurfural formation in French fries // Food Chemistry Advances. 2024. Vol. 4. PP. 100708. DOI: 10.1016/j.focha.2024.1000708.
Нуреева Р.Н., Феофилова Д.С., Черепанов И.С. Изучение группового и компонентного состава растительных экстрактов с применением методов разделения и спектральной идентификации // Научные исследования: итоги и перспективы. 2024. Том 5. № 1. С. 48–54.
Es-Safi N.-E, Cheynier V., Moutounet M. Role of aldehydic derivatives in the condensation of phenol-ic compounds with emphasis on the sensorial proper-ties of fruit-derived foods // J. Agric. Food Chem. 2002. Vol. 50. PP. 5571–5585. DOI: 10.1021/jf025503y.
Baranovic G., Segota S. Infrared spectroscopy of flavones and flavonols: reexamination of the hydrox-yl and carbonyl vibrations in relation of the interaction of flavonoids with membrane lipids // Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy. 2018. Vol. 192. Issue 2. PP. 473–486. DOI: 10.1016/j.saa. 2017.11.057.
Шагаутдинова И.Т., Элькин М.Д., Лихтер А.М. Спектральная идентификация колебательных спектров апигенина и лютеолина // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015. № 7. С. 105–112. DOI: 10.7868/S0207352815070173.
Krysa M., Szymanska-Chargot M., Zdunek A. FT-IR and FT-Raman fingerprints of flavonoids // Food Chem. 2022. Vol. 393. PP. 133430. DOI: 10.1016/j.foodchem.2022.133430.
Phenolic Compound Explorer: A Mid Infrared Spectroscopy Database / O. Abbas [et al.] // Vibrational Spectroscopy. 2007. Vol. 92. PP. 111–118.
Surendra B., Veerabhadraswamy M. Microwave assisted synthesis of polymer via bioplatform chemical intermediate derived from Jatropha deoiled seed cake // Journal of Sciences: Advanced Material and Devices. 2017. Vol. 2. PP. 340–346. DOI: 10.1016/j.vibspec.2017.05.008.
Latos-Brozio M., Masek A., Piotrowska M. Polymeric forms of plant flavonoids obtained by enzymatic reactions // Molecules. 2022. Vol. 27. PP. 3702. DOI: 10.3390/molecules27123702.
Comprehensive investigation of the enzymatic oligomerization of esculin by laccase in ethanol : water mixtures / A. Muniz-Mauro [et al.] // RSC Adv. 2017. Vol. 7. PP. 38424–38433. DOI: 10.1039/c7ra06972c.
Silica/quercetin solgel hybrids as antioxidant dental implant materials / M. Catauro [et al.] // Sci. Tech-nol. Adv. Mater. 2015. Vol. 16. PP. 035001. DOI: 10.1088/1468-6996/16/3/035001.
Tosovic J., Markovic S. Reproduction and interpretation of the UV-vis spectra of some flavonoids // Chem. Pap. 2017. Vol. 71. Issue 3. PP. 543–552. DOI: 10.1007/s11696-016-0002-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Igor S. Cherepanov, Anna Yu. O. Sadrtdinova, Alina I. Egorova, Dar’ya A. Tarasova

This work is licensed under a Creative Commons Attribution 4.0 International License.











.
This work is licensed under a 