INVESTIGATION THE DEPENDENCE OF BULK DENSITY ON THE DISPERSED COMPOSITION OAT FLAKES
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2023.02.010Keywords:
oat flakesAbstract
When oat flakes "Hercules" made at grain factories are used by intermediary enterprises for packaging in consumer packaging, partial crumbling of the product occurs. At the same time, the dispersed composition of the flakes and their bulk density change. The urgency of the problem is due to the need to take into account the bulk density when choosing the size of consumer packaging, as well as when selecting bunker, transporting equipment, feeders and volumetric dispensers for the complete set of production. The subject of the study was mechanical mixtures of whole and partially destroyed oat flakes manufactured in industrial conditions. The purpose of the experimental study is to determine the dependence of the bulk density of oat flakes on their composition. To determine the bulk density, the well-known method of densimetry by free filling was used. Samples of oat flakes "Hercules" from various manufacturers purchased in the Biysk retail chain are analyzed. The average geometric dimensions of solid particles are determined: length 9.2mm, width 5.6 mm, thickness 0.89 mm. The height of the arch of the curved flakes is 1.14 mm. It is assumed that the deformation of the flake arch is caused by the conditions of grain flattening and flake drying. It is again established that the granulometric composition of oat flakes can be represented by three main fractions: 1) large whole or partially splintered flattened particles; 2) medium-sized particles are relatively large fragments of particles – the upper and lower parts of the flattened core; 3) fine crumbs and dust. Content (mass.) these fractions vary – for large particles X from 53 to 94%, medium particles - from 3 to 42%, small particles - up to 5%. The mechanism of formation of medium-sized particles is proposed again – they are formed when the upper and lower parts of the flattened grain are split off during mechanical processing. Physical modeling was carried out - compositions of large and medium particles of variable composition from 0:100 to 100:0 were compiled with a constant content of small particles at the level of 5% and their bulk density was determined. It was found that the bulk density ρ of the tested mechanical mixtures decreases from 448 to 387 kg/m3 with an increase in the content of large particles from 0 to 100 %. It is proposed to approximate the obtained dependence by two straight lines. When the content of a large fraction is up to 70% and above, respectively, the bulk density is determined by the expressions ρ =-0.50 X+447.8 and ρ=-0.85X+471.8, respectively. The obtained dependences can be used in the calculation of equipment for the production and processing of oat flakes - bunkers, conveyors, bulk feeders. It is also possible to apply the data obtained to calculate the size of consumer and transport containers and packaging of oat flakes "Hercules".
References
Sá A.G.A,, Moreno Y.M.F. Carciofi B.A.M. Food processing for the improvement of plant proteins digestibility // Critical Reviews in Food Science and Nutrition. 2020. V.60,N(20). Pp/3367-3386 DOI: 10.1080/10408398.2019.1688249
Wu W., Qiu J., Wang A.& Li Z.. Impact of whole cereals and processing on type 2 diabetes mellitus: a review // Critical Reviews in Food Science and Nutrition/ 2020. V. 60, N9. Pp. 1447-1474. DOI: https://doi.org/10.1080/10408398.2019.1574708
Oatmeal particle size alters glycemic index but not as a function of gastric emptying rate. Mackie A.R. [et al.] // American Journal of Physiology-Gastrointestinal and Liver Physiology. 2017 V. 313, N: 3 PP.: 239-246 DOI: 10.1152/ajpgi.00005.2017
Изучение влияния продуктов переработки овса на изменение качественных характеристик мучных кондитерских изделий / Н. А. Щербакова [и др.] // Техника и технология пищевых производств. 2021. Т. 51. № 4. С. 832-848. – DOI 10.21603/2074-9414-2021-4-832-848. – EDN JWMEWC.
Adherence to the healthy Nordic food index, dietary composition, and lifestyle among Swedish women / Roswall N. [et al.] // Food & Nutrition Research. 2015, V 59, R 26336. DOI: 10.3402/fnr.v59.26336
Oghbaei M., Prakash J., Yildiz F.(Reviewing Editor) Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review // Cogent Food & Agriculture, 2016. V.2: N.1, DOI: 10.1080/23311932.2015.1136015
Ragaee S., Seetharaman K., Abdel-Aal E.-S.M. The Impact of Milling and Thermal Processing on Phenolic Compounds in Cereal Grains // Critical Reviews in Food Science and Nutrition. 2014. V. 54. N.7, pp. 837-849, DOI: 10.1080/10408398.2011.610906
Kadiri O. A review on the status of the phenolic compounds and antioxidant capacity of the flour: Effects of cereal processing // International Journal of Food Properties, 2017. V.20:sup1, PP.798-809, DOI: 10.1080/10942912.2017.1315130
Анисимова Л.В. Влияние гидротермической обработки зерна на белковый комплекс крупяных продуктов // Ползуновский вестник. 2012. №2/2. С. 158-162.
Evaluation of sampling plans for measurement of gluten in oat groats / Sharma G.M. [et al.] // Food Control. 2020. V.114, 107241 DOI: https://doi.org/10.1016/j.foodcont.2020.107241
Оборудование для производства муки и крупы /Сост. А.Б. Демский [и др.]: справочник / ред.: М. А. Борискин, В. Ф. Веденьев. - С-Пб: Профессия, 2000. - 624 с.
Валентас, К. Дж., Ротштейн Э., Сингх Р.П. Пищевая инженерия. Справочник с примерами расчётов. – Пер. с англ. под общ. науч. ред. А. Л. Ишевского. - СПб.: Профессия, 2004. - 848 с.
Чащилов, Д.В. Контроль расхода пара для управления процессом пропаривания гречневого зерна в производстве гречневой крупы // Южно-сибирский научный вестник. 2019. №4/2. С.192-198. DOI: https://doi.org/10.25699/SSSB.2019.28.49830.
Константинов, М.М., Румянцев А.А., Борзов Н.А. Способ определения равномерности гидротермической обработки зерна крупяных культур // Известия Оренбургского государственного аграрного университета. 2012. №3. С. 79-82.
Приезжева, Л.Г. Изменение биохимических и органолептических показателей крупы при хранении в условиях переменной температуры // Хлебопродукты. 2016. №4. С. 47-49.
Румянцев, А.А. Математическая модель кинетики увлажнения зерна крупяных культур при гидротермической обработке // Ползуновский вестник. 2018. №2. С. 56-59.
Угрозов В.В., Филиппов А.Н., Сидоренко Ю.И. О математическом описании изотермы сорбции паров воды в зёрнах различных злаковых культур // Журнал физической химии. 2007. №3. С. 458-461
Влияние параметров температурной обработки на физико-химический состав зерна гречихи / Марьин В.А. [и др.] // Южно-Сибирский научный вестник. 2015. №4. С. 56-59.
Влияние гидротермической обработки зерна пшеницы на его физико-химический состав / Марьин В.А. [и др.] // Южно-Сибирский научный вестник. – 2017. – №4. – С. 163-166.
Mar'in V.A., Vereshchagin A.L. Physical principles of processing off-grade buckwheat // Foods and raw materials. 2016, V. 4, N. 1, pp. 51–60. doi: 10.21179/2308-4057-2016-1-51-60.
Чернов М. Е. Упаковка сыпучих продуктов. Москва: ДеЛи, 2000. 163 с. EDN RLOTWL.
Ромакин Н. Е. Конструкция и расчет конвейеров: Старый Оскол: Тонкие наукоемкие технологии (ТНТ), 2011. 503 с. EDN QNXSVD.
Щербакова Н.А. Развитие технологической системы сахарного печенья: автореф. дисс… канд. техн. наук: – М.? 2011. 26 с.
Абросова А.А, Симкин С.А., Чащилов Д.В. Исследование дисперсного состава и насыпной плотности овсяных хлопьев «Геркулес» // Технологии и оборудование химической, биотехнологической и пищевой промышленности: материалы XIV Всероссийской научно-практической конференции студентов, аспирантов и молодых учёных (с международным участием), посвященной 90-летнему юбилею академика Саковича Г.В. - Бийск: АлтГТУ. 2021. С. 432-435.
Правила организации и ведения технологического процесса производства продукции комбикормовой промышленности. Ч.1. – М: ВНПО «Зернопродукт», 1991. – 116с.
Марьин В. А., Верещагин А. Л., Бычин Н. В. Влияние влажности на технологические свойства зерна овса // Техника и технология пищевых производств. 2015. № 4(39). С. 50-56. EDN VBIUOP.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Dmitry V. Chashchilov, Anastasia A. Abrosova, Sergey A. Simkin
This work is licensed under a Creative Commons Attribution 4.0 International License.