SMALL-PHASE NANOTHERMITES AND THE RELATIVE EXPLOSION FORCE OF AN Al/MoO3 MIXTURE WITH A FLUOROPOLYMER
EDN: NFKCYF
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.005Keywords:
nanocomposite; nanothermite; polymeric binder; relative explosive forceAbstract
The common and most studied nanothermic compositions of various compositions are briefly considered and the results of an experimental comparison of the relative explosion force of mixtures of Al/MoO3 nanopowders with fluoropolymer are presented. Systems are presented, the main representatives of which are nanothermic composites for PIR automation and microinitiators. The problem of developing gas-free (low-gas), fast-burning pyrotechnic compositions based on nanothermites is considered. In the experimental part, the effect of the fluoropolymer F-42L on the relative explosion force of a pyrotechnic composition based on a thermite reaction between aluminum nanopowders (burning) and molybdenum oxide (oxidizer) is discussed. It was shown that the fluoropolymer reduces the relative explosion force of the nanocomposite, and the determining chemical reaction of the explosive transformation of the Al/MoO3/F-42L mixture is the reaction of Al with the fluoropolymer.
References
Громов А.А., Хабас Т.А., Ильин А.П. Горение нанопорошков металлов / Громов А.А. Томск: Дельтаплан, 2008. 382 с.
Гусейнов Ш.Л. Нанопорошки алю-миния, бора, боридов алюминия и кремния в высокоэнергетических материалах. Москва: ТОРУС ПРЕСС, 2015. 256 с.
Kim S. et al. Burning structures and propagation mechanisms of nanothermites // Proceedings of the Combustion Institute. 2022.
Rossi C. et al. Nanoenergetic Materi-als for MEMS: A Review // Journal of Microelec-tromechanical Systems. 2007. Vol. 16, № 4. P. 919–931.
Yu C. et al. Aluminum/lead tetroxide nanothermites for semiconductor bridge applica-tions // Chemical Engineering Journal. 2023. Vol. 451. P. 138614.
Шидловский А.А. Основы пиротех-ники: учебное пособие. Изд.: 2 перераб. Москва: Государственное издательство обо-ронной промышленности, 1954. 284 с.
Yang H. et al. Underwater self-sustaining combustion and micro-propulsion properties of Al@FAS-17/PTFE-based direct-writing nanothermite // Chemical Engineering Journal. 2023. Vol. 451. P. 138720.
Фролов Ю.В. Наноразмерные ком-поненты в энергетических метериалах: плюсы и минусы // Горение и взрыв. 2009. № 2. С. 171–172.
Piercey D.G., Klapoetke T.M. Na-noscale Aluminum -Metal Oxide (Thermite) Reac-tions for Application in Energetic Materials // Central European Journal of Energetic Materials. 2010. Vol. 7, № 2. P. 115–129.
Cheng J. et al. Doping of Al/CuO with microwave absorbing Ti3C2 MXene for im-proved ignition and combustion performance // Chemical Engineering Journal. 2023. Vol. 451. P. 138375.
Nicollet A. et al. Fast circuit breaker based on integration of Al/CuO nanothermites // Sens Actuators A Phys. 2018. Vol. 273. P. 249–255.
Egorshev V.Y., Sinditskii V.P., Yartsev K.K. Combustion of high-density CuO/Al nanothermites at elevated pressures // International Autumn Seminar on Propellants, Explosives and Pyrotechnics Chengdu, Sichuan Province, China, September 24–27. 2013. P. 287–290.
Dolgoborodov A.Y. Mechanically ac-tivated oxidizer-fuel energetic composites // Combust Explos Shock Waves. 2015. № 1. P. 102–116.
Luo Q. et al. Constant volume com-bustion properties of Al/Fe2O3/RDX nanocom-posite: the effects of its particle size and chem-ical constituents // Combust Flame. 2022. Vol. 238. P. 111938.
Kelly D.G. et al. Formation of Addi-tive-Containing Nanothermites and Modifications to their Friction Sensitivity // Journal of Energet-ic Materials. 2017. Vol. 35, № 3. P. 331–345.
Weir C., Pantoya M.L., Daniels M.A. The role of aluminum particle size in electrostatic ignition sensitivity of composite energetic mate-rials // Combust Flame. 2013. Vol. 160, № 10. P. 2279–2281.
Steelman R. et al. Desensitizing nano powders to electrostatic discharge ignition // J Electrostat. 2015. Vol. 76. P. 102–107.
Гордеев В.В. и др. Исследование свойств нанотермита Bi2O3/Al и композиций на его основе // Южно-Сибирский вестник. 2018. № 4. С. 261–268.
Apperson S.J. Characterization and MEMS applications of nanothermite materials. University of Missouri--Columbia, 2010.
Wang H. et al. Unzipping polymers significantly enhance energy flux of aluminized composites // Combust Flame. 2022. Vol. 244. P. 112242.
Dombroski D.M.B. et al. Joining and welding with a nanothermite and exothermic bonding using reactive multi-nanolayers – A re-view // J Manuf Process. 2022. Vol. 75. P. 280–300.
Sevely F. et al. Developing a Highly Responsive Miniaturized Security Device Based on a Printed Copper Ammine Energetic Compo-site // SSRN Electronic Journal. 2022.
Feng S., Zhu W. Unraveling the ad-hesive properties, thermal stability, and initial diffusion mechanisms of Al/NiO nanothermites with various dominant surfaces: A first-principles study // Appl Surf Sci. 2022. Vol. 603. P. 154399.
Рогачев А.С., Мукасьян А.С. Горе-ние для синтеза материалов: введение в структурную макрокинетику. – М.: ФИЗМАТ-ЛИТ, 2013 – 400 с. / Под ред.: Мукасьян А.С. Москва: ФИЗМАТЛИТ, 2013. 400 с.
Рогачев А.С. Динамика структур-ных превращений в процессах безгазового горения. Докт. дисс.-. Черноголовка: ИСМАН, 1994.
Филоненко А.К., Вершинников В.И. Газовыделения от примесей при безгазовом горении смесей переходных металлов с бо-ром // Хим. физика. 1984. № 3. С. 430–434.
Шкиро В.М., Нерсинян Г.А., Боро-винская И.П. Исследование закономерностей горения смесей тантала с углеродом // Физи-ка горения и взрыва. 1978. №. 33, № 4. С. 58–64.
Kecskes L.J., Niiler A. Impurities in the Combustion Synthesis of Titanium Carbide // Journal of the American Ceramic Society. 1989. Vol. 72, № 4. P. 655–661.
Гордеев В.В., Казутин М.В., Козы-рев Н.В. Определение предпочтительных па-раметров ультразвукового воздействия при изготовлении нанотермита Al/CuO // Южно-Сибирский вестник. 2017. № 4. С. 121–125.
Храповский В.Е., Сулимов А.А. О механизме конвективного горения пористых систем // Физика горения и взрыва. 1988. № 2. С. 39–44.
REFERENCES
Apperson, S. J. (2010). Characterization and MEMS applications of nanothermite materials [University of Missouri--Columbia]. https://doi.org/10.32469/10355/11999
Cheng, J., Zhang, Z., Wang, Y., Li, F., Cao, J., Gozin, M., Ye, Y., & Shen, R. (2023). Doping of Al/CuO with microwave absorbing Ti3C2 MXene for improved ignition and combustion performance. Chemical Engineering Journal, 451, 138375. https://doi.org/10.1016/j.cej.2022.138375
Dolgoborodov, A. Y. (2015). Mechanically activated oxidizer-fuel energetic composites. Combustion, Explosion, and Shock Waves, 1, 102–116.
Dombroski, D. M. B., Wang, A., Wen, J. Z., & Alfano, M. (2022). Joining and welding with a nanothermite and exothermic bonding using reactive multi-nanolayers – A review. Journal of Manufacturing Processes, 75, 280–300. https://doi.org/10.1016/j.jmapro.2021.12.056
Egorshev, V. Y., Sinditskii, V. P., & Yartsev, K. K. (2013). Combustion of high-density CuO/Al nanothermites at elevated pressures. International Autumn Seminar on Propellants, Explosives and Pyrotechnics Chengdu, Sichuan Province, China, September 24–27, 287–290.
Feng, S., & Zhu, W. (2022). Unraveling the adhesive properties, thermal stability, and initial diffusion mechanisms of Al/NiO nanothermites with various dominant surfaces: A first-principles study. Applied Surface Science, 603, 154399. https://doi.org/10.1016/j.apsusc.2022.154399
Kecskes, L. J., & Niiler, A. (1989). Impurities in the Combustion Synthesis of Titanium Carbide. Journal of the American Ceramic Society, 72(4), 655–661. https://doi.org/10.1111/j.1151-2916.1989.tb06190.x
Kelly, D. G., Beland, P., Brousseau, P., & Petre, C.-F. (2017). Formation of Additive-Containing Nanothermites and Modifications to their Friction Sensitivity. Journal of Energetic Materials, 35(3), 331–345. https://doi.org/10.1080/07370652.2016.1193072
Kim, S., Johns, A. A., Wen, J. Z., & Deng, S. (2022). Burning structures and propagation mechanisms of nanothermites. Proceedings of the Combustion Institute. https://doi.org/10.1016/j.proci.2022.07.113
Luo, Q., Liu, G., Zhu, M., & Jiang, X. (2022). Constant volume combustion properties of Al/Fe2O3/RDX nanocomposite: the effects of its particle size and chemical constituents. Combustion and Flame, 238, 111938. https://doi.org/10.1016/j.combustflame.2021.111938
Nicollet, A., Salvagnac, L., Baijot, V., Estève, A., & Rossi, C. (2018). Fast circuit breaker based on integration of Al/CuO nanothermites. Sensors and Actuators A: Physical, 273, 249–255. https://doi.org/10.1016/j.sna.2018.02.044
Piercey, D. G., & Klapoetke, T. M. (2010). Nanoscale Aluminum -Metal Oxide (Thermite) Reactions for Application in Energetic Materials. Central European Journal of Energetic Materials, 7(2), 115–129. https://www.researchgate.net/publication/267997933_Nanoscale_Aluminum_-Metal_Oxide_Thermite_Reactions_for_Application_in_Energetic_Materials
Rossi, C., Zhang, K., Esteve, D., Al-phonse, P., Tailhades, P., & Vahlas, C. (2007). Nanoenergetic Materials for MEMS: A Review. Journal of Microelectromechanical Systems, 16(4), 919–931. https://doi.org/10.1109/JMEMS.2007.893519
Sevely, F., Wu, T., de Sousa, F. S. F., Seguier, L., Brossa, V., Charlot, S., Esteve, A., & Rossi, C. (2022). Developing a Highly Responsive Miniaturized Security Device Based on a Printed Copper Ammine Energetic Composite. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4123084
Steelman, R., Clark, B., Pantoya, M. L., Heaps, R. J., & Daniels, M. A. (2015). Desensitizing nano powders to electrostatic discharge ignition. Journal of Electrostatics, 76, 102–107. https://doi.org/10.1016/j.elstat.2015.05.008
Wang, H., Wang, Y., Garg, M., Moore, J. S., & Zachariah, M. R. (2022). Unzipping polymers significantly enhance energy flux of aluminized composites. Combustion and Flame, 244, 112242. https://doi.org/10.1016/j.combustflame.2022.112242
Weir, C., Pantoya, M. L., & Daniels, M. A. (2013). The role of aluminum particle size in electrostatic ignition sensitivity of composite energetic materials. Combustion and Flame, 160(10), 2279–2281. https://doi.org/10.1016/j.combustflame.2013.05.005
Yang, H., Xu, C., Wang, W., Tang, P., Li, X., He, S., Bao, H., Man, S., Tang, D., Li, X., Yang, G., & Qiao, Z. (2023). Underwater self-sustaining combustion and micro-propulsion properties of Al@FAS-17/PTFE-based direct-writing nanothermite. Chemical Engineering Journal, 451, 138720. https://doi.org/10.1016/j.cej.2022.138720
Yu, C., Zheng, Z., Gu, B., Chen, Y., Xu, J., Zhang, L., Shi, W., Wang, J., Song, C., Chen, J., Ma, K., & Zhang, W. (2023). Aluminum/lead tetroxide nanothermites for semiconductor bridge applications. Chemical Engineering Journal, 451, 138614. https://doi.org/10.1016/j.cej.2022.138614
Gordeev V.V., Kazutin M.V., & Kozyrev N.V. (2017). Determination of the pre-ferred parameters of ultrasonic exposure in the manufacture of Al/CuO nanothermite. South Si-berian Bulletin, 4, 121-125.
Gordeev, V. V., Kazutin, M. V., Kozyrev, N. V., & Komov, V. N. (2018). Investi-gation of the properties of Bi2O3/Al nanothermite and compositions based on it. South Siberian Bulletin, 4, 261-268.
Gromov A.A., Khabas T.A., & Ilyin A.P. (2008). Combustion nanopowders metals. Edited by: A.A. Gromov. Hang glider.
Huseynov, S. L. (2015). Nanopow-ders of aluminum, boron, aluminum and silicon borides in high-energy materials. TORUS PRESS.
Rogachev, A. S. (1994). Dynamics of structural transformations in the processes of gas-free combustion. Doct. diss.- ISMAN.
Rogachev, A. S., & Mukasyan, A. S. (2013). Gorenje for the synthesis of materials: introduction to structural macrokinetics. - M.: FIZMATLIT, 2013 – 400 p. (A. S. Mukasyan, Ed.). FIZMATLIT.
Filonenko, A. K., & Vershinnikov, V. I. (1984). Gas emissions from impurities during gas-free gorenje mixtures of transition metals with boron. Chem. Physics, 3, 430-434.
Frolov, Yu. V. (2009). Nanoscale components in energy materials: pros and cons. Gorenje i Explosion, 2, 171-172.
Khrapovsky, V. E., & Sulimov, A. A. (1988). On the mechanism of convective com-bustion of porous systems. Combustion, Ex-plosion, and Shock Waves, 2, 39-44.
Shidlovskiy, A. A. (1954). Funda-mentals of Pyrotechnics: a textbook (Ed.: 2nd edition). State Publishing House of the Automotive Industry.
Shkiro, V. M., Nersinyan, G. A., & Borovinskaya, I. P. (1978). Investigation of the gorenje-ness of the combustion of mixtures of tantalum with carbon. Combustion, Explosion, and Shock Waves, 33(4), 58-64.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vitaliy O. Popov, Valeriy V.Malykhin, Vitaliy N.Komov
This work is licensed under a Creative Commons Attribution 4.0 International License.