CARRIER PHASE FLOW IN MULTIVORTEX SEPARATOR FOR COLLECTING PARTICLES FROM NATURAL GAS
UXUAJA
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2023.01.026Keywords:
separation, gas cleaning, vortices, velocity profilesAbstract
To use natural gas directly in the oil and gas fields in gas generators, it must be previously purified. The design of a multivortex separator to clean natural gas from dispersed particles is proposed. The device is suggested to being installed on a collector for gas recovery. The feature of the structure is a cylindrical pipe with holes, which forms a tubular space between the body of the device, where a vortex gas flow occurs. This gas flow structure in the device provides the process of particle separation by centrifugal forces even at low gas velocities. The centrifugal force value is determined by the tangential velocity, which in turn is determined by the gas velocity through the holes. The ratio of the flow rate through the holes to the total flow is a parameter that is difficult to predict analytically. The work aims to study numerically the structure of the carrier gas flow in the developed device. Dependencies for the gas velocity components in the multivortex separator and the gas flow ratio in the flow part of the device are obtained. The dimensionless dependence of the velocity profile on the hole relative height of the zone in the internal tube of the separator is determined. The dependence is found on the pressure drop against the gas inlet velocity and geometric parameters of the device. The pressure drop of the device is determined to not depend on the number of rows of holes in the internal tube. The obtained dependencies make it possible to determine the trajectory of dispersed particles in the intertube space of the developed multivortex separator during natural gas purification.
References
Чумаченко Д.А., Колесников И.Н. Анализ эффективности пылеуловителей для природного газа // Градостроительство. Инфраструктура. Коммуникации. 2017. № 1. С. 25–30.
Ozherelev D.A., Shalai V.V., Ridel I.A. Study of the operating efficiency of centrifugal separators for gas preparation // Proc. High. Educ. Institutions. Маchine Build. 2022. № 9 (750). P. 63–72. doi: 10.18698/0536-1044-2022-9-63-72.
Wasilewski M. Analysis of the effect of counter-cone location on cyclone separator efficiency // Sep. Purif. Technol. 2017. Vol. 179. P. 236–247. doi: 10.1016/j.seppur.2017.02.012.
Numerical and experimental investigation on a downhole gas-liquid separator for natural gas hydrate exploitation / W. Lan [et al.]. // J. Pet. Sci. Eng. 2022. Vol. 208. P. 109743. doi: 10.1016/j.petrol.2021.109743.
Chen X., Yu J., Zhang Y. The use of axial cyclone separator in the separation of wax from natural gas: A theoretical approach // Energy Reports. 2021. Vol. 7. P. 2615–2624. doi: 10.1016/j.egyr.2021.05.006.
Wang J., Ji Z., Liu Z. Experimental and numerical investigation on the gas–liquid separation performance of a novel vane separator with grooves // Chem. Eng. Res. Des. 2022. Vol. 180. P. 306–317. doi: 10.1016/j.cherd.2021.12.049.
A novel horizontal gas–liquid pipe separator for wet gas based on the phase-isolation / Y. Yang [et al.]. // Chem. Eng. Res. Des. 2022. Vol. 178. P. 315–327. doi: 10.1016/j.cherd.2021.12.021.
On the effect of the nozzle design on the performances of gas–liquid cylindrical cyclone separators / R. Hreiz [et al.]. // Int. J. Multiph. Flow. 2014. Vol. 58. P. 15–26. doi: 10.1016/j.ijmultiphaseflow.2013.08.006.
Wen C., Cao X., Yang Y. Swirling flow of natural gas in supersonic separators // Chem. Eng. Process. Process Intensif. 2011. Vol. 50, № 7. P. 644–649. doi: 10.1016/j.cep.2011.03.008.
Ghorbanian K., AminiMagham M. Swirl intensity as a control mechanism for methane purification in supersonic gas separators // J. Nat. Gas Sci. Eng. 2020. Vol. 83. P. 103572. doi: 10.1016/j.jngse.2020.103572.
Wang Y., Yu Y., Hu D. Experimental investigation and numerical analysis of separation performance for supersonic separator with novel drainage structure and reflux channel // Appl. Therm. Eng. 2020. Vol. 176. P. 115111. doi: 10.1016/j.applthermaleng.2020.115111.
Rajaee Shooshtari S.H., Shahsavand A. Numerical investigation of water droplets trajectories during natural gas dehydration inside supersonic separator // J. Nat. Gas Sci. Eng. 2018. Vol. 54. P. 131–142. doi: 10.1016/j.jngse.2018.03.013.
Xu Y., Yang Z., Zhang J. Study on performance of wave-plate mist eliminator with porous foam layer as enhanced structure. Part I: Numerical simulation // Chem. Eng. Sci. 2017. Vol. 171. P. 650–661. doi: 10.1016/j.ces.2017.05.031.
Enhanced water collection of bio-inspired functional surfaces in high-speed flow for high performance demister / S.W. Kim [et al.]. // Desalination. 2020. Vol. 479. P. 114314. doi: 10.1016/j.desal.2020.114314.
Gas-solid separation performance and structure optimization in 3D printed guide vane cyclone separator / C. Han [et al.]. // Adv. Powder Technol. 2022. Vol. 33, № 11. P. 103815. doi: 10.1016/j.apt.2022.103815.
Cleaning Air Streams from Fine Particles in Paint Booths / R.Y. Bikkulov [et al.]. // Ecol. Ind. Russ. 2021. Vol. 25, № 12. P. 10–14. doi: 10.18412/1816-0395-2021-12-10-14.
Разработка классификатора с соосно расположенными трубами для разделения сыпучего материала на основе силикагеля / М.Э. Зинуров [и др.]. // Ползуновский вестник. 2021. № 2. С. 205–211. doi: 10.25712/ASTU.2072-8921.2021.02.029.
Numerical Study of Vortex Flow in a Classifier with Coaxial Tubes / V. Zinurov [et al.]. // Int. J. Eng. Technol. Innov. 2022. Vol. 12, № 4. P. 336–346. doi: 10.46604/ijeti.2022.9568.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Maxim O. Utkin, Vitaly V. Kharkov, Guzel R. Badretdinova, Andrey V. Dmitriev
This work is licensed under a Creative Commons Attribution 4.0 International License.