STUDY OF THE PROPERTIES AND STRUCTURE OF ALUMINUM MATRIX COMPOSITES REINFORCED WITH TIO2 PARTICLES

EDN: HBKNTW

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.001

Keywords:

intermetallic compounds, nanoparticles, aluminum matrix; hardness; wear rate, structure

Abstract

Alumina-matrix composite materials based on the AA2024 alloy and TiO2 nanoparticles varying from 0 to 7.5 wt. % have been obtained. A study of hardness and wear was carried out and it was found that increasing the content of titanium oxide nanoparticles from 0 to 5 wt.% leads to an increase in hardness from 39 to 64 HRB, with a further decrease to 38 HRB while the wear rate decreases in reverse order. The structure of the material and the wear surface were studied by optical and scanning electron microscopy. It is shown that the wear surfaces have an uneven structure, which indicates that the wear rate is the result of various failure mechanisms. It has been established that the structure of the alloy consists of numerous interdendritic matrix composites and fine precipitates scattered throughout the volume. It is shown that the interdendritic zone is bordered by Al7Cu2Fe and Al(Cu, Mn, Fe, Si). Intermetallic composites Al3TiCu and Al9TiFe have been revealed

References

Çetin, M. Abrasive wear behavior of cast Al–Si–Mn alloys // Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. – 2019. ‒ Vol.233. ‒ №4.‒ P. 908–918. DOI: 10.1177/0954408918818735.

Rambabu, P.,Prasad, N.E., Kutumbarao, V.V., Wanhill, R.J.H.Aluminum alloys for aerospace applications, in Aerospace Materials and Material Technologies. –Springer. 2017. – P. 29–52. DOI: 10.1007/978-981-10-2134-3-2.

Çolak, M., Arslan, I. Investigation of Wear Properties of Grain Refined and Modified A319 Alumi-num Alloy Produced with Sand and Permanent Mold // International Journal of Science and Engineering In-vestigations. – 2018. – Vol. 7(83).– 2017. – P. 134–137.

Nosova, E., Erisov, Y., Grechnikov, F. Multi-cycle rolled aluminum alloy 3103 sandwiches: Me-chanical properties and stamp ability // MATEC Web of Conferences. – 2017. – Vol. 129.– № 02021. – 5 p. DOI: 10.1051/matecconf/201712902021.

Geng, Y., Panchenko, I., Konovalov, S., Chen, X., Ivanov, Y. Effect of electron beam energy densities on the surface morphology and tensile pro¬perty of additively manufactured Al–Mg alloy // Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. – 2021.– Vol. 498. – P. 15–22. DOI: 10.1016/j.nimb.2021.04.008.

Osintsev, K., Konovalov, S., Gromov, V., Panchenko, I., Chen, X. Phase composition prediction of Al–Co–Cr–Fe–Ni high entropy alloy system based on thermodynamic and electronic properties calculations. Materials Today: Proceedings. – 2021. – Vol. 46. –Р. 961–965. DOI: 10.1016/j.matpr.2021.01.079.

Osintsev, K., Konovalov, S., Gromov, V., Panchenko, I., Ivanov, Y. Microstructural and mechan-ical characterisation of non-equiatomic Al2.1Co0.3Cr0.5FeNi2.1 high-entropy alloy fabricated via wire-arc additive manufacturing // Philosophical Magazine Letters. – 2021. – Vol. 101 (9). – P. 353–359. DOI: 10.1080/09500839.2021.1936257.

Jambukar, G.B., Kharde, D.Y. Dry Sliding Wear Behavior of Al–Si–Ti Alloys Using Taguchi Me-thod // International Journal of Science and Research. – 2014. – Vol. 3(11). – 6 p.‏

Kang, N., Coddet, P., Liao, H., Baur, T.,Coddet, C. Wear behavior and microstructure of hypereutectic Al–Si alloys prepared by selective laser melting // Applied Surface Science. – 2016. – Vol. 378. – P. 142–149. DOI: 10.1016/j.apsusc.2016.03.221.

Vidyarthi, M.K., Ghose, A.K., Chakrabarty, I. Effect of deep cryogenic treatment on the microstruc-ture and wear performance of Cr–Mn–Cu white cast iron grinding media // Cryogenics.‒ 2013. ‒ Vol. 58. – P. 85–92. DOI: 10.1016/j.cryogenics.2013.10.005.

Franco, V., Ashiuchi, E.S., Reißig, L., Araújo, J.A. Effect of a deep cryogenic treatment on wear and microstructure of a 6101 aluminum alloy // Advances in Materials Science and Engineering. – 2016. – Vol. 2016. – 12 p.DOI: 10.1155/2016/1582490.

Valdés, R., Freulon, A., Deschamps, J.B., Qian, M., Lacaze, J. Phase equilibria and solidification of Mg-rich Al-Mg-Si alloys // Materials Science Forum. – 2006. – Vol. 508. – P. 621–628. DOI: 10.4028/www.scientific.net/MSF.508.621.

Araghchi, M., Mansouri, H., Vafaei, R., Guo, Y. A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy // Materials Science and Engineering: A. – 2017. – Vol. 689.– P. 48–52. DOI: 10.1016/j.msea.2017.01.095.

Haung, Y., Dong, L., Michael, S. The Effect of Cold Treatment on Mechanical Properties of AA6061 by Dry Ice // Chinese Journal of Metallurgy. – 2016. – Vol.19. – P.211–220.

Esteban, G., Bellón, B., Martínez, E., Papa-dimitriou, I., LLorca, J. Strengthening of A–Cu alloys by Guinier-Preston zones: Predictions from atomistic simulations // Journal of the Mechanics and Physics of Solids. – 2019. – Vol. 132. – №103675. – 6 p. DOI:10.1016/j.jmps.2019.07.018.

Bhat, A., Budholiya, S., Raj, S.A., Sul-tan, M.T.H., Hui, D., Shah, A.U.M., Safri, S.N.A. Review on nanocomposites based on aerospace applications // Nanotechnology Reviews. – 2021. – Vol. 10(1). – P. 237–253.‏ DOI: 10.1515/ntrev-2021-0018.

Paidar, M., Asgari, A., Ojo, O., Saberi, A. Mechanical properties and wear behavior of AA5182/WC nanocomposite fabricated by friction stir welding at different tool traverse speeds // J Mater Eng Perform. – 2018. – Vol. 27(4).– P. 1714–24. DOI: 10.1007/s11665-018-3297-7.

Mondal, S. Aluminum or its alloy matrix hybrid Nano composites // Met Mater Int. – 2021. – Vol. 27.– № 2188. – P. 204. DOI: 10.1007/s12540-020-00750-5.

Ramezanali, F., Hamed, J.,Roohollah, J. De-velopment and characterization of in-situ AA2024- Al3NiCu composites // International journal of metal-casting. – 2022. – V. 16. – P.1–15. DOI:10.1007/s40962-021-00752.

Shahi, A., Heydarzadeh, M., Ahmadkhani-ha, D, Ghambari, M. In situ formation of Al-Al3Ni composites on commercially pure aluminum by friction stir processing // The International Journal of Advanced Manufacturing Technology.– 2014. – Vol. 75. – P. 1331–1337. DOI 10.1007/s00170-014-6162-3.

Rao, V.R., Ramanaiah, N.,Sarcar, M.M.M. Fabrication and investigation on properties of TiC rein-forced Al7075 metal matrix composites // Applied Me-chanics and Materials. – 2014. – Vol. 592. – P. 349–353. DOI: 10.4028/www.scientific.net/AMM.592-594.349.

Samarai, R.A., Haftirman, A.K., Al-Douri, Y. Effect of load and sliding speed on wear and friction of aluminum-silicon casting alloy. International Journal of Scientific and Research Publications. – 2012. – Vol. 2(3). – P. 1–4.‏

Wang, Y., Lu, Y., Zhang, S., Zhang, H., Wang, H., Chen, Z. Characterization and strengthening effects of different precipitates in Al-7Si-Mg alloy // Journal of Alloys and Compounds.–2021.–Vol. 885.–№ 161028.‏DOI: 10.1016/j.jallcom.2021.161028.

Published

2022-12-30

How to Cite

Mahan М. Х. М. ., Konovalov С. В., Panchenko И. А., & Pashkova Д. Д. . (2022). STUDY OF THE PROPERTIES AND STRUCTURE OF ALUMINUM MATRIX COMPOSITES REINFORCED WITH TIO2 PARTICLES: EDN: HBKNTW . Polzunovskiy VESTNIK, 2(4). https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.001

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)