STUDY OF THE STRUCTURE OF Al-Si, Mn-Fe-Co ALLOYS BY SCANNING ELECTRON MICROSCOPY

EDN: HSGFBY

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.013

Keywords:

scanning electron microscope, silumin, high-entropy alloy, structure, surface, analysis, fracture

Abstract

Scanning electron microscopy (SEM) is one of the widely used modern microscopic techniques designed to obtain visual information about the microstructure of solid-phase objects (alloys, metals, etc.). The paper presents the areas of application of a scanning electron microscope (semiconductors; biology and medicine; chemical, petrochemical, mining industries; research laboratories). Examples of analysis of various structures of materials (high-entropy alloy, silumin, fracture structure of A5M aluminum alloy) obtained using the scanning electron microscope method are given. It is shown that rounded pores (1.3±0.1 µm) are present in the microstructure of the high-entropy alloy of the Mn-Fe-Co-Cr-Ni system. The reason for the formation of pores may be the specifics of the wire-arc additive manufacturing technology. The structure of the silumin of the AL-10%SI system demonstrates a multiphase, morphologically diverse character. Irradiation with an electron beam of silumin is accompanied by melting of aluminum along the interfaces with inclusions of the second phase. The fracture of an A5M aluminum sample destroyed under fatigue conditions has an ash-gray color and a highly rough matte surface. As a result of studying the deformation characteristics of commercially pure A5M aluminum, it was found that samples of commercially pure aluminum in the initial state reach critical deformation and fail on average at 18742±654 cycles. The use of a magnetic field of 0.1 T of constant geometry leads to an increase in the number of cycles to failure by 36.8%, on ave-rage, the samples are destroyed at 25207±2349 cycles.

References

Goldstein, J. Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis. Springer Science & Business Media, 2012.

Reimer, L. Scanning electron microscopy: Physics of image formation and microanalysis // Meas. Sci. Technol. – 2000. – V. 11(12). – P. 1826. – DOI:10.1088/0957-0233/11/12/703.

Clarke, A., Eberhardt, C., Eberhardt, C.N. Microscopy Techniques for Materials Science.– Woodhead Publishing, 2002.

Rickman, J.M., Lookman, T., Kalinin, S.V. Materials informatics: from the atomic-level to the continuum // Acta Mater.– 2019.– V. 168.– P. 473–510.– https://doi.org/10.1016/j.actamat.2019.01.051.

LeCun, Y., Bengio, Y., Hinton, G. Deep learning // Nature.– 2015.– V. 521.– P. 436–444.– https://doi.org/10.1038/nature14539.

An active learning high-throughput microstructure calibration framework for solving inverse structure-process problems in materials informatics / A. Tran [et al.] // Acta Mater.– 2020.– V. 194.– P. 80–92.– https://doi.org/10.1016/j.actamat.2020.04.054.

Image-driven discriminative and generative machine learning algorithms for establishing microstructure–processing relationships / W. Ma [et al.] // J. Appl. Phys. – 2020. – V. 128 (13). – P. 134901. – https://doi.org/10.1063/5.0013720.

Mining structure–property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks / Y. Wang [et al.] // Mol. Syst. Des. Eng. – 2020. –V. 5. – P. 962–975. – https://doi.org/10.1039/D0ME00020E.

Beniwal, A., Dadhich, R., Alankar, A. Deep learning based predictive modeling for structure-property linkages // Materialia.– 2019.– V. 8.– P. 100435.– DOI:10.1016/j.mtla.2019.100435.

Quantifying mechanical properties of automotive steels with deep learning based computer vision algorithms / E. Javaheri [et al.] // Metals.– 2020.– V. 10 (2). –P. 163.– https://doi.org/10.3390/met10020163.

Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches / Z. Yang [et al.] // Acta Mater.– 2019.– V. 166. –P. 335–345.– https://doi.org/10.1016/j.actamat.2018.12.045.

George, E.P., Curtin, W.A., Tasan, C.C. Highentropyalloys: A focused review of mechanical properties and deformation mechanisms // ActaMaterialia. – 2020. – V. 188. – P. 435–474. https://doi.org/10.1016/j.actamat.2019.12.015.

Рогачев, А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. – 2020. – Т. 121. – № 8. –P. 807–841. –DOI: 10.31857/S0015323020080094.

Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes / J.W.Yeh [et al.] // Advanced Engineering Materials. – 2004. – V. 6. –№ 5. – P. 299–303. –https://doi.org/10.1002/adem.200300567.

Miracle, D.B., Senkov, O.N. A critical review of high entropy alloys and related concepts// Acta Mater. – 2017. – V. 122. – P. 448–511. –https://doi.org/10.1016/j.actamat.2016.08.081.

Zhang, W., Liaw, P.K., Zhang, Y. Science and technology in high-entropy alloys // Sci China Mater. – 2018. – V. 61. – № 1. – P. 2–22. –https://doi.org/10.1007/s40843-017-9195-8.

Tsai, M.-H., Yeh, J.-W. High-Entropy Alloys: A Critical Review // Mater. Res. Lett. – 2014. – V. 2:3. – № 3. –P. 107–123. –https://doi.org/10.1080/21663831.2014.912690.

Alaneme, K.K., Bodunrin, M.O., Oke, S.R. Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review // J. Mater. Res. Technol. – 2016. –V. 5. – № 4. – P. 384–393. https://doi.org/10.1016/j.jmrt.2016.03.004.

Extremely high fatigue resistance in an ultrafine grained high entropy alloy / K. Liu [et al.] // Appl. Mater. Today. – 2019. – V. 15. – P. 525–530. https://doi.org/10.1016/j.apmt.2019.04.001.

Microstructure and mechanical properties of non-equiatomic Co25.4Cr15Fe37.9Mn3.5Ni16.8Si1.4 high-entropy alloy produced by wire-arc additive manufacturing / K.A. Osintsev [et al.] // Materials Letters.–2022.– V. 312.– P. 131675.–https://doi.org/10.1016/j.matlet.2022.131675.

Structure and properties of the CrMnFeCoNi high-entropy alloy irradiated with a pulsed electron beam / V.E. Gromov [et al.] // Journal of Materials Research and Technology. – 2022. – V. 19. – P. 4258–4269. –https://doi.org/10.1016/j.jmrt.2022.06.108.

Investigation of Co-Cr-Fe-Mn-Ni Non-Equiatomic High-Entropy Alloy Fabricated by Wire Arc Additive Manufacturing / K. Osintsev [et al.] // Metals. 2022. – V. 12. – P. 197. –https://doi.org/10.3390/met12020197.

Microstructure and Phase Composition of the Cr-Mn-Fe-Co-Ni High-Entropy Alloy Obtained by Wire-Arc Additive Manufacturing / K. Osintsev [et al.] // Key Engineering Materials.– 2022.– V. 910.– P. 748–753.–https://doi.org/10.4028/p-p2as1f.

Zolotorevskiy, V.S., Belov, N.A., Glazoff, M.V. Casting aluminum alloys, first ed. Elsevier Science, 2007. – 544 p.

Поршневые силумины / Н.А. Белов [и др.]. – М. : Руда и металлы, 2011. – 246 с.

Лунев, Ф.А. Силумин. – М.: Ленинград ОНТИ, 1937. –50 с.

Структура и упрочнение силумина, модифицированного электронно-ионной плазмой: монография / В.Е. Громов[и др.]. – Новокузнецк: Издательский центр СибГИУ, 2020. –285 с.

Effect of electron-plasma treatment on the microstructure of Al-11wt%Si alloy / D. Zaguliaev [et al.] // Materials Research. – 2020. – V. 23 (2). – P. e20200057. DOI:10.1590/1980-5373-mr-2020-0057.

Dispersion of al-si alloy structure by intensive pulsed electron beam / S. Konovalov [et al.] // Archives of foundry engineering. –2019. –V. 19 (2). –P. 79–84.

Физические основы повышения усталостной долговечности нержавеющих сталей / Ю.Ф. Иванов [и др.]. – Новокузнецк: Интер-Кузбасс, 2011. – 302 с.

Hashemian, S., Keshtiban, P.M., Oskui, A.E. Fracture behavior of the forged aluminum 7075-T6 alloy under mixed-mode loading conditions // Engineering Failure Analysis.– 2022.– V. 140.– P. 106610. –https://doi.org/10.1016/j.engfailanal.2022.106610.

Fracture dominant in friction stir spot welded joint between 6061 aluminum alloy and galvannealed steel based on microscale tensile testing / T. Matsuda [et al.] // Materials & Design. – 2022. – V. 213. – P. 110344. – https://doi.org/10.1016/j.matdes.2021.110344.

Qin, D., Chen, C. Research on the mechanical property and failure mechanism of the dieless clinched joints of various aluminum alloys // Engineering Failure Analysis.– 2022.– V. 137.– P. 106384.–https://doi.org/10.1016/j.engfailanal.2022.106384.

Шестопалова, Л.П., Лихачева, Т.Е. Методы исследования материалов и деталей машин при проведении автотехнической экспертизы: учеб. пособие. – Москва: МАДИ, 2017. – 180 с.

Published

2022-12-30

How to Cite

Шлярова, Ю. А. ., Shlyarov В. В. ., Panchenko И. А. ., Konovalov С. В. ., & R. A. Ф. . (2022). STUDY OF THE STRUCTURE OF Al-Si, Mn-Fe-Co ALLOYS BY SCANNING ELECTRON MICROSCOPY: EDN: HSGFBY. Polzunovskiy VESTNIK, 2(4), 99–108. https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.013

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)