STUDY OF THE STRUCTURE AND PROPERTIES OF ALUMINUM ALLOY 7075 PRODUCED BY A WIRE-ARC ADDITIVE MANUFACTURING
SWVHET
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2023.02.019Keywords:
Aluminum alloy 7075, aluminum arc production method, structure, microhardness, X ray phase analysis.Abstract
Aluminum and aluminum are the most important and commonly used materials in the world due to their small stature, high strength, corrosion resistance and similar properties. Alloys of the 7xxx series became aluminum alloys on the basis of the new -Zn-Mg (-Cu) system. They are widely used in high performance structural aerospace and commercial applications. Studies were carried out on the structure of the alloy and specimens identified by fatigue tests. Optical and scanning electron microscopy methods have shown that microcracks are present in the initial material after fatigue tests, which subsequently lead to the destruction of the samples. A study of Vickers microhardness found that the obtained values have minimal deviations and the aluminum alloy has a uniform microhardness. Using the methods of modern physical materials science,it is shown that the grain sizes of the structure of the resulting alloy vary within 5–30 µm. It is shown that in the microstructure of aluminum alloy 7075, obtained by the wire-arc additive method, there are rounded formation pores, which may be the technology of a specific surfacing process.
References
Su R.M., Qu Y.D., Li R.D., You J.-H. Influence of RRA Treatment on the Microstructure and Stress Corrosion Cracking Behavior of the Spray-Formed 7075 Alloy. Mater Sci. 2015. 51, 372–380. doi: 10.1007/s11003-015-9851-7.
Srinivasamurthy P.L., Sarada B.N., Karthik B.S., Holla S.S. Effect of retrogression and reaging heat treatment on microstructure and corro-sion properties of Al-7075 [J]. International Journal of Innovative Research in Science, Engineering and Technology. 2013. 2. 6434−6441.
Andrzejewski D., Jakubowicz J., Borowski J. Structure and properties of 7075 aluminum alloy products obtained with the KOBO method. Archiv. Civ. Mech. Eng. 2016. 16. 217–223. DOI: 10.1016/j.acme.2015.10.005.
Schmidt M., Merklein M., Bourell D., Dimi-trov D., Hausotte T., Wegener K., Overmeyer L., Vol-lertsen F., Levy G.N. Laser based additive manufac-turing in industry and academia // CIRP Ann. 2017. 66. 561–583.
Williams J.C., Starke A.J.E. Progress in structural materials for aerospace systems // Act Ma-terialia, 2003. 51(19). 5775−5799.
Tasdemir A., Nohut S. An overview of wire arc additive manufac-turing (WAAM) in shipbuilding industry. Ships Offshore Struct. 2020. 16. 797–814.
Zhang X.S., Chen Y.J., Hu J.L. Recent ad-vances in the development of aerospace materials. Prog. Aerosp. Sci. 2018. 97. 22–34.
Sokoluk M., Cao C., Pan S., Li X. Nanoparti-cle-enabled phase control for arc welding of un-weldable aluminum alloy 7075 // Nat. Commun. 2019. 10. 98.
Tabernero I., Paskual A., Álvarez P., Suár-ez A. Study on arc welding processes for high deposition rate additive manufacturing // Procedia Cirp. 2018. 68. 358–362.
Williams S., Martina F., Addison A., Ding J., Pardal G., Colegrove P. Wire + arc additive manufacturing // Mater. Sci. Technol. 2016. 32. 641–647.
Huang L., Chen Xizhang, Konovalov S., Su Ch., Fan Pengfei, Wang Ya., Xiaoming P., Pan-chenko I. (2023). A Review of Challenges for Wire and Arc Additive Manufacturing (WAAM). Transac-tions of the Indian Institute of Metals. 10.1007/s12666-022-02823-y.
Geng Ya., Panchenko I., Chen X., Ivanov Yu., Konovalov S. (2022). Wire arc additive manufacturing Al-5.0 Mg alloy: Microstructures and phase composition. Materials Characterization. 187. 111875. 10.1016/j.matchar.2022.111875.
Su Ch., Xizang Ch., Gao Ch. (2019). Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM. Ap-plied Surface Science. 486. 10.1016/j.apsusc.2019.04.255.
Wang J., Shen Q., Kong X., Chen X. (2021). Arc Additively Manufactured 5356 Aluminum Alloy with Cable-Type Welding Wire: Microstructure and Mechanical Properties. Journal of Materials Enginee-ring and Performance. 30. 10.1007/s11665-021-05905-y.
Morais P., Gomes B., Santos P., Gomes M., Gradinger R., Schnall M., Bozorgi S., Klein T., Fleischhacker D., Warzcok P., Characterisa-tion of a high-performance AlAl-Zn-Mg-Cu-Cr alloy designed for wire arc additive manufacturing // Materials. 2020. 13. 1610.
Klein T., Schnall M., Gomes B., Warczok P., Fleischhacker D., Morais P. Wire-arc additive manufacturing of a novel high-performance AlAl-Zn-Mg-Cu-Cr alloy: Processing, characterization and feaё101663.
Chang T., Liu B., Fang X., Huang K., Lu B. Development status and prospect of aluminum alloy additive manufacturing. Aerosp // Mater. Technol. 2022. 52. 76–84.
Ma G., Liu D., Shi J., Wang R., Niu F., Wu D. Microstructure and mechanical properties of 7075 aluminum alloy prepared by wire and arc additive manufacturing // Aeronaut. Manuf. Technol. 2022. 65. 14–19.
Oropeza D., Hofmann D.C., Wil-liams K., Firdosy S., Bordeenithikasem P., Sokoluk M., Liese M., Liu J., Li X. Welding and additive manu-facturing with nanoparticle-enhanced aluminum 7075 wire // J. Alloy. Compd. 2020. 834. 154987.
Oropeza D., Hofmann D.C., Williams K., Firdosy S., Bordeenithikasem P., Sokoluk M., Liese M., Liu J., Li X. Welding and additive manufacturing with nanoparticle-enhanced aluminum 7075 wire // J. Alloy. Compd. 2020. 834. 154987.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Dmitry N. Labunsky, Irina A. Panchenko, Sergey V. Konovalov, Vladislav K. Drobyshev, Danil A. Bessonov
This work is licensed under a Creative Commons Attribution 4.0 International License.