DEPENDENCE OF ELECTRICAL RESISTANCE ON PARAMETERS OF THE CRYSTAL STRUCTURE AND PHYSICO-CHEMICAL CHARACTERISTICS OF CARBON BLACK
CZOHYD
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2024.03.033Keywords:
electrically conductive carbon black, X-ray structural analysis of carbon black, crystal structure of carbon black, average size of carbon black crystallites, , physico-chemical characteristics of carbon black, carbon black structurality, specific surface area of carbon black, specific electrical resistance of carbon blackAbstract
Electrically conductive polymer composite materials (PCM) with carbon fillers have become widely used as materials for electrical and radio engineering purposes. The most important target characteristic of such materials is their electrical conductivity, which depends on the complex of factors. The most significant factor determining the electrical conductivity of a polymer composite material is the electrical conductivity of the filler, which largely depends on its structure. One of the most common fillers used in the creation of electrically conductive PCMs is carbon black. The paper presents a comparative analysis of the electrical resistivity and parameters characterizing the structure for various grades of conductive carbon black produced by Omsk Carbon Group. A comprehensive study of carbon black was carried out: X-ray diffraction analysis and electron microscopy were carried out, electrical resistivity, oil absorption index, surface area for multipoint nitrogen adsorption, external surface area for nitrogen were measured. The following structural parameters were calculated: the fraction of the surface area of CB pores with a diameter of less than 2 nm, the coefficient of surface roughness of CB, the fraction of the marginal carbon atoms of CB graphene layers. A correlation has been established between changes in the electrical resistivity of CB and its physico-chemical characteristics: the oil absorption index (DBP), the surface area for multipoint nitrogen adsorption (NSA), the external surface area for nitrogen (STSA), the average size of crystallites along graphene layers. It is shown that the dependence of the electrical resistivity on the structural parameters is satisfactorily described by linear regression equations. The obtained results can be used to select electrically conductive carbon black when creating composite materials for electrical and radio engineering purposes.
References
Гуль В.Е., Шенфиль Л.З. Электропроводящие полимерные композиции. Москва : Химия, 1984. 240 с.
Donnet J.-B., Carbon Black: Science and Technology, Second Edition 2nd Edition, Kindle Edition, 2017. 482 p.
Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: A review / K. Ke [et al.]. // Carbon. 2021. Vol. 173. P. 1020-1040. DOI:10.1016/j.carbon.2020.11.070
Khodabakhshi S., Fulvio P. F., Andreoli E. Car-bon black reborn: Structure and chemistry for renewa-ble energy harnessing // Carbon. 2020. Vol. 162. P. 604-649. DOI: 10.1016/j.carbon.2020.02.058
Инновационный дисперсный углерод. От идеи до технологии: монография / Г. И. Раздьяконова [и др.]. Омск : Изд-во ОмГТУ, 2014. 312 с.
Шадринов Н. В., Антоев К. П. Электропроводящая резина с эффектом положительного температурного коэффициента сопротивления из шин-ного регенерата // Перспективные материалы. 2021. № 3. С. 21‒29. DOI: 10.30791/1028-978X-2021-3-21-29
Раздьяконова Г. И., Лихолобов В. А., Кохановская О. А. Технологии модификации технического углерода. Омск : Изд-во ОмГТУ, 2017. 160 с.
Раздьяконова Г. И., Кохановская О. А., Ли-холобов В. А. Саморазложение пероксида водорода на поверхности дисперсного углерода // Радио-электроника. Наносистемы. Информационные тех-нологии. 2015. Т. 7. № 2. С. 180–190. DOI: 10.17725/rensit.2015.07.180
Lee S.-M., Lee, S.-H., Roh, J.-S. Analysis of activation process of carbon black based on structural parameters obtained by XRD analysis // Crystals. 2021. Vol. 11. № 153. DOI: 10.3390/CRYST11020153
Минакова Н. Н. Оценка электрофизических характеристик наполненных модифицированным техническим углеродом композиционных материалов с помощью метода локальных бинарных шаблонов // Ползуновский вестник. 2023. № 1. С. 230‒236. DOI: 10.25712/ASTU.2072-8921.2023.01.029
Fathi A., Hatami K., Grady B. P. Effect of carbon black structure on low-strain conductivity of polypropylene and low-density polyethylene composites // Polymer engineering and science. 2012. Vol. 52. № 3, P. 549–556. DOI: 10.1002/pen.22115
Biscoe J., Warren B. E. An X-Ray Study of Carbon Black // Journal of Applied Physics. 1942. Vol. 13. P. 364‒371. DOI: 10.1063/1.1714879
Способ дифрактометрического определения степени кристалличности веществ / Д. Г. Чухчин [и др.]. // Кристаллография. 2016. Т. 61. № 3. С. 375–379. DOI: 10.7868/S0023476116030085
Structure and phase composition of electrically conductive carbon black / O.V. Kropotin [et al.]. // Journal of Physics: Conference Series. 2022. 2182 012076. DOI: 10.1088/1742-6596/2182/1/012076
Влияние параметров кристаллической структуры на удельное сопротивление электропроводного технического углерода / О. В. Кропотин [и др.]. // Материалы VIII Региональной научно-технической конференции «Ученые Омска – регио-ну». Омск : ОмГТУ, 2023. – С. 40–43.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Oleg V. Kropotin, Evgenii A. Rogachev, Ekaterina A. Drozdova, Anastasiia A. Kalenchuk, Evgeny G. Glukhoverya
This work is licensed under a Creative Commons Attribution 4.0 International License.