STRUCTURE AND PROPERTIES OF THE SYSTEM "COATING (Ag–C)/(COPPER) SUBSTRATE", IRRADIATED BY A PULSE ELECTRON BEAM
BUQPKJ
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2023.04.022Keywords:
low-energy pulsed electron beam, silver, carbon fiber, copper, nanosized particles, hardness, Young's modulus, wear resistanceAbstract
The resulting Ag-C system formed on a copper substrate is characterized by a highly developed coating thickness from 50 µm to 550 µm. In the coating, carbon-graphite fiber is present in the form of plates. The coating is an aggregate doped with copper atoms. Change the concentration of copper atoms when changing the distance from the surface of the coating to the depth has a positive gradient. The formation of interstitial solid solutions based on copper and silver is confirmed by X-ray phase analysis data. Studies by X-ray microanalysis of foils for transmission electron microscopy showed that copper in the coating is located in the form of thin layers along the boundaries of silver grains, or forms inclusions (grains) of submicrocrystalline sizes. It has been established that graphite is present in the form of nanosized (10-15 nm) particles in the volume of silver grains and copper grains, and is also located at the boundaries of silver grains. In the Ag–C/Cu system, the formation of a transition layer with a thickness of 250–300 nm was revealed. The size of subgrains in the transition layer varies within 150–250 nm. It is shown that the hardness and Young's modulus decrease with distance from the surface to the interface between the coating and the substrate. It has been established that the coating wear parameter is 6·10-6 mm3/N·m, which is 12.2 times less than the copper wear parameter. The resulting set of properties and characteristics of the structure allows us to conclude that the coatings formed are suitable for working in electrical contacts of powerful electrical networks. The specific choice of a specific model of contacts requires additional clarifying studies
References
Формирование структуры и свойств электровзрывных электроэрозионностойких покрытий на медных контактах переключателей мощных электрических сетей : монография / В.В. Почетуха [и др.]. Новокузнецк : ООО Полиграфист, 2023. 257 с.
Материал для электрических контактов и способ изготовления электрических контактов: пат. 2380781 C1 Рос. Федерация № 2008139279/09; заявл. 03.10.2008; опубл. 27.01.2010 / В.С. Аркатов, В.В. Васин, Е.Н. Емельянов [и др.] ; заявитель Общество с ограниченной ответственностью "НТЦ Информационные Технологии".
Luo G., Li P., Hu J., Guo J., Sun Y. & Shen Q. (2022). Ag and C addition into Al–Cu matrix compo-sites. Journal of Materials Science, (57). 11013–11025.
Sytschev A.E., Vadchenko S.G., Busurina M.L., Boyarchenko O.D. & Karpov A.V. (2022). High-Temperature Interaction between Carbon Fibers and Cu–Ag Eutectic Alloy. International Journal of Self-Propagating High-Temperature Synthesis, (31). 188–194.
Wang J., Hu D., Zhu Y. and Guo P. (2022). Electrical Properties of In Situ Synthesized Ag-Graphene/Ni Composites. Materials, (15(18)), 6423. https://doi.org/ 10.3390/ma15186423.
Songsong Li, Hao Yu., Chen X., Andrew A., Gewirth Jeffrey, S. Moore and Charles M., Schroede. (2020). Covalent Ag–C Bonding Contacts from Un-protected Terminal Acetylenes for Molecular Junc-tions. Nano Letters, (20, 7), 5490–5495.
Fernández S., Molinero A., Sanz D., Gonzá-lez J.P., Cruz M., Gandía J.J. and Cárabe J. (2020). Graphene-Based Contacts for Optoelectronic Devic-es Micromachine, (11(10)), 919; https://doi.org/10.3390/ mi11100919.
Romanov D.A., Pochetukha V.V., Sosnin K.V., Mos-kovskii S.V., Gromov V.E., Bataev V.A., Ivanov Yu.F., Semin A.P. (2022). Increase in properties of copper electri-cal contacts in formation of composite coatings based on Ni–C–Ag–N system Journal of Materials Research and Technology. (19), 947–966.
Gaurav A.K., Chang Y., Wojciech T. Osowiecki, Moreno-Hernandez I.A., Ledendecker M. and Alivisatos A.P. (2020). Self-Limiting Shell For-mation in Cu@Ag Core–Shell Nanocrystals during Galvanic Replacement. Cite this: J. Phys. Chem. Lett. (11, 13), 5318–5323. DOI : 10.1021/acs.jpclett.0c01551.
ВАРИАБЕЛЬНОСТЬ СТРУКТУРНЫХ ПРЕВРАЩЕНИЙ В БИМЕТАЛЛИЧЕСКИХ НАНОСПЛАВАХ Cu-Ag / Н.И. Непша [и др.] // Физи-ко-химические аспекты изучения кластеров, нано-структур и наноматериалов. 2022. Вып. 14, 211–226.
Mousavi Z., Pourabdoli M. (2022). Physical and chemical properties of Ag–Cu compo-site electrical contacts prepared by cold-press and sintering of silver-coated copper powder. Materials Chemistry and Physics. (290), 126608.
Aikun L., Ming X., Yang Y., Zhang J., Wang S., Chen Y., Zhou W. (2022). Effect of CNTs content on the mechanical and arc-erosion perfor-mance of Ag-CNTs composites. Diamond and Re-lated Materials Volume (128), 109211.
Yakout M., Elbestawi M., Veldhuis S.C. (2018). A Review of Metal Additive Manufactur-ing Technologies. Diffusion and Defect Data Pt.B: Solid State Phenomena (278), 1–14, DOI : 10.4028/www.scientific.net/ SSP.278.1.
Ivanov Yu.F., Koval N.N., Akhmad-eev Yu.H., Uglov V.V., Shugurov V.V., Petrikova E.A., Krysina O.V., Prokopenko N.A. & Azhazha I.I. (2022). Structure and Properties of Multi-Layer Films of High-Entropy Metals Deposited by the Ion-Plasma Method. Russian Physics Journal (64), 2207–2213.
Комаров Д.В., Коновалов С.В., Жуков Д.В., Виноградов И.С., Панченко И.А. (2022). Анализ современной ситуации в области приме-нения электронно-пучковой обработки различных сплавов. Часть 2, Ползуновский вестник, (3), 204‒215. doi : 10.25712/ ASTU.2072-8921.2022.03.028.
Chen S., Wang J., Yuan Z., Wang Z., Du D. (2021). Microstructure and arc erosion be-haviors of Ag-CuO contact material prepared by se-lective laser melting. Journal of Alloys and Com-pounds (860), 158494, doi.org/10.1016/j.jallcom.2020.158494.
Based Electrical Contact Material Under Direct Current Hangyu Li, Xianhui Wang, Zhudong Hu & Yanfeng Liu Journal of Electronic Materials volume 49. Р. 4730–4740. (2020).
Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag–CuO Contact Materials MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Acta Metall Sin 2022, Vol. 58 Issue (10): 1305–1315. DOI : 10.11900/0412.1961.2021.00498.
Шухардин С.В. Двойные и много-компонентные системы на основе меди. Москва : Наука, 1979. 248 с.
Лякишев Н.П. Диаграммы состоя-ния двойных металлических систем. Москва : Машиностроение, 1996–2000. 448 с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Denis A. Romanov, Stanislav V. Moskovsky, Vasily V. Pochetuha, Ekaterina S. Vashchuk, Yury F. Ivanov
This work is licensed under a Creative Commons Attribution 4.0 International License.