INVESTIGATION OF MULTISTAGE THERMAL TREATMENT EF-FECT ON MICROSTRUCTURE FORMATION IN SILICON-RICH AVIAL WITH SCANDIUM AND ZIRCONIUM ADDITIONS
DJVTMS
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2023.04.023Keywords:
aluminum, avial, scandium, nano-particles, thermal treatment, transmission microscopyAbstract
The study addresses the effect of multistage thermal treatment on microstructure formation in silicon-rich Al-Mg-Si system alloys with scandium and zirconium additions. The study focuses on 0.6Mg1Si0.15Zr0.3Sc alloy and its base version 0.6Mg1Si. 0.6Mg1Si0.15Zr0.3Sc has been subjected to three-stage thermal treatment. It aimed at precipitating Al3ScZr particles from super-saturated solid solution, silicon-magnesium intermetallic compounds dissolution and β'' particles precipitation during artificial aging. 0.6Mg1Si base alloy was subjected to the typical for avails treatment, including two stages. The purpose of the first stage was silicon-containing intermetallic compounds dissolution, while the second stage aimed at β'' precipitation. After each thermal treatment stage the microstructure was examined by transmission and scanning microscopy, and microhardness was measured. Results analysis demonstrated up to 10µm (AlSi)3Sc-type intermetallic compounds formation during 0.6Mg1Si0.15Zr0.3Sc alloy crystallization. Besides, (AlSi)3Sc particles, represented by 40 nm long and 10 nm diameter needle-shaped coherent dispersoids, form during discontinuous decomposition in the process of as-cast workpiece cooling down. Limited amount of (AlSi)3Sc coherent dispersoids, having no significant effect on strength properties change, forms during the first stage of thermal treatment. Further short-term hardening does not result in silicon and scandium containing intermetallic compounds dissolution. Therefore, during artificial aging less β'' particles precipitate in 0.6Mg1Si0.15Zr0.3Sc alloy, compared to 0.6Mg1Si, having higher level of aluminum solid solution super-saturation with silicon atoms.
References
Алаттар А.Л., Никитина Л.Н., Бажин В.Ю. Повышение физико-механических свойств алюминиевых сплавов, армированных частицами карбида бора // Электрометаллургия. 2022. № 7. С. 13–22.
Kosov Y.I., Bazhin V.Y. Synthesis of an alumi-num–erbium master alloy from chloride–fluoride melts // Russian Metallurgy (Metally). 2018. Т. 2018. № 2. С. 139–148. doi : 10.1134/S0036029518020088.
Bazhin V.Y., Kosov Y.I., Lobacheva O.L., Dzhevaga N.V. Synthesis of aluminum-based scandium–yttrium master alloys // Russian Metallurgy (Metally). 2015. Т. 2015. № 7. С. 516–520. doi : 10.1134/ S0036029515070034.
Бенариеб И., Бер Л.Б., Антипов К.В., Сбитнева С.В. Тенденции развития деформируемых сплавов системы Al-Mg-Si-(Cu). Часть 1 (обзор) // Авиационные материалы и технологии. 2019. № 3 (56). С. 14–22. doi : 10.18577/2071-9140-2019-0-3-14-22.
Benedyk J.C. Aluminum alloys for lightweight auto¬motive structures // Materials, design and manufac-turing for lightweight vehicles. Woodhead Publishing, 2010. С. 79–113. С. 1–7. doi : 10.1533/9781845697822.1.79.
Колобнев Н.И., Бер Л.Б., Хохлатова Л.Б., Рябов Д.К. Структура, свойства и применение сплавов системы Al-Mg-Si-(Cu) // Металловедение и термическая обработка металлов. 2011. № 9. С. 40–45.
Edwards G.A., Stiller K., Dunlop G.L., Couper M.J. The precipitation sequence in Al–Mg–Si alloys // Acta materialia. 1998. Т. 46. № 11. С. 3893–3904. doi : 10.1016/S1359-6454(98)00059-7.
Murayama M., Hono K. Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys // Acta materialia. 1999. Т. 47. № 5. С. 1537–1548. doi : 10.1016/S1359-6454(99)00033-6.
Meyruey G., Massardier V., Lefebvre W., Perez M. Over-ageing of an Al-Mg-Si alloy with silicon excess // Materials Science and Engineering: A. 2018. Т. 730. С. 92–105. doi : 10.1016/j.msea.2018.05.094.
Колачев Б.А., Елагин В.И., Ливанов В.А. Металловедение и термическая обработка цветных металлов и сплавов. МИСиС, 2005.
Davydov V.G., Elagin V.I., Zakharov V.V., Ros-toval D. Alloying aluminum alloys with scandium and zirconium additives // Metal Science and Heat Treatment. 1996. Т. 38. № 8. С. 347–352. doi : 10.1007/BF01395323.
Zakharov V.V. Combined alloying of aluminum alloys with scandium and zirconium // Metal Science and Heat Treatment. 2014. Т. 56. № 5–6. С. 281–286. doi : 10.1007/s11041-014-9746-5.
Рохлин Л.Л., Бочвар Н.Р., Табачкова Н.Ю., Суханов А.В. Влияние скандия на кинетику и упрочнение при старении сплавов системы al-mg 2si // Технология легких сплавов. 2015. № 2. С. 53–62.
Vlach M., Smola B., Stulíková I., Očená-šek V. Microstructure and mechanical properties of the AA6082 aluminium alloy with small additions of Sc and Zr // International journal of materials research. 2009. Т. 100. № 3. С. 420–423. doi : 10.3139/146.110022.
Jiang S., Wang R. Grain size-dependent Mg/Si ratio effect on the microstructure and mechani-cal/electrical properties of Al-Mg-Si-Sc alloys // Journal of Materials Science & Technology. 2019. Т. 35. № 7. С. 1354–1363. doi : 10.1016/j.jmst.2019.03.011.
Cabibbo M., Evangelista E. A TEM study of the combined effect of severe plastic deformation and (Zr), (Sc+ Zr)-containing dispersoids on an Al–Mg–Si alloy // Journal of materials science. 2006. Т. 41. С. 5329–5338. doi : 10.1007/s10853-006-0306-2.
Aryshenskii E., Lapshov M., Hirsch J., Konovalov S., Bazhenov V., Drits A., Zaitsev D. Influence of the small sc and zr additions on the as-cast micro-structure of al–mg–si alloys with excess silicon // Metals. 2021. Т. 11. № 11. С. 1797. doi : 10.3390/met11111797.
Vlach M., Smola B., Stulíková I., Očenášek V. Microstructure and mechanical properties of the AA6082 aluminium alloy with small additions of Sc and Zr // In-ternational journal of materials research. 2009. Т. 100. № 3. С. 420–423. doi : 10.3139/146.110022.
Aryshenskii E., Lapshov M., Konovalov S., Hirsch J., Aryshenskii V., Sbitneva S. The Casting Rate Impact on the Microstructure in Al–Mg–Si Alloy with Silicon Excess and Small Zr, Sc Additives // Metals. 2021. Т. 11. № 12. С. 2056. doi : 10.3390/met11122056.
Du Y., Chang Y.A., Liu S., Huang B., Xie F.Y., Yang Y., Chen S.L. Thermodynamic description of the Al–Fe–Mg–Mn–Si system and investigation of micro-structure and microsegregation during directional solid-ification of an Al–Fe–Mg–Mn–Si alloy // International Journal of Materials Research. 2022. Т. 96. № 12. С. 1351–1362. doi : 10.3139/ijmr-2005-0235.
Norman A.F., Prangnell P.B., McEwen R.S. The solidification behaviour of dilute aluminium–scandium alloys // Acta materialia. 1998. Т. 46. № 16. С. 5715–5732. doi : 10.1016/S1359-6454(98)00257-2.
Röyset J., Ryum N. Scandium in aluminium al-loys // International Materials Reviews. 2005. Т. 50. № 1. С. 19–44. doi : 10.1179/174328005X14311.
Kumar S., Babu N.H., Scamans G.M., Eskin D.G., Fan Z. Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content // Interna-tional journal of materials research. 2012. Т. 103. № 10. С. 1228–1234. doi : 10.3139/146.110760.
Engler O., Miller-Jupp S. Control of second-phase particles in the Al-Mg-Mn alloy AA 5083 // Journal of Alloys and Compounds. 2016. Т. 689. С. 998–1010. doi : 10.1016/j.jallcom.2016.08.070.
Lech-Grega M., Boczkal S. Iron Phases in Model Al-Mg-Si-Cu Alloys // Materials Science Forum. Trans Tech Publications Ltd, 2011. Т. 674. С. 135–140. doi : 10.4028/www.scientific.net/MSF.674.135.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Evgenii V. Aryshenskii, Maksim A. Lapshov, Dmitriy Yu. Rasposienko, Sergei V. Konovalov, Kirill A. Malkin, Vladimir V. Makarov
This work is licensed under a Creative Commons Attribution 4.0 International License.