DISPERSED PARTICLES AGGLOMERATION DURING FORMATION OF FILLED POLYMER MATERIAL

NPLSYO

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2024.03.024

Keywords:

polymer composites, agglomeration of dispersed particles, encapsulation, polymethyl methacrylate, submicron aluminum oxide particles, particle agglomerate size

Abstract

The article deals with the urgent problem of agglomeration of dispersed particles in the formation of filled polymeric materials. The study analyzes the influence of pretreatment of dispersed particles and the choice of commercial form of the initial polymeric material on the size and concentration of agglomerates. Composites based on PMMA with submicron particles of alumina oxide were chosen as the object of research. The application of ultrasonic treatment and encapsulation of particles with polystyrene showed their high efficiency in reducing the concentration and size of agglomerates. The experimental results confirmed that the most optimal parameters of agglomeration are achieved by combining ultrasonic treatment with encapsulation, as well as by choosing the optimal commercial form of polymer.

References

Oleiwi J.K., Hamad Q.A. Studying the mechanical properties of denture base materials fabricated from polymer composite materials // Al-Khwarizmi Engineering Journal. 2018. Т. 14, № 3. С. 100–111. https://doi.org/10.22153/kej.2018.01.006

Experimental analysis of mechanical and thermal characteristics of luffa/epoxy polymer composite under the influence of nanosilica / Saminathan R. [и др.]. // Advances in Materials Science and Engineering. 2022. Т. 2022. С. e6040629. http://dx.doi.org/10.1155/2022/6040629

Novel epoxy-based biocidal composite material filled with polylactide-capsulated copper (I) oxide particles / Danilaev M. [и др.]. // Karbala International Journal of Modern Science. 2023. Т. 9, № 3. С. 417–428. https://doi.org/10.33640/2405-609X.3309

Magnetic polymer composite particles: design and magnetorheology / Lu Q. [и др.]. // Polymers. 2021. Т. 13, № 4. С. 512. https://doi.org/10.3390/polym13040512

Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a review / Binner J. [и др.]. // International Materials Reviews. 2020. Т. 65, № 7. С. 389–444. https://doi.org/10.1080/09506608.2019.1652006

Impact of the nanocarbon on magnetic and electrodynamic properties of the ferrite/polymer composites / Trukhanov A.V. [и др.]. // Nanomaterials. 2022. Т. 12, № 5. С. 868. https://doi.org/10.3390/nano12050868

Intrinsic self-healing epoxies in polymer matrix composites (PMCs) for aerospace applications / Paolillo S. [и др.]. // Polymers. 2021. Т. 13, № 2. С. 201. https://doi.org/10.3390/polym13020201

Tański T., Matysiak W., Hajduk B. Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles // Beilstein J. Nanotechnol. 2016. Т. 7, № 1. С. 1141–1155. https://doi.org/10.3762/bjnano.7.106

Ruoff R.S., Lorents D.C. Mechanical and thermal properties of carbon nanotubes // Carbon. 1995. Т. 33, № 7. С. 925–930. https://doi.org/10.1016/0008-6223(95)00021-5

Mechanical, thermal and rheological properties of polyethylene-based composites filled with micrometric aluminum powder / Mysiukiewicz O. [и др.]. // Materials. 2020. Т. 13, № 5. С. 1242. https://doi.org/10.3390/ma13051242

Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels / Wu Y. [и др.]. // Nano-Micro Lett. 2022. Т. 14, № 1. С. 171. https://doi.org/10.1007/s40820-022-00906-5

A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility / Gu W. [и др.]. // Advanced Science. 2022. Т. 9, № 35. С. 2204165. https://doi.org/10.1002/advs.202204165

Carbon fiber assisted glass fabric composite materials for broadband radar cross section reduction / Pang Y. [и др.]. // Composites Science and Technology. 2018. Т. 158. С. 19–25. https://doi.org/10.1016/j.compscitech.2018.02.001

Carbonaceous materials coated carbon fibre reinforced polymer matrix composites / Salahuddin B. [и др.]. // Polymers. 2021. Т. 13, № 16. С. 2771. https://doi.org/10.3390/polym13162771

Impact of micro silica filler particle size on mechanical properties of polymeric based composite material / Siraj S. [и др.]. // Polymers. 2022. Т. 14, № 22. С. 4830. https://doi.org/10.3390/polym14224830

Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments / Kundie F. [и др.]. // JPS. 2018. Т. 29, № 1. С. 141–165. http://dx.doi.org/10.21315/jps2018.29.1.10

Cazan C., Enesca A., Andronic L. Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites // Polymers. 2021. Т. 13, № 12. С. 2017. https://doi.org/10.3390/polym13122017

A predictive model towards understanding the effect of reinforcement agglomeration on the stiffness of nanocomposites / Demir E.C. [и др.]. // Journal of Composite Materials. 2022. Т. 56, № 10. С. 1591–1604. https://doi.org/10.1177/00219983221076639

Quantitative assessment of particle dispersion in polymeric composites and its effect on mechanical properties / Rani G.E. [и др.]. // Journal of Materials Research and Technology. 2022. Т. 19. С. 1836–1845. https://doi.org/10.1016/j.jmrt.2022.05.147

Ahmed S., Jones F.R. A review of particulate reinforcement theories for polymer composites // J Mater Sci. 1990. Т. 25, № 12. С. 4933–4942. https://doi.org/10.1007/BF00580110

Particle–particle and particle-matrix interactions in calcite filled high-density polyethylene—steady shear / Osman M.A. [и др.]. // Journal of Rheology. 2004. Т. 48, № 5. С. 1167–1184. http://dx.doi.org/10.1122/1.1784782

The effect of agglomeration on the electrical and mechanical properties of polymer matrix nanocomposites reinforced with carbon nanotubes / Tamayo-Vegas S. [и др.]. // Polymers. 2022. Т. 14, № 9. С. 1842. https://doi.org/10.3390/polym14091842

Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations / Maghsoudlou M.A. [и др.]. // Composites Part B: Engineering. 2019. Т. 175. С. 107119. https://doi.org/10.1016/j.compositesb.2019.107119

Agglomeration effect on biomechanical performance of CNT-reinforced dental implant using micromechanics-based approach / Elleuch S. [и др.]. // Journal of the Mechanical Behavior of Biomedical Materials. 2023. Т. 145. С. 106023. https://doi.org/10.1016/j.jmbbm.2023.106023

Structure dependent interface adsorption in polymer nanocomposites / Ciprari D. [и др.]. // 15th European Conference on Composite Materials: Composites at Venice, ECCM 2012.

Influence of the thickness of a polymer shell applied to surfaces of submicron filler particles on the properties of polymer compositions / Akhmadeev A.A. [и др.]. // Mech Compos Mater. 2020. Т. 56, № 2. С. 241–248. https://doi.org/10.1007/s11029-020-09876-4

Гаврилова Н.Н., Назаров В.В., Яровая О.В. Микроскопические методы определения размеров частиц дисперсных материалов: учеб. пособие. М.: РХТУ им. Д. И. Менделеева, 2012. 52 с.

Зависимость диэлектрической проницаемости и удельного объемного сопротивления полимерных композитов от концентрации наноразмерных частиц наполнителей алюминия и сажи / Ахриев А.С. [и др.]. // Вестник ДГТУ. Технические науки. 2017. Т. 44, №2. С.18–27. https://doi.org/10.21822/2073-6185-2017-44-2-18-27

Formation mechanism of residual stresses in micro-injection molding of PMMA: A molecular dynamics simulation / Weng C. [и др.]. // Polymers. 2020. Т. 12, № 6. С. 1368. https://doi.org/10.3390/polym12061368

Published

2024-10-10

How to Cite

Bobina Е. А. ., Danilaev М. П., Kuklin В. А., Karandashov С. А. ., & Fayzullin К. В. . (2024). DISPERSED PARTICLES AGGLOMERATION DURING FORMATION OF FILLED POLYMER MATERIAL: NPLSYO. Polzunovskiy VESTNIK, (3), 160–168. https://doi.org/10.25712/ASTU.2072-8921.2024.03.024

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)