BORIDING OF 3Kh2V8F STEEL BY DIFFUSION AND ELECTRON BEAM ALLOYING
EKKYZZ
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2024.04.022Keywords:
electron beam alloying, diffusion alloying, boriding in pastes, borides, alloy steel, microstructure, microhard-ness, plasticity.Abstract
Abstract. The required physical, thermal and mechanical properties of metal products can be ensured by forming protective boron-containing coatings and diffusion layers on their surface. In current study, a comparative analysis of two processes for applying a boride layer to the surface of 3Kh2V8F alloy steel - diffusion boriding (DB) in saturating pastes and electron beam alloying (EBA) - was carried out. In both cases, pastes based on boron carbide were used as a source of boron. Diffusion boriding was carried out for 2 hours at a temperature of 1050 ℃ in saturating pastes. Electron beam alloying was carried out on the basis of a modernized electron source with a plasma cathode based on a low-pressure arc discharge. The discharge current was varied during a 1 ms pulse, within the range of 40–90 A, so that the temperature on the surface of the sample was maintained at ~2000°C after the start of 200 μs exposure. The surface of the samples was subjected to three pulses with the interval of 3 seconds. As a result of DB, the boride layers up to 60 µm thick were obtained on the surface of 3Kh2V8F steel. After EBA, the layer thickness was twice as high and reached 130 µm. It has been established that after DB and EBA, iron borides Fe2B and FeB were formed on the steel surface. The maximum microhardness of the boride layers was 1120 HV and 1015 HV after DB and EBA, respectively. Surface alloying with the pulsed electron beam leads to the formation of the thick boride layer in a short period of time. At the same time, the phase composition was identical to the layer after DB, and the microhardness of the layers after both processes was comparable.
References
Ворошнин, Л.Г. Теория и технология химико-термической обработки: учеб.пособие / Л.Г. Ворошнин, О.Л. Менделеева, В.А. Сметкин. - М.: Новое знание, 2010. – 304 с.
Atul S.C., Adalarasan R., Santhanakumar M. Study on slurry paste boronizing of 410 marten-sitic stainless steel using taguchi based desira-bility analysis (TDA) // International Journal of Manufacturing, Materials, and Mechanical Engi-neering. – 2015. – Vol 5. – P. 64–77.–DOI: 10.4018/IJMMME.2015070104.
Nakajo H, Nishimoto A. Boronizing of CoCrFeMnNi High-Entropy Alloys Using Spark Plasma Sintering // Journal of Manufacturing and Materials Processing. – 2022. – Vol. 6. – 29. – DOI: 10.3390/jmmp6020029.
Цих С.Г., Красуля А.А. Инновации в процес-сах борирования. Арматуростроение. 2021. № 5 (134). С. 54-59.
Raden Dadan Ramdan, Tomohiro Takaki, Kisaragi Yashiro, Yoshihiro Tomita, The Effects of Structure Orientation on the Growth of Fe2B Boride by Multi-Phase-Field Simulation, MATE-RIALS TRANSACTIONS, 2010, Volume 51, Issue 1, Pages 62-67, 2009, https://doi.org/10.2320/matertrans.M2009227
Mertgenç, E., Kayali, Y., 2023. Diffusion kinetics and boronizing of high entropy alloy produced by TIG melting reverse suction method. Canadi-an Metallurgical Quarterly 62, 362–371. DOI: 10.1080/00084433.2022.2082203.
Sizov I.G., Smirnyagina N.N., Semenov A.P. The structure and properties of boride layers ob-tained as a result of electron-beam chemical-thermal treatment. Metal Science and Heat Treatment, 2001, vol. 11, pp. 45–46.
Повышение электрической прочности уско-ряющего зазора в источнике электронов с плазменным катодом / В. И. Шин, П. В. Моск-вин, М. С. Воробьев, В. Н. Девятков, С. Ю. Дорошкевич, Н. Н. Коваль // Приборы и тех-ника эксперимента. – 2021. – № 2. – С. 69-75. – DOI: 10.31857/S0032816221020191.
Разработка физических основ комплексного электронно-ионно-плазменного инжиниринга поверхности материалов и изделий / Ю.Ф. Иванов, Н.Н. Коваль, Е.А. Петрикова, О.В. Крысина, В.В. Шугуров, Ю.Х. Ахмадеев, И.В. Лопатин, А.Д. Тересов, О.С. Толкачев Гл. 1. - С. 5-35. // Наукоемкие технологии в проектах РНФ. Сибирь / под ред. С.Г. Псахье, Ю.П. Шаркеева. – Томск: Изд-во НТЛ. – 2017. – 428 c. ISBN 978-5-89503-607-5.
Эволюция структуры поверхностного слоя стали, подвергнутой электронно-ионно-плазменным методам обработки / Под ред. Н.Н. Коваля, Ю.Ф. Иванова. – Томск: Изда-тельство НТЛ, 2016. – 298 с. ISBN 978-5-89503-577-1.
Devyatkov V. N. Generation and propagation of high-current low-energy electron beams / V. N. Devyatkov, N. N. Koval, P. M. Schanin [et al.] // Laser and Particle Beams. – 2003. – Vol. 21, No. 2. – P. 243-248. – DOI 10.1017/S026303460321212X.
Григорьев С.В. Электронно-пучковая уста-новка "СОЛО-М" для модификации поверхно-сти металлических и металлокерамических материалов // С. В. Григорьев, В. Н. Девят-ков, А. В. Миков [и др.] // Известия вузов. Фи-зика. – 2014. – Т. 57, № 11-3. – С. 58-62.
Devyatkov V. N. Equipment and processes of vacuum electron-ion plasma surface engineering / V. N. Devyatkov, Y. F. Ivanov, O. V. Krysina [et al.] // Vacuum. – 2017. – Vol. 143. – P. 464-472. – DOI 10.1016/j.vacuum.2017.04.016.
Шин В. И. Широтная и амплитудная модуля-ция тока пучка для управления его мощно-стью в течение импульса субмиллисекундной длительности / В. И. Шин, М. С. Воробьев, П. В. Москвин [и др.] // Известия вузов. Физика. – 2022. – Т. 65, № 11(780). – С. 176-184. – DOI 10.17223/00213411/65/11/176.
Оценка структурно-фазового и напряженного состояния диффузионных боридных слоев, полученных химико-термической обработкой, на поверхности штамповой стали 3Х2В8Ф / У.Л. Мишигдоржийн, Н.С. Улаханов, А.Г. Ти-хонов, П.А. Гуляшинов // Обработка метал-лов (технология, оборудование, инструмен-ты). – 2021. – Т. 23, № 2. – С. 147–162. – DOI:10.17212/1994-6309-2021-23.2-147-162.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Undrakh L. Mishigdorzhiyn, Pavel A. Gulyashinov, Stepan A. Lysykh, Nikolay S. Ulakhanov, Pavel V. Moskvin, Maxim S. Vorob'yev
This work is licensed under a Creative Commons Attribution 4.0 International License.