FUNCTIONALIZED DERIVATIVES OF 2-METHYL-5-NITRO-1,2,4-TRIAZOL-3-ONE

VJSBLH

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2024.04.028

Abstract

The interest in five-membered heterocyclic compounds of the 1,2,4-triazole series arises from the presence of several reaction sites in the molecule of the starting triazole synthon, allowing these structures to be considered as an effective building block in the synthesis of new derivatives from them, on one hand. On the other hand, systematic studies have revealed a wide range of practically useful and unique properties of the said class of compounds, making them quite valuable objects for use in various science and technology fields. Therefore, the research towards designing new 1,2,4-triazole derivatives and investigating their reactivity and properties is very relevant and promising. The present study synthesized never-before-seen 2-methyl-5-nitro-1,2,4-triazol-3-one derivatives structurally bearing various reactive functional groups such as the propargyl, cyanomethyl and allyl. The creation of functionalized triazolone derivatives relies on the alkylation reaction of the activated salt form of 2-methyl-5-nitro-1,2,4-triazol-3-one synthon with different types of alkylating agent (propargyl bromide, chloroacetonitrile, allyl bromide) in a polar aprotonic solvent over an organic catalyst. The structure of the obtained series of new functionalized derivatives of 2-methyl-5-nitro-1,2,4-triazol-3-one was reliably validated by comprehensive characterization using spectral analytical techniques (1H, 13C NMR and IR spectroscopy). The thermal behavior of the target products was studied by DSC and TGA methods. Incorporating new, sufficiently reactive sites of different nature into the basic structure of 2-methyl-5-nitro-1,2,4-triazol-3-one can modify the physicochemical characteristics and expand the synthetic potential of the derived compounds, and makes them attractive substrates for organic synthesis to design new, potentially bioactive molecules.

References

An overview of the biological evaluation of se-lected nitrogen-containing heterocycle medicinal Chemistry compounds / O. Ebenezer [et al.] // International Journal of Molecular Sciences. 2022. № 23. Vol. 23. P. 8117. https://doi.org/10.3390/ijms23158117.

Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products / B. Gao [et al.] // Natural Product Reports. 2022. Vol. 39. P. 139–162. https://doi.org/10.1039/D1NP00017A.

Fluorescent chemosensors based on conjugated polymers with N-heterocyclic moieties: two decades of progress / T. Wang [et al.] // Polymer Chemistry. 2020. Vol. 11. P. 3095–3114. https://doi.org/10.1039/D0PY00336K.

Research progress in the design and synthesis of herbicide safeners: a review / L. Jia [et al.] // Journal of Agricultural and Food Chemistry. 2022. Vol. 70. P. 5499–5515. https://doi.org/10.1021/acs.jafc.2c01565.

N-Acetonitrile functionalized 3-nitrotriazole: Precursor to nitrogen rich stable and insensitive energetic materials / P. Bhatia [et al.] // Energetic Materials Frontiers. 2024. Vol. 5. P. 8–16. https://doi.org/10.1016/j.enmf.2024.01.003.

Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis / S.G. Zlotin [et al.] // Russian Chemical Reviews. 2020. Vol. 89. P. 1–54. https://doi.org/10.1070/rcr4908.

Grigoriev Y.V. Alkylation of 3-nitro-1,2,4-triazole with allyl bromide and cyclo-hexa-1,3-diene in acid medium // Russian Journal of Organic Chemistry. 2012. Vol. 48. P. 610–612. https://doi:10.1134/s1070428012040288.

Chipen G.I. Alkylation of 5-nitro-1,2,4-triazol-3-one // Chemistry of Heterocyclic Compounds. 1969. Vol. 5. P. 123–124. https://doi.org/10.1007/BF01031789.

Synthesis and Physicochemical Properties of Energetic 1,2,4,5‐Tetrazinyl Derivatives of 5‐Nitro‐2,4‐dihydro‐1,2,4‐triazol‐3‐one / G.F. Rudakov [et al.] // Chemistry Select. 2021. Vol. 6. P. 7654–7662. https://doi.org/10.1002/slct.202102160.

Этилирование 3-нитро-1,2,4-триазол-5-она диэтилсульфатом / И.А. Крупнова [и др.] // Ползуновский Вестник. 2016. № 4–1. С. 124–126.

Pramod P., Poonam C., Nilesh C. Synthesis of N-Methyl triazolone derivatives as Antitubercular agent: Synthesis new series of Triazolone derivatives fused with aromatic Aldehyde for anti-tubercular activity. Lon-don : LAP LAMBERT Academic Publishing, 2022. 120 p.

Synthesis and antitubercular activity of some novel N-methyl triazolone derivatives / P. Pramod [et al.] // Der Pharma Chemica. 2014. Vol. 6. P. 131–136.

Click chemistry based regioselective one‐pot synthesis of coumarin‐3‐yl‐methyl‐1,2,3‐triazolyl‐1,2,4‐triazol‐3(4H)‐ones as newer potent antitubercular agents / S.M. Somagond [et al.] // Arch Pharm Chem Life Sci. 2019. 352. 1900013. https://doi.org/10.1002/ardp.201900013.

Microwave assisted regioselective synthesis of quinoline appended triazoles as potent anti-tubercular and antifungal agents via copper (I) catalyzed cycloaddition / A.R. Nesaragi [et al.] // Bioorganic & Me-dicinal Chemistry Letters. 2021. Vol. 41. 127984. https://doi.org/10.1016/j.bmcl. 2021.127984.

The Medicinal Chemistry of 3-nitro-1,2,4-triazoles: Focus on Infectious Diseases / R.R.F. França [et al.] // Current Topics in Medicinal Chemistry. 2021. Vol. 21. P. 2072–2100. https://doi.org/10.2174/1568026621999210902124524.

Methylation of 3-nitro-1,2,4-triazol-5-one / T.P. Kofman [et al.] // Journal of Organic Chemistry. 1980. Vol. 2. P. 420–425. https://doi.org/10.1002/chin.198024180.

Krupnova, I.A. A New Selective Method for the Synthesis of 1-Alkyl-3-nitro-1,2,4-triazol-5-ones // Chem-istry for Sustainable Development. 2019. Vol. 27. P. 402–407. https://doi.org/10.15372/CSD2019157.

Adamantylazoles: VIII. Acid-catalyzed adaman-tylation of 1,2,4-triazol-5-ones / A.D. Amandurdyeva [et al.] // Russian Journal of General Chemistry. 2004. Vol. 8. P. 1277–1281. https://doi.org/10.1007/s11176-005-0151-z.

Адамантилирование 1-алкил-3-нитро-1,2,4-триазол-5-онов / Г.Т. Суханов [и др.] // Южно-Сибирский Научный Вестник. 2017. № 4. С. 117–120.

Kofman T. 3-Nitro-1,2,4-triazol-5-one deriva-tives // Chemistry of Heterocyclic Compounds. 1981. Vol. 4. P. 406–412. https://doi.org/10.1007/bf00503348.

Kofman T.P. α-Oxides in reaction with N–H ac-ids of the heterocyclic series. IV. Alkylation of 1-methyl-3-nitro-1,2,4-triazol-5-one with olefin oxides // Chemistry of Heterocyclic Compounds. 1977. Vol. 13. P. 1129–1132. https://doi.org/10.1007/BF00480153.

Кофман Т.П. Развитие химии 3-нитро-5-R-1,2,4-триазолов в Технологическом институте. Часть 1. (Обзор) // Известия Санкт-Петербургского государственного технологического института (технического университета). 2010. № 7. С. 42–48.

Синтез, кинетика и механизм реакции алкилирования салицилата калия аллилбромидом / А.К. Брель [и др.] // Бутлеровские сообщения. 2012. № 5. С. 60–63.

Synthesis and Some Transformations of 5-Aryl-4-(4-halogenaroyl)-3-hydroxy-1-cyanomethyl-3-pyrrolin-2-ones / V.L. Gein [et al.] // Russian Journal of General Chemistry. 2020. Vol. 90. P. 2225–2229. https://doi.org/10.1134/ S1070363220120026.

Potential Antitumor Agents, VIII1) Allyl, Propar-gyl and Cyanomethyl Esters of Imidazo[2,1-b]thiazole-5-carboxylic Acids / A. Andreani [et al.] // Archiv Der Phar-mazie. 1983. Vol. 316. Р. 141–146. https://doi.org/10.1002/ ardp.19833160210.

Published

2024-12-24

How to Cite

Bosov К. К. ., Krupnova И. А. . ., Pivovarova Е. В. . ., Sukhanov Г. Т. ., Sukhanova А. Г. . ., & Filippova Ю. В. . (2024). FUNCTIONALIZED DERIVATIVES OF 2-METHYL-5-NITRO-1,2,4-TRIAZOL-3-ONE: VJSBLH. Polzunovskiy VESTNIK, (4), 186–195. https://doi.org/10.25712/ASTU.2072-8921.2024.04.028

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY