APPLICATION OF NEURAL NETWORKS IN METALLOGRAPHY

ENRBTY

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2024.02.023

Abstract

The article considers the possibility of using artificial neural networks to solve the problem of classification of steel grades by microstructure image. To solve the recognition problem, the structure of a convolutional neural network is selected. Images for creating Data sata are pre-pared using a metallographic microscope, the environment for writing a neural network is made in Python Google Colaboratory. The convolutional neural network was trained at 96.67%. High results of training in the classification of images of microstructures of carbon steels indicate the prospects of using neu­ral networks in metallographic studies

References

Аристов Г.В., Клюев А.В. Распознавание и классификация микроструктуры металлов и сплавов с использованием глубоких нейронных сетей // GraphiCon 2017 : тр. 27-й Между-нар. конф. по компьютерной графике и машинному зрению.Пермь, 24–28 сент. 2017 г. / АНО науч. общ-во Графикон, Перм. гос. нац. исслед. ун-т. Пермь: Изд-воЦентрПГНИУ. 2017. С. 180–183.

Kovun V.A. On development of models and al-gorithms for automated metallographic measurement of visible metal slice grain sizes / V.A. Kovun, I.L. Kashirina // Journal of Physics: Conference Series, 2020.

КовунВ.А., КаширинаИ.Л. Использование нейронной сети W-Net в металлографическом анализе образца стали / информатика: проблемы, методы, технологии, Материалы XXI Международной научно-методической конференции. Воронеж, 2021 / Изд-во «Вэлборн» (Воронеж). С. 760–767

Published

2024-07-10

How to Cite

Mosorov В. И. ., Khaptakhaeva Н. Б., & Korobkov К. С. . (2024). APPLICATION OF NEURAL NETWORKS IN METALLOGRAPHY: ENRBTY. Polzunovskiy VESTNIK, (2), 182–185. https://doi.org/10.25712/ASTU.2072-8921.2024.02.023

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY