INVESTIGATION OF AN ALLOY PRODUCED BY THE METHOD OF ARC SURFACE WELDING WITH HIGH ENTROPY FLUID WIRE

OCJLCW

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2024.02.030

Abstract

At present, one of the main problems is the detection of impurities in the melt with widely used powder fibers, the complexity is a reliably stable structure, the presence of pores and defect structures, which, accordingly, leads to a gradual deterioration in the content of the deposited products. In the presented studies, the problem of detecting powder dust, the occurrence of a high-entropy alloy, and its excess by deposition on the substrate was revealed.As a result of the project implementation, an analytical calculation of the elemental composition of high-entropy wires of Co-Cr-Fe-Mn-Ni composition was carried out, then a composition of high-entropy wires was obtained from them and deposition on a steel base was carried out. For the manufacture of high-entropy wires, powdered materials were used such as: chromium PKh-1S according to TU 14-1-1474-75, manganese MP-0 according to GOST 6008-82, nickel PNK 1L5 according to GOST 9722-97, cobalt PK-1u according to GOST 9721 -79. The charge composition was taken at the rate of 25% of all used elements. The basis of the flux-cored wire was a sheath made of 08PS steel with a size of 14 × 0.6 mm. The diameter of the produced wire is 4.2 mm. Surfacing of the investigated composition was carried out in 5 layers under the AN-348A flux using an ASAW-1250 welding tractor. In the course of the project implementation, the analysis of the chemical composition of the deposited layer, a comprehensive analysis of the composition of non-metallic inclusions of the deposited layer, and the change in the microhardness parameters of the deposited coating were analyzed. The implementation of the study will allow obtaining priority results in the field of obtaining surfacing materials from high-entropy alloys with properties that are close or superior to those of products obtained by traditional technologies.

References

K. Wu, N. Ding, T. Yin, M. Zeng, Z. Liang.Effects of single and double pulses on micro-structure and mechanical properties of weld joints during high-power double-wire GMAW, J. Manuf. Process. 35 (2018) 728–734. https://doi.org/10.1016/j.jmapro.2018.08.025.

A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang. HighEntropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams, JOM. 66 (2014) 1984–1992. https://doi.org/10.1007/s11837-014-1085-x.

Структура и свойства системы «покрытие ВЭС Кантора (Mn-Fe-Cr-Co-Ni) / подложка (сплав 5083)» / С.В. Коновалов, М.О. Ефимов, И.А. Панченко, Ю.А. Шлярова // Известия Алтайского госу-дарственного университета. 2023. № 1(129). С. 37–43. DOI : 10.14258/izvasu(2023)1-05.

W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu. Short communication, Intermetallics. 56 (2015). 24–27. https://doi.org/10.1016/j.intermet.2014.08.008.

Обзор исследований сплавов, разработанных на основе энтропийного подхода / З.Б. Батаева, А.А. Руктуев, И.В. Иванов [и др.] // Обработка металлов (технология, оборудование, инструменты). 2021. Т. 23, № 2. С. 116–146. DOI : 10.17212/1994-6309-2021-23.2-116-146.

Влияние электронно-пучковой обработки на дефектную субструктуру высокоэнтропийного сплава системы Co - Cr - Fe - Mn - Ni / К.А. Осинцев, В.Е. Громов, С.В. Воробьев [и др.] // Известия высших учебных заведений. Черная металлургия. 2022. Т. 65, № 4. С. 254–260. DOI : 10.17073/0368-0797-2022-4-254-260.

Влияние облучения импульсным электрон-ным пучком на структуру поверхности неэквиатомноговысокоэнтропийного сплава системы Al–Co–Cr–Fe–Ni / К.А. Осинцев, В.Е. Громов, С.В. Конова-лов [и др.] // Поверхность. Рентгеновские, синхро-тронные и нейтронные исследования. 2021. № 8. С. 76–81. DOI 10.31857/S1028096021080112.

Влияние фазовых превращений в процессе электронно-лучевой 3D-печати и последующей термической обработки на закономерности пла-стической деформации и разрушение образцов высокоазотистойCr-Mn-стали / Е.Г. Астафурова, К.А. Реунова, С.В. Астафуров [и др.] // Известия вузов. Физика. 2021. Т. 64, № 7(764). С. 10–17. DOI : 10.17223/00213411/64/7/10.

Яковлев А.В. Перспективы и технология развития WAAM / А.В. Яковлев, Г.С. Лебедев, О.Р. Лузанов // Актуальные проблемы авиации и космонавтики : Сборник материалов VIII международной научно-практической конференции, посвященной Дню кос-монавтики. В 3-х томах, Красноярск, 11–15 апреля 2022 года / Под общей редакцией Ю.Ю. Логинова. Том 1. Красноярск: Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева", 2022. С. 560–563.

A Review of Challenges for Wire and Arc Additive Manufacturing (WAAM) / L. Huang, X. Chen, S. Konovalov [et al.] // Transactions of the Indian Institute of Me¬tals. 2023. No. б/н. P. 1–2. DOI : 10.1007/s12666-022-02823-y.

Zavdoveev A., Klapatyuk A., Baudin T., MacDonald E., Mohan D., Oliveira J., Gajvoronskiy A., Poznyakov V., and others.Non-equimolar Cantor high entropy alloy fabrication using metal powder cored wire arc additive manufacturing, Additive Manufactu¬ring Letters (2023), doi: https://doi.org/10.1016/j.addlet.2023.100124

Published

2024-07-10

How to Cite

Kryukov Р. Е. ., Mikhno А. Р. ., Konovalov С. В. ., Panchenko И. А., & Makhnev И. А. . (2024). INVESTIGATION OF AN ALLOY PRODUCED BY THE METHOD OF ARC SURFACE WELDING WITH HIGH ENTROPY FLUID WIRE: OCJLCW. Polzunovskiy VESTNIK, (2), 228–234. https://doi.org/10.25712/ASTU.2072-8921.2024.02.030

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY