MECHANICAL PROPERTIES AND MICROSTRUCTURE OF ALLOYS OF THE CoCrFeMnNi SYSTEM
OLJRHK
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2024.02.033Abstract
A study was carried out to establish changes in mechanical properties: hardness and microhardness depending on the content of the chemical composition of high-entropy alloys of the CoCrFeMnNi system. Scanning electron microscopy methods were used to study the microstructure, chemical composition of non-metallic inclusions and elemental mapping. The size of non-metallic inclusions was 8 µm with the release of oxide compounds Mn2O3. Microstructural analysis using energy dispersive spectrometry was carried out pointwise in the dendritic region and established an increased content of elements such as Co, Cr, Fe with a high melting point, as well as the release of low-melting materials Ni and Mn in the interdendritic layers.
References
Gromov V.Е., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. Structure and properties of high-entropy alloys. Springer. Advanced structured materials. 2021. 110 p. https://doi.org/10.1007/978-3-030-78364-8.
Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dah-men K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys // Progress in Materials Science. 2014. Vol. 61. P. 1–93, https://doi.org/10.1016/j.pmatsci.2013.10.001.
Abrahams K., Zomorodpoosh S., Khorasgani A., Roslyakova I., Steinbach I., Kundin J. Automated assessment of a kinetic database for FCC Co–Cr–Fe–Mn–Ni high entropy alloys. Modelling and Simulation in Materials Science and Engineering. 2021, vol. 29, no. 5, article 05500, https://doi.org/10.1088/1361-651X/abf62b.
George E.P., Curtin W.A., Tasan C.C. High entropy alloys: A focused review of mechanical prop-erties and deformation mechanisms // Acta Materialia. 2020. Vol. 188. P. 435–474. https://doi.org/10.1016/j.actamat.2019.12.015.
Li Z., Zhao S., Ritchie R.O., Meyers M.A. Me-chanical properties of high-entropy alloys with emphasis on face-centered cubic alloys // Progress in Materials Science. 2019. Vol. 102. P. 296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003.
S. Haas, A.M. Manzoni, F. Krieg, U. Glatzel. Microstructure and Mechanical Properties of Precipitate Strengthened High Entropy Alloy Al10Co25Cr8Fe15Ni36Ti6 with Additions of Hafnium and Molybdenum, Entropy 21 (2019) 169, doi:10.3390/e21020169.
Zaddach A.J., Niu C., Koch C.C. [et al.].Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. JOM 65, 1780–1789. (2013), https://doi.org/10.1007/s11837-013-0771-4.
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang. An-nealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy, J. Alloys Compd. 502 (2010) 295–299, https://doi.org/10.1016/j.jallcom.2009.11.104.
M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, E.P. George. Plastic deformation of single crystals of the equiatomic Cr−Mn−Fe−Co−Ni highentropy alloy in tension and compression from 10K to 1273K, Acta Mater. (2021) 116454, doi: 10.1016/j.actamat.2020.10.073.
Lu A. Chauhan, D. Litvinov, M. Walter, A.S. Tirunilai, J. Freudenberger, A. Kauffmann, M. Heil-maier, J. Aktaa. High-temperature low cycle fatigue behavior of an equiatomicCoCrFeMnNi high-entropy alloy, Materials Science and Engineering: A, Volume 791, (2020), ISSN 0921-5093, https://doi.org/10.1016/j.msea.2020.139781.
W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh. Effects of Al addition on the microstructure and mechanical property of AlXCoCrFeNi high- entropy alloys, Intermetallics 26 (2012). 44–51, https://doi.org/10.1016/j. Intermet.2012.03.005.
F. Otto, N.L. Hanold, E.P. George. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics 54 (2014) 39–48, doi: 10.1016/j.intermet.2014.05.014.
Ikeda Y., Tanaka I., Neugebauer J., Kormann F. Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy // Physical Review Materials. 2019. Vol. 3. Article 113603.
Osintsev K., Konovalov S., Ivanov Y., Gro-mov V., Vorobyev S., Panchenko I. Characterization of Al-Co-Cr-Fe-Mn-Ni High-Entropy Alloy Coating Fa-bricated onto AA5083 Using Wire-Arc Additive Manu-facturing. Metals. 2022; 12(10):1612, https://doi.org/10.3390/met12101612.
Osintsev K., Konovalov S., Glezer A., Gro-mov V., Ivanov Y., Panchenko I. (2021). Research on the structure of Al2.1Co0.3Cr0.5FeNi2.1 high-entropy alloy at submicro- and nano-scale levels. Materials Letters. 294, doi: 10.1016/j.matlet.2021.129717.
Ivanov Y., Osintsev K., Gromov V., Konova-lov S., Panchenko I. (2021). Deformation Behavior of a High-Entropy Al–Co–Cr–Fe–Ni Alloy Fabricated by Means of Wire-Arc Additive Manufacturing. Steel in Translation. 51. 27-32, doi: 10.1016/j.intermet.2014.05.014.
Ivanov Y., Gromov V., Konovalov S., Shugurov V., Efimov M., Teresov A., Petrikova E., Panchen-ko I., Shliarova Y. (2022). Structure and Properties of Al-Co-Cr-Fe-Ni High-Entropy Alloy Subjected to Elec-tron-Ion Plasma Treatment. Metals. 12. 1987, doi:10.3390/met12111987.
Nevskii S., Sarychev V., Konovalov S., OsintsevК., Ivanov Y., Panchenko I., Gromov V. (2022). Modeling the mechanism of micro / nanostruc-tured surface formation in Al-Co-Cr-Fe-Ni and Co-Cr-Fe-Mn-Ni high-entropy alloys treated with a high current pulsed electron beam. Letters on Materials. 12. 249–254, doi: 10.22226/2410-3535-2022-3-249-254.
l-Shataif Y., Sivasankaran S., Al-Mufadi F., Alaboodi A., Ammar H. (2019). Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review. Metals and Materials International. 26. 3, doi:10.1007/s12540-019-00565-z.
Rogachev A.S. Structure, stability and properties of high entropy alloys. Fizikametallovimetallo-vedenie. 2020, vol. 121, no. 8, pp. 807–841. (In Russ.). https://doi.org/10.31857/S0015323020080094
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vladislav K. Drobyshev, Irina A. Panchenko, Sergey V. Konovalov
This work is licensed under a Creative Commons Attribution 4.0 International License.