HIGH TEMPERATURE HOT-DIP GALVANIZING OF FASTENERS

JKHFNN

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2025.02.031

Keywords:

hot-dip galvanizing, high temperature hot-dip galvanizing, zinc coating, temperature galvanizing, gal-vanizing of fasteners, structural coatings, coating coatings

Abstract

High-temperature hot-dip galvanizing involves immersing steel products in molten zinc at temperatures above 500°C. There is data on the peculiarities of the phase structure of zinc coating obtained at such temperatures that provide a lower coating thickness. Threaded fasteners require a minimum coating thickness to ensure satisfactory product make-up. However, it is also necessary to ensure a high level of performance properties of the coating on the fastener, such as the hardness of the steel base, coating hardness, coefficient of friction, and corrosion resistance. In this regard, the goal of the work was to study the structure and properties of zinc coatings formed in the melt at a temperature of 450-560°C on threaded fasteners. It has been established that exposure to high melt temperatures leads to a decrease in the hardness of steel bolts, but the hardness remains within normal limits. It has been shown that the minimum coating thickness on all steels under study is formed in the galvanizing temperature range of 530-560°C. A joint analysis of X-ray phase analysis and energy-dispersive microanalysis data showed that the coating formed in the melt at a temperature of 530°C practically does not contain the ζ-phase, which is responsible for the intensive growth of the coating. The properties of zinc coatings formed in the melt in the high temperature range meet the operational requirements for fasteners. The coatings have 1.5-2 times greater hardness, greater surface roughness, and a lower coefficient of friction compared to standard zinc coatings formed in the melt at 450°C. The coating formed in the melt at 530°C is more chemically resistant compared to standard zinc coating.

References

Chung P.P., Wang J., Durandet Y. Deposi-tion processes and properties of coatings on steel fasteners — A review // Friction. 2019. Vol. 7, № 5. P. 389–416. doi: 10.1007/s40544-019-0304-4

Сравнительный анализ структуры и элек-трохимических свойств цинковых покрытий для прогнозирования возникновения контактной коррозии на крепеже / О. С. Бондарева, О. С. Добычина, М. О. Дмитриева, С. В. Коновалов // Черные металлы. 2023. № 10. С. 35-41. doi: 10.17580/chm.2023.10.06.

Effect of chemical composition of steel on the structure of hot – Dip galvanized coating / P. Pokorny, J. Kolisko, L. Balik, P. Novak // Metalurgija. 2016. Vol. 55. P. 115–118.

Role of silicon on formation and growth of intermetallic phases during rapid Fe–Zn alloying reaction / S.-Ch. Han, D. F. Sanchez, D. Grolimund, S. Uhm, D.-Y. Choi, H.-Ch. Jeong, T.-S. Jun // Mater. Today Adv. 2023. Vol. 18. P. 100368. doi: 10.1016/j.mtadv.2023.100368

Reaction kinetics of the formation of intermetallic Fe – Zn during hot - Dip galvanizing of steel / P. Pokorny, J. Kolisko, L. Balik, P. Novak // Metalurgija. 2016. Vol. 55. P. 111–114.

Sandelin R.W. Galvanizing characteristic of different types of steel // Wire Wire Prod. 1940. Vol. 15. P. 655–660.

The role of silicon in the hot dip galvanizing process / S. Sepper, P. Peetsalu, P. Kulu, M. Saarna, V. Mikli // Proc. Est. Acad. Sci. 2016. Vol. 65, № 2. P. 159. doi: 10.3176/proc.2016.2.11

Sánchez C. et al. Silicon Effect and Micro-structural Evolution of Hot Dip Galvanized Coating of Structural Steels / Ch. Sánchez, O. Bustos, A. Artigas, H. Bruna // Metals. 2023. Vol. 13, № 11. P. 1892. doi: 10.3390/met13111892

Marder A.R., Goodwin F.E. Zn coating phase equilibria // The Metallurgy of Zinc Coated Steels. Elsevier, 2023. P. 35–48.

Chidambaram P.R., Rangarajan V., Van Ooij W.J. Characterization of high temperature hot dip galvanized coatings // Surf. Coat. Technol. 1991. Vol. 46, № 3. P. 245–253. doi: 10.1016/0257-8972(91)90167-U

Verma A.R.B., Van Ooij W.J. High-temperature batch hot-dip galvanizing. Part 1. General description of coatings formed at 560 °C // Surf. Coat. Technol. 1997. Vol. 89, № 1–2. P. 132–142. doi: 10.1016/S0257-8972(96)02941-6

Verma A.R.B., Van Ooij W.J. High-temperature batch hot-dip galvanizing. Part 2. Comparison of coatings formed in the temperature range 520–555 °C // Surf. Coat. Technol. 1997. Vol. 89, № 1–2. P. 143–150. doi: 10.1016/S0257-8972(96)02940-4

The effects of zinc bath temperature on the coating growth behavior of reactive steel / J. Wang, H. Tu, B. Peng, X. Wang, F. Yin, X. Su// Mater. Charact. 2009. Vol. 60, № 11. P. 1276–1279. doi: 10.1016/j.matchar.2009.05.010

Effects of zinc bath temperature on the coatings of hot-dip galvanizing / P. Bicao, W. Jianhua, S. Xuping, L. Zhi, Y. Fucheng // Surf. Coat. Technol. 2008. Vol. 202, № 9. P. 1785–1788. doi: 10.1016/j.surfcoat.2007.07.044

Бондарева О., Мельников А. Влияние температуры цинкового расплава на толщину и структуру покрытия при вы-сокотемпературном горячем цинковании сталей с высоким содержанием кремния // Известия Вузов Порошковая Металлургия И Функциональные Покрытия. 2015. № 1. P. 66–70. doi: 10.17073/1997-308X-2015-1-66-70

Tzimas E., Papadimitriou G. Cracking mechanisms in high temperature hot-dip galvanized coatings // Surf. Coat. Technol. 2001. Vol. 145, № 1–3. P. 176–185. doi: 10.1016/S0257-8972(01)01323-8

The Influence of Hot-Dip Galvanizing on the Mechanical Properties of High-Strength Steels / M. Šmak, J. Kubícek, J. Kala, K. Podaný, J. Vanerek // Materials. 2021. Vol. 14, № 18. P. 5219. doi: 10.3390/ma14185219

Prediction of Mechanical Properties for High Strength Low Alloyed Steels in a Commercial Hot Dip Galvanizing Line without Soaking Section / Á. García-Martino, C. García, M. Prieto and J. Díaz // Metals. 2020. Vol. 10, № 5. P. 561. doi: 10.3390/met10050561

Published

2025-06-23

How to Cite

Bondareva О. С. (2025). HIGH TEMPERATURE HOT-DIP GALVANIZING OF FASTENERS: JKHFNN. Polzunovskiy VESTNIK, (2), 199–206. https://doi.org/10.25712/ASTU.2072-8921.2025.02.031

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY