CULTIVATION OF BACTERIAL NANOCELLULOSE ON A SEMISYNTHETIC NUTRIENT MEDIUM FOR SUBSEQUENT FUNCTIONALIZATION
YKMMNW
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.02.038Abstract
Wood is a valuable source of cellulose for the modern innovative production of nanofibrillated cellulose from it. Bacterial nanocellulose being synthesized by microorganisms can be considered an alternative source of plant-based nanocellulose. The advantage of plant-based nanocellulose is that its composition contains no lignin, pectins, and hemicelluloses. This work aimed to comparatively assess the specific efficiency of the biosynthesis of bacterial and plant celluloses. For this purpose, some amount of bacterial nanocellulose gel-films was prepared under lab-scale conditions, sufficient for further functionalization, for example, by nitration. In this work, a semisynthetic nutrient medium and the symbiotic producer Medusomyces gisevii Sa-12 were used to obtain bacterial nanocellulose whose cultivation was carried out in a 400-dm3 Binder climatic chamber. It was consequently found that 9.7 to 16.1 g of absolutely dry bacterial nanocellulose could be obtained in one cycle at the laboratory. The annual growth of wood in the temperate zone of Russia is 0.60 t/ha; then, theoretically, if the mass content of cellulose in wood is assumed equal to 50 wt.%, 0.03 kg of cellulose can be extracted from 1 m2 a year under lab-scale conditions (if production losses are not factored in). The useful area of the Binder climatic chamber that can be used for stationary cultivation of bacterial nanocellulose is 0.79 m2; thus, it is possible to obtain 0.53 kg of dry bacterial nanocellulose from 1 m2 a year under lab-scale conditions, given the cultivation time of 14 days, which is 17.7 times more effective than the biosynthesis of wood cellulose. Freeze-dried bacterial nanocellulose was found to be suitable for the synthesis of nanoscale nitrates.
References
Paul, S. & Dutta A, (2018). Dutta Challenges and opportunities of lignocellulosic biomass for anaerobic digestion Resources. Conservation and Recycling, 164-174. doi:10.1016/j.resconrec.2017.12.0 05.
Amorim, J.D.P. & et al. (2020) Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineer-ing. A review Environmental Chemistry Letters, (18), 851-869. doi: 10.1007/s10311-020-00989-9.
Santhosh, A.S. & Umesh, M. (2024). Valorization of waste chilli stalks (Capsicum annuum) as a sustaina-ble substrate for cellulose extraction: insights into its thermomechanical, film forming and biodegradation properties. Biomass Conv. Bioref, 1-14
doi: 10.1007/s13399-024-05370-2
Klemm, D., & et al. (2018). Nanocellulose as a natural source for groundbreaking applications in mate-rials science: Today’s state. Materials Today, (7), 720-748. doi: 10.1016/j.mattod.2018.02.001.
Jiao, X. & Jia, K. et al. (2024). Nanocellulose-based functional materials towards water treatment. Car-bohydrate. Polymers, 122977. doi: 10.1016/j.carbpol.2024.122977.
Гмошинский И.В., Шипелин В.А., Хотимченко С.А. Наноцеллюлозы в пищевой промышленности и медицине: структура, получение и применение // Вопросы питания. 2022. № 3. С. 6-20. doi: 10.33029/0042-8833-2022-91-3-6-20.
Пыжев А.И., Гордеев Р.В., Цандер Е.В. Угле-родное регулирование как инструмент государ-ственной политики по стимулированию глубокой переработки лесного сырья в России // Сиб. фед. Округ. // Гуманитарные науки. 2024. № 6. С. 1183-1191.
Samyn, P. & et al. (2023). Opportunities for bac-terial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Interna-tional Journal of Biological Macromolecule, 123316. doi: 10.1016/j.ijbiomac.2023.123316.
Wang, J. & Tavakoli, J., Tang, Y. (2019). Bacte-rial cellulose production, properties and applications with different culture methods–A review. Carbohydrate polymers, 63-76. doi: 10.1016/j.carbpol.2019.05.008.
Yang, H. & et al. (2023). Nanocellulose-graphene composites: Preparation and applications in flexible electronics. International Journal of Biological Macromolecules, 126903. doi: 10.1016/j.ijbiomac.2023.126903.
Martínez, E. & et al. (2023). Nata de fique: A cost-effective alternative for the large-scale production of bacterial nanocellulose. Industrial Crops and Prod-ucts, 116015. doi: 10.1016/j.indcrop.2022.116015.
Coelho, R.M.D. & et al. (2020). Kombucha. In-ternational Journal of Gastronomy and Food Science, 100272. doi: 10.1016/j.ijgfs.2020.100272.
Spiridon, I. & Popa, V.I. (2008) Hemicelluloses: major sources, properties and applications. Monomers, polymers and composites from renewable resources, Elsevier, рр. 289-304. doi: 10.1016/B978-0-08-045316-3.00013-2.
Горбатова П.А., Шавыркина Н.А. Зависи-мость массовой доли азота в нитратах бактериальной наноцеллюлозы от содержания воды в нитрующей смеси // Южно-Сибирский научный вестник. 2023. № 5. С. 75-81. doi: 10.25699/SSSB.2023.51.5.009.
Chen, L., & Cao, X., Gao, J., et al. (2021). Ni-trated bacterial cellulose-based energetic nanocompo-sites as propellants and explosives for military applica-tions. ACS Applied Nano Materials, (4), 1906-1915. doi: 10.1021/acsanm.0c03263.
Gismatulina, Y.A. (2023). Promising energetic polymers from nanostructured bacterial cellulose. Poly-mers, (15), 2213. doi: 10.3390/polym15092213.
Klemm, D. & Petzold-Welcke, K.Б. et al. (2020) Biotech nanocellulose: A review on progress in product design and today’s state of technical and medical ap-plications. Carbohydr Polym, (254), 117313. doi: 10.1016/j.carbpol.2020.117313.
Shavyrkina, N.A. (2021). Scale-up of biosyn-thesis process of bacterial nanocellulose. Polymers, (12), 1920. doi: 10.3390/polym13121920.
Skiba, E.A. & Shavyrkina, N.A. et al. (2023) Bio-synthesis of Bacterial Nanocellulose from Low-Cost Cellulosic Feedstocks: Effect of Microbial Producer, 24. 14401. doi: 10.3390/ijms241814401.
Bogolitsyn, K., & Parshina, A., Aleshina, L. (2020). Structural features of brown algae cellulose. Cel-lulose, 27(17), 1-14. doi: 10.1007/s10570-020-03485-z.
Amorim, L.F.A. & et al. (2023). Sustainable bacterial cellulose production by low cost feedstock: Evalu-ation of apple and tea by-products as alternative sources of nutrients. Cellulose, (9), 5589-5606. doi: 10.1007/s10570-023-05238-0.
Shavyrkina, N.A., & et al. (2021). Static culture combined with aeration in biosynthesis of bacterial cel-lulose. Polymers, (23), 4241. doi: 10.3390/polym13234241.
Лесной фонд России // Справочник. М.: ВНИИЦ лесресурс. C. 208.
Ait, B.A. & et al. (2021). Extraction, characteriza-tion and chemical functionalization of phosphorylated cellulose derivatives from Giant Reed Plant. Cellulose, (8), 4625–4642. doi: 10.1007/s10570-021-03842-6.
Gabriel T., Wondu K., Dilebo J. Valorization of khat (Catha edulis) waste for the production of cellulose fibers and nanocrystals //PLoS One. 2021. T. 16. – №. 2. С. e0246794. doi: 10.1371/journal. pone.0246794.
Горбатова П.А., Шавыркина Н.А. Влияние температуры нитрования на свойства нитратов бактериальной целлюлозы // Технологии и оборудование химической, биотехнологической и пищевой промышленности: материалы XVII Всероссийской научно-практической конференции студентов, ас-пирантов и молодых ученых с международным участием (22-24 мая 2024 года, г. Бийск) / Алт. гос. техн. ун-т, БТИ. Бийск: Изд-во Алт. гос. техн. ун-та, 2024. C. 251-252.
Свойства нитратов целлюлозы, получен-ных нитрованием бактериальной целлюлозы с использованием смеси азотной и серной кислот / Горбатова П.А., Корчагина А.А. и др. // Известия ву-зов. Прикладная химия и биотехнология, 2024. Т. 14. №. 2. С. 236–244. doi: 10.21285/achb.915. EDN: OKCVTR.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anastasia A. Zenkova, Nadezhda A. Shavyrkina

This work is licensed under a Creative Commons Attribution 4.0 International License.