PHYSICAL AND MECHANICAL PROPERTIES OF SYSTEM ALLOYS Al-Co-Cr-Fe-Mn and Co-Cr-Fe-Mn-Ni OBTAINED BY METHOD OF ARC SURFADING OF FOX-Cored Wire
YJEFWU
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.03.025Keywords:
flux-cored wire, arc welding, microhardness, high-entropy materials, microstructure.Abstract
In the conditions of the research and production center "Welding Processes and Technologies", research samples of flux-cored electrode wires of the aluminum - cobalt - chromium - iron - manganese and cobalt - chromium - iron - manganese - nickel system were manufactured. The production of electrode wire of the aluminum - cobalt - chromium - iron - manganese system was carried out by filling a shell of 08PS steel. Electrode wire of the cobalt - chromium - iron - manganese - nickel system is made by filling a shell of steel 12Х18Н9. The filler of the manufactured flux-cored wires were the following alloying components: chromium powder with a chromium content of at least 98.5 %; metallic manganese with a manganese content of at least 99.7 %; aluminum chips; cobalt electrolytic powder with a cobalt content of at least 99 %; nickel carbonyl powder with a nickel content of at least 99.5 %. Using the method of automatic electric arc welding under a layer of flux OK FLUX 10.71 (ESAB), the manufactured electrode wires were deposited onto 9MnSi5 steel. A series of samples were made from the surface of deposited samples using electrical discharge cutting to study the distribution and absorption of chemical elements, conduct tensile tests, impact strength, and study microhardness. The obtained results of the distribution and assimilation of chemical elements indicate that the samples deposited with electrode wires have about 60-70 % Fe and 30-40 % of the introduced alloying components. The coating obtained by fusing electrode wire of the aluminum - cobalt - chromium - iron - manganese system is quite hard, but at the same time fragile (the microhardness of the deposited layer is two times higher than that of the substrate - 9MnSi5 steel). The alloy obtained by fusing electrode wire of the cobalt - chromium - iron - manganese - nickel system allows us to obtain a deposited layer that is 15 % harder than the substrate. At the same time, the resulting alloy has fairly high impact strength and tensile strength.
References
V. Burlaka, E. Lavrova. Impoving energy characteristics of the welding power sources for TIG-AC welding // Eastern-European Journal of Enterprise Technologies. 2019. Vol. 5, No. 5–101. P. 38–43. DOI: 10.15587/1729-4061.2019.180925.
Z. Lei, X. Cui, G. Jin [et al.]. Analysis of welding solidification crack in narrow gap laser welding of high-strength steel // The International Journal of Advanced Manufacturing Technology. 2022. Vol. 119, No. 7–8. P. 4177–4190. DOI: 10.1007/s00170-022-08659-6.
Z. Mikno, M. Stepien. Analysis of welding conditions at synchronous operation of resistance welding machines // The International Journal of Advanced Manufacturing Technology. 2024. Vol. 133, No. 3–4. P. 1915–1927. DOI: 10.1007/s00170-024-13682-w.
A. Lopata, I. Smirnov, M. Holovashchuk, V. Lopata. Investigation of the properties of coatings obtained by electric arc spraying // Problems of Tribology. 2023. Vol. 28, No. 1/107. P. 73–80. DOI: 10.31891/2079-1372-2023-107-1-73-80.
A.B. Shynarbek. Investigation of the process of electric arc metalization of coatings from steel 30KhGSA // Eurasian Physical Technical Journal. 2023. Vol. 20, No. 4 (46). P. 67–73. DOI: 10.31489/2023no4/67-73.
Н.Ф. Дмитриченко, А.А. Тамаргазин, Е.П. Пугачевская. Исследование свойств поверхностей, восстановленных электродуговыми покрытиями // Science Rise. 2016. Т. 12, № 2(29). С. 19–23. DOI: 10.15587/2313-8416.2016.85845.
Ф.И. Пантелеенко, М.А. Белоцерковский, М.Н. Карпец, А.В. Сосновский. Сравнительный анализ физико-механических свойств покрытий, нанесенных способами электродуговой и гиперзвуковой металлизации // Механика машин, механизмов и материалов. 2019. № 4(49). С. 48–54.
А.К. Кычкин, Г.Г. Винокуров, Н.Ф. Стручков. Исследование покрытий из порошковых проволок, модифицированных комплексным концентратом Томторского редкоземельного месторождения Рес-публики Саха (Якутия) // Известия Самарского научного центра Российской академии наук. 2018. Т. 20, № 6(86). С. 86–91.
В.А. Багров. Совершенствование сплавов системы Cr-Mn-Mo-Ti на основе железа // Машинобудування: Збірник наукових праць. 2015. № 16. С. 94–99.
И.В. Осетковский, Н.А. Козырев, А.И. Гусев [и др.]. Свойства металла, наплавленного порошковыми проволоками систем Fe-C-Si-Mn-Ni-Mo-W-V и Fe-C-Si-Mn-Cr-Ni-Mo-V // Вестник горнометаллургиче-ской секции Российской академии естественных наук. Отделение металлургии. 2017. № 38. С. 155–162.
S.F. Tseng, T.Y. Hung, C.M. Chang. Mechani-cal and microstructural properties of additively manufac-tured Ti–6Al–4 V stents with CO2 laser postannealing treatment // The International Journal of Advanced Man-ufacturing Technology. 2022. Vol. 119, No. 9–10. P. 6571–6581. DOI: 10.1007/s00170-021-08381-9.
Г.М. Григоренко, В.Н. Коржик, Л.И. Адеева [и др.]. Особенности металлургических процессов при плазменно-дуговом напылении покрытий, полученных из порошковой проволоки со стальной оболочкой и наполнителями В4С и B4C+ZrO2 // Вестник Приазовского государственного технического университета. Серия : Технические науки. 2016. № 32. С. 125–137.
S. Peleshenko, V. Korzhyk, O. Voitenko [et al.]. Analysis of the current state of additive welding technologies for manufacturing volume metallic products (review) // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, No. 1(87). P. 42–52. DOI: 10.15587/1729-4061.2017.99666.
Е.В. Полевой, Н.А. Козырев, А.Р. Михно [и др.]. Анализ параметров микроструктуры наплавленного слоя порошковой проволокой системы Fe-C-Si-Mn-Cr-Ni-MoV // Металловедение и термическая обработка металлов. 2022. № 12(810). С. 15–18. DOI: 10.30906/mitom.2022. 12.15-18.
N.A. Kozyrev, A.R. Mikhno, A.A. Usol'tsev [et al.]. The Possibility of Using Silicomanganese Slag and Ladle Electric Steelmaking Slag in Manufacture of Welding Fluxes // Steel in Translation. 2021. Vol. 51, No. 10. P. 683–687. DOI: 10.3103/S0967091221100065.
С.В. Райков, В.Е. Громов, Р.Е. Крюков, А.С. Князев. Износостойкие наплавки: свойства, структура и фазовый состав. Новокузнецк : Полиграфист, 2024. 179 с. ISBN 978-5-91797-333-3.
С.В. Михайлицын, М.А. Шекшеев, С.И. Пла-тов [и др.]. Исследование вязкости жидких сварочных шлаков и расплавов электродных покрытий // Известия высших учебных заведений. Черная металлургия. 2018. Т. 61, № 4. С. 280–287. DOI: 10.17073/0368-0797-2018-4-280-287.
V. Korzhyk, O. Burlachenko, D. Strohonov [et al.]. Effect of the technological parameters of plasma-arc spraying of fluxcored wire on the structure and properties of intermetallide coatings based on Fe3Al // Eastern-European Journal of Enterprise Technologies. 2023. Vol. 1, No. 12 (121). P. 6–15. DOI: 10.15587/1729-4061.2023.274062.
G. Langelandsvik, M. Eriksson, O.M. Akselsen, H.J. Roven. Wire arc additive manufacturing of AA5183 with TiC nanoparticles // The International Journal of Advanced Manufacturing Technology. 2021. DOI: 10.1007/s00170-021-08287-6.
D. Begmatov, U. Khaydarov, Sh. Saidkhodjaeva, F. Odilov. Improving the technology of welding chromiumnickel steels // Theoretical & Applied Science. 2021. No. 8(100). P. 282–290. DOI: 10.15863/TAS.2021.08.100.51
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Roman E. Kryukov, Alexey R. Mikhno, Irina A. Panchenko, Sergey V. Konovalov, Stanislav S. Perov

This work is licensed under a Creative Commons Attribution 4.0 International License.











.
This work is licensed under a 