SCHEMATIC SOLUTION OF A LOW-TEMPERATURE INSTALLA-TION WITH CARBON DIOXIDE RECIRCULATION TO REDUCE THE ENVIRONMENTAL BURDEN ON THE ENVIRONMENT

ZHFZWY

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2023.02.022

Keywords:

refrigeration machine; heat recovery; carbon dioxide; heat transfer.

Abstract

Refrigerating machines are used in many areas of industry to produce artificial cold. Refrigerating agents that carry out heat transfer are necessary for the operation of refrigeration units. As with any substance, refrigerating agents have their own service life, after which this substance must be disposed of. Unfortunately, most modern refrigerating agents are substances based on fluorocarbon compounds; there is an environmental hazard in the disposal of these substances. To reduce the level of environmental pollution by means of fluorine emission into the atmosphere, a number of technical solutions are currently being considered, one of which is the use of natural substances as refrigerating agents, one of which is carbon dioxide (R744). This article proposes a design solution for an installation running on carbon dioxide as a refrigerating agent, a feature of this installation is the principle of its operation. Refrigeration treatment in the chamber takes place in direct contact with carbon dioxide. A technique is proposed that allows calculating and selecting nodes of a CO2-powered refrigeration unit. A 3D model of the refrigeration unit has been developed according to the size of the equipment currently produced by the industry with the layout of the nodes allowing this installation to be mobile. The principle of recuperation implemented in the installation reduces the consumption of refrigerating agent, and the method of direct contact of carbon dioxide with the product significantly increases the freezing rate. The use of R744 as a refrigerant will reduce the concentration of emissions of ozone-depleting refrigerants, which in turn will have a beneficial effect on the current environmental situation.

References

Баранник В.П. Хладоносители нового поколения / В.П. Баранник // Холодильная техника. 2003. № 1. С. 14–15.

Современные технологии и оборудование для холодильной обработки и хранения пищевых продуктов / Г.А. Белозеров, М.А. Дибирасулаев, В.Н. Корешков // Холодильная техника. 2009. № 4. С. 18–22.

Технико-экономический анализ промышленных установок для производства сухого льда / В.А. Иодис, И.П. Сарайкина, Д.А. Шмелёв // Техни-ческая эксплуатация водного транспорта: проблемы и пути развития. 2022. .№ 3. С. 97–100.

Теплотехника в вопросах и ответах / А.И. Купреенко, В.И. Чащинов // Учебное пособие для студентов высших учебных заведений, обучающихся по направлению «Агроинженерия». 2010. № 29. С. 172.

Турбодетандерная установка на диоксиде углерода с производством жидкой и газообразной углекислоты / А.В. Овсянник // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2019. С. 77–87.

Авторефрижераторные установки на ди-оксиде углерода / Д.Г. Локтионов // Научное и техническое обеспечение холодильной промышленности. 2021. С. 92–95.

Исследование параметров процесса теплообмена при сублимации диоксида углерода / Е.Н. Неверов, И.А. Короткий, И.Б. Плотников, П.С. Коротких, А.А. Кожаев // Вестник КрасГАУ. 2020. № 6 (159). С. 215–222.

Применение снегообразного диоксида углерода для охлаждения мяса птицы / О.Н. Буянов, Е.Н. Неверов // Вестник Международной академии холода. 2006. № 4. С. 36–39.

Перспективы использования CO2 в холодильной технике пищевых предприятий / А.В. Антипов // Мясные технологии. 2012. С. 50–53.

Перспективы использования озонобезопасного хладагента CO2 в промышленной холодильной технике / С.В. Старовойтов, А.Н. Сысоев // Энергетика транспорта. Актуальные проблемы и задачи. 2021. № 4. С. 73–79.

Greencorn M.J., David Jackson S., Har-greaves J.S.J., Datta S. & Paul M.C. (2022). Thermo-dynamic limitations to direct CO2 utilisation within a small-scale integrated biomass power cycle. Energy Conversion and Management, 269 doi:10.1016/j.enconman. 2022.116144.

Tokpayev R., Khavaza T., Ibraimov Z., Ki-shibayev K., Atchabarova A., Abdimomyn S., Nau-ryzbayev M. (2022). Phosphogypsum conversion under conditions of SC-CO2. Journal of CO2 Utiliza-tion, 63 doi:10.1016/j.jcou.2022.102120.

Maksimov P., Nieminen H., Laar A. & Koiranen T. (2022). Sorption enhanced carbon diox-ide hydrogenation to methanol: Process design and optimization. Chemical Engineering Science, 252 doi:10.1016/j.ces. 2022.117498.

Rogalev A., Rogalev N., Kindra V., Koma-rov I. & Zlyvko O. (2021). Research and development of the oxy-fuel combustion power cycles with СО2 recirculation. Energies, 14(10) doi:10.3390/ en14102927.

Panão M.R.O., Franco P.A.G. & Costa J.J. (2020). Effect of atomizer geometry on particle for-mation in dryice sprays. International Journal of Mul-tiphase Flow, 130 doi:10.1016/j.ijmultiphaseflow. 2020.103358.

Tosato G., Minetto S., Rossetti A., Hafner A., Schlemminger C. & Girotto S. (2020). Field data of CO2 integrated refrigeration, heating and cooling systems for supermarkets. Paper presented at the Refrigeration Science and Technology, 2020-December 393-398. doi:10.18462/iir.gl.2020.

(2017). Report no.HPT-AN44-1 Performance Indicators for Energy Efficient Supermarket Buildings, Retrieved from www.scopus.com.

Gullo P., Hafner A., Banasiak K., Minetto, S. & Kriezi E.E. (2019). Multi-ejector concept: A com-prehensive review on its latest technological devel-opments. Energies, 12(3) doi:10.3390/en12030406.

Minetto S., Marinetti S., Saglia P., Mas-son N. & Rossetti A. (2018). Non-technological barriers to the diffusion of energy-efficient HVAC&R solu-tions in the food retail sector. International Journal of Refrigeration, 86, 422-434. doi:10.1016/j.ijrefrig.2017.11.022.

Minetto S., Tosato G., Rossetti A., Marinet-ti S., Girotto S. & Banasiak, K. (2019). Not-in-kind approach to remote monitoring in CO2 refrigeration systems. Paper presented at the Refrigeration Sci-ence and Technology, 2019-August 3517-3524. doi:10.18462/iir.icr.2019.1266 Retrieved from www.scopus.com.

Tosato G., Minetto S., Hafner A., Rossetti A., Marinetti S. & Girotto S. (2020). Field assessment of the performance of a state-of-the-art CO2 integrated system for supermarket with distributed HVAC termi-nals in the shopping area. 6th IIR ICCC Confer-ence, 26-28. Retrieved from www.scopus.com.

Published

2023-07-10

How to Cite

Neverov Е. Н. ., Korotkiy И. А. . ., Samar С. А. ., & Korotkih П. С. . . (2023). SCHEMATIC SOLUTION OF A LOW-TEMPERATURE INSTALLA-TION WITH CARBON DIOXIDE RECIRCULATION TO REDUCE THE ENVIRONMENTAL BURDEN ON THE ENVIRONMENT: ZHFZWY. Polzunovskiy VESTNIK, (2), 166–173. https://doi.org/10.25712/ASTU.2072-8921.2023.02.022

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)