PEPTIDE ENRICHED MODULE OF FUNCTIONAL ORIENTATION FOR THE PREVENTION OF OBESITY AND HYPERLIPIDEMIA

QBMKSQ

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2024.01.005

Keywords:

enzymatic hydrolysis, peptides, amino acids, zinc, taurine, bivalve mollusk Anadara broughtoni

Abstract

This paper presents the results of studies on the production of a functional peptide module enriched with the trace element zinc and taurine for the prevention of hyperlipidemia and obesity. The peptide module was obtained by biotechnological modification of soft tissues of the bivalve mollusk of the Far Eastern region Anadara broughtonii using an enzyme preparation - alkaline protease protozyme B, process conditions - pH 7.0-7.2, temperature 50 0C, duration 24 h. Zinc enrichment was carried out by a complexation reaction by adding a 20% aqueous ZnCl2 solution to the peptide module in a weight ratio of 6.25 × nitrogen in the liquid fraction : zinc chloride = 10:1. Process conditions: temperature 20-25 ° C, duration 60 min, pH 7.0-7.1. The content of the high-molecular fraction (weighing more than 160 kDa) was low and amounted to no more than 1.2%. The most represented fractions are low-molecular fractions with masses of 6.5-12.5 kDa, 12.5-18 kDa and 1.4-6.5 kDa. Low–molecular fractions weighing no more than 24 kDa are maximally determined in the peptide module of the mantle - 89.3%. The resulting peptide modules had a fairly high taurine content - 28.48-30.15% of the total amino acids. The most essential amino acids are leucine, lysine, valine, isoleucine, and the conditionally essential amino acid arginine. The maximum binding of the zinc trace element in both the peptide module of the muscle and the mantle occurs in fractions with molecular weights of 12.5-18 kDa and 6.5-12.5 kDa. A total of 81.1% (muscle) and 83.7% (mantle) of zinc is bound in low molecular weight fractions from 24 to less than 1.4 kDa. The minimum mass fraction of zinc was determined in high–molecular fractions with masses of more than 160 kDa and 67-160 kDa - a total of 4.2% (mantle) and 4.5% muscle. The use of the obtained peptide modules enriched with zinc and taurine in food systems will have an impact on the metabolic syndrome, including the prevention of hyperlipidemia and obesity.

References

WHO (2020), Obesity and overweight, https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

Kelly, T. Global burden of obesity in 2005 and projections to 2030. / T. Kelly, W. Yang, C.S. Chen // Int J Obes (Lond). 2008, 32(9), Р.1431-37

Дедов, И.И. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). / И.И. Дедов, М.В. Шестакова, Г.Р. Галстян // Сахарный диабет. - 2016, - №19(2), - С.104-112.

Must, A. The disease burden associated with overweight and obesity / A. Must, Spadano J., Coakley E.// JAMA.- 1999. - V.282, рр.1523-1529.

Guh, D. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis / D. Guh, W. Zhang, N. Bansback // BMC Public Health 2009.- V. 9.- рр.88.

Lenz, M. The morbidity and mortality associated with overweight and obesity in adulthood: a systematic review. / M. Lenz, T. Richter, I. Muhlhauser // Dtsch Arztebl Int.- 2009. V.106.- рр. 641-648.

Arroyo-Johnson, C. Obesity Epidemiology Worldwide. / C. Arroyo-Johnson, K.D. Mincey // Gastroenterol Clin North Am. – 2016.- V.45(4).- рр. 571-579.

Bary, G. A. Medicinal strategies in the treatment of obesity / G. A. Bary, L. A. Tartaglia // Nature, - 2000, - V.404(6778), - рр.672–677.

Тарасенко, Н.А. Разработка функциональных продуктов питания для профилактики ожирения / Н.А. Тарасенко // Известия высших учебных заведений. Пищевая технология. - 2015. - № 4. - С.60-63.

Тарасенко Н.А. Роль пищевых волокон в лечении и профилактике ожирения / Н.А. Тарасенко, З.А. Баранова, Н.Р. Третьякова // Научный журнал КубГАУ, - 2017, - №131(07), - 25. Doi: 10.21515/1990-4665-131-025

Blum, M. Vitamin D (3) in fat tissue / Blum M., Dolnikowski G., Seyoum E, Susan S. H. // Endocr Rev. – 2008. – V. 33. – P. 90-94.

Wamberg, L. Causes of Vitamin D Deficiency and Effect of Vitamin D Supplementation on Metabolic Complications in Obesity: a Review // L. Wamberg, S.B. Pedersen, L. Rejnmark, B. Richelsen // Curr Obes Rep. – 201.- V.4(4). – рр. 429-440. doi: https://doi.org/10.1007/s13679-015-0176-5

Rangel-Huerta, O. D. Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults / O. D. Rangel-Huerta, C. M. Aguilera, M. V. Martin // J. Nutr. – 2015. – V.145 (8),– рр. 1808–1816.

Бекетова, Н.А. Обеспеченность витаминами детей школьного возраста с ожирением / Н.А. Бекетова, Е.В. Павловская, В.М. Коденцова, О.А. Вржесинская, О.В. Кошелева, A.A. Сокольников, Т.В. Строкова // Вопросы питания. - 2019. - Т. 88(4). - С. 66-74.

Maret, W. Regulation of Cellular Zinc Ions and Their Signaling Functions. In: Zinc Signaling. Singapore: Springer; - 2019- рр.5-22. DOI: 10.3390/ijms18112285

Попова, А.Ю. О новых (2021) Нормах физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации / А.Ю. Попова, В.А. Тутельян, Д.Б. Никитюк // Вопросы питания. 2021. - Т 90(4), - С. 6-19. DOI: 10.33029/0042-8833-2021-90-4-6-19

Cruz, K.J.C. The effect of zinc supplementation on insulin resistance in obese subjects: a systematic review / K.J.C. Cruz, J.B.S. Morais, A.R.S. de Oliveira, J.S. Severo, D. do Nascimento Marreiro // Biol. Trace Elem.Res.- 2017.- V.176(2). – рр.239-243. DOI: 10.1007/s12011-016-0835-8

Severo, J.S. Effect of Zinc Supplementation on Lipid Profile in Obese People: A Systematic Review. / J.S. Severo, J. Morais, J.B. Beserra, L.M.de Farias, L.R. dos Santos, M.S.R. de Sousa, N.N. do Nascimento, M.D. do Nascimento // Curr. Nutr. Food Sci. – 2019. - V.15(6). – рр.551-556. DOI: 10.2174/1573401314666180420094522

Fernandez-Sanchez, A. Inflammation, oxidative stress, and obesity / A. Fernandez-Sanchez, E. Madrigal-Santillan, M. Bautista, J. Esquivel-Soto, A. Morales-Gonzalez, C. Esquivel-Chirino, I. Durante-Montiel, G. Sanchez-Rivera, C. Valadez-Vega, J.A. Morales-Gonzalez // Int.J. Mol. Sci.- 2011.- V.12(5). – pp. 3117-3132. DOI: 10.3390/ijms12053117

Olechnowicz, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. / J. Olechnowicz, A. Tinkov, A. Skalny, J. Suliburska // J. Physiol. Sci. – 2018. - V. 68(1).- pp. 19-31. DOI: 10.1007/s12576-017-0571-7

Baltaci, A.K. Leptin and zinc relation: in regulation of food intake and immunity / A.K. Baltaci, R. Mogulkoc // Indian J. Endocrinol. Metab. – 2012. - 16(3).- pp. 611-606. DOI: 10.4103/2230-8210.105579.

Зорин, С.Н. Органический источник ванадия. Получение и физико-химическая характеристика / С.Н. Зорин, Ю.С. Сидорова, Ю.Н. Лобанова, В.К. Мазо // Вопросы питания. - 2019.- Т. 88(1), -С. 85-90. DOI: 10.24411/0042-8833-2019-10010

Зорин, С.Н. Комплексы меди, марганца и хрома с ферментативным гидролизатом селезенки свиньи: исследование in vitro / С.Н. Зорин, Ю.С. Сидорова, А.П. Плетень, В.К. Мазо // Вопросы питания. - 2016. Т.85(1), - С. 81-84. DOI: 10.24411/0042-8833-2016-00010

Мазо, В.К. Пищевой хелатный комплекс (варианты) / В.К. Мазо, Л.С. Абрамова, С.Н. Зорин // Патент на изобретение RU 2376892 C1, 27.12.2009. Заявка № 2008132570/13 от 08.08.2008.

Chen, W. Effect of taurine on cholesterol degradation and bile acid pool in rats fed a high-cholesterol diet / W. Chen, N. Nishimura, H. Oda, h. Yokogoshi // Adv. Exp. Med. Biol. - 2003. - V. 526. - pp. 261–267. DOI:10.1007/978-1-4615-0077-3_33

Morsy, M.D. Taurine prevents high-fat diet-induced-hepatic steatosis in rats by direct inhibition of hepatic sterol regulatory element-binding proteins and activation of AMPK / M.D. Morsy, M.S. Aboonq, M.A. ALsleem, A.A. Abusham // Clin. Exp. Pharmacol. Physiol. - 2020. V.48. - pp. 72–85. DOI:10.1111/1440-1681.13387

Dong, Y. The molecular targets of taurine confer anti-hyperlipidemic effects / Y. Dong, X. Li, Y. Liu, J. Gao, J. Tao // Life Sci. -2021.- V. 278. - pp. 119579. DOI:10.1016/j.lfs.2021.119579

Yokogoshi, H. Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet / H. Yokogoshi, H. Mochizuki, K. Nanami, Y. Hida, F. Miyachi, H. Oda // J. Nutr. - 1999. - V.129. - pp. 1705–1712. DOI: 10.1093/jn/129.9.1705

Tsuboyama-Kasaoka, N. Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity / N. Tsuboyama-Kasaoka, C. Shozawa, K. Sano, Y. Kamei, S. Kasaoka, Y. Hosokawa, O. Ezaki // Endocrinology - 2006. - V. 147. – pp.3276–3284. DOI: 10.1210/en.2005-1007

Lin, S. aurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages / S. Lin, S. Hirai, Y. Yamaguchi, T. Goto, N. Takahashi, F. Tani // Mol. Nutr. Food Res. - 2013.- V. 57(12), - pp. 2155–2165. DOI: 10.1002/mnfr.201300150.

Rosenberg, I.M. Protein Analysis and Purification: Benchtop Techniques. — Springer Science±Business Media, LLC, 1996. 520 р. DOI: 10.1007/978-1-4757-1108-0.

Досон, Р. Справочник биохимика. / Р. Досон, Д. Эллиот, У. Эллиот // М.: Мир, 1991. 544 с. (Пер. с англ.)

Свириденко, Ю. Я. Научно-методические подходы к развитию технологии белковых гидролизатов для специального питания. Часть 1. Технология производства и технические характеристики гидролизатов / Ю. Я. Свириденко, Д. С. Мягконосов, Д. В. Абрамов, Е. Г. Овчинникова // Пищевая промышленность, - 2017.- № 5. - С.48-51.

Свириденко, Ю. Я. Научно-методические подходы к развитию технологии белковых гидролизатов для специального питания. Часть 2. Функциональные свойства белковых гидролизатов, зависящие от специфичности протеолитических процессов / Ю. Я. Свириденко, Д. С. Мягконосов, Д. В. Абрамов, Е. Г. Овчинникова // Пищевая промышленность, - 2017.- № 6. - С.50-53.

Tagawa, R. Long-term dietary taurine lowers plasma levels of cholesterol and bile acids / R. Tagawa, M. Kobayashi, M. Sakurai, M. Yoshida, H. Kaneko, Y. Mizunoe // Int. J. Mol. Sci. - 2022. - V. 23 (3), - 1793. DOI: 10.3390/ijms 23031793.

Inam-U-Llah Ameliorative effects of taurine against diabetes: a review / Inam-U-Llah, F. Piao, R.M. Aadil, R. Suleman, K. Li, M. Zhang // Amino Acids. - 2018. - V.50(5), - pp.487–502. DOI: 10.1007/s00726-018-2544-4

Morsy, M.D. Taurine prevents high-fat diet-induced-hepatic steatosis in rats by direct inhibition of hepatic sterol regulatory element-binding proteins and activation of AMPK // M.D. Morsy, M.S. Aboonq, M.A. ALsleem, A.A. Abusham // Clin. Exp. Pharmacol. Physiol. - 2020. - V. 48(1),- pp.72–85. DOI: 10.1111/1440-1681.13387

Don, Y. The molecular targets of taurine confer anti-hyperlipidemic effects / Y. Dong, X. Li, Y. Liu, J. Gao, J. Tao // Life Sci. - 2021. - V. 278. - pp. 119579. DOI: 10.1016/j.lfs.2021.119579

Yokogoshi, H. Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet / H. Yokogoshi, H. Mochizuki, K. Nanami, Y. Hida, F. Miyachi, H. Oda // J. Nutr. - 1999. - V. 129(9). - pp. 1705–1712. DOI: 10.1093/jn/129.9.1705

Wo´jcik, O.P. The potential protective effects of taurine on coronary heart disease. / O.P. Wo´jcik, K.L. Koenig, A. Zeleniuch-Jacquotte, M. Costa, Y. Chen // Atherosclerosis. - 2010. V. 208 (1). - pp. 19–25. DOI:10.1016/j.atherosclerosis.2009.06.002.

Published

2024-03-29

How to Cite

Tabakaev А. В. ., & Tabakaeva О. В. (2024). PEPTIDE ENRICHED MODULE OF FUNCTIONAL ORIENTATION FOR THE PREVENTION OF OBESITY AND HYPERLIPIDEMIA: QBMKSQ. Polzunovskiy VESTNIK, (1), 37–44. https://doi.org/10.25712/ASTU.2072-8921.2024.01.005

Issue

Section

SECTION 1. FOOD TECHNOLOGY