USE OF MODERN PROCESSING TECHNOLOGIES TO INCREASE THE STORAGE LIFE OF FRUIT AND VEGETABLES. REVIEW OF THE SUBJECT FIELD

AQZOQO

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2024.01.013

Keywords:

processing, antimicrobial substances, high hydrostatic pressure, ohmic heating, ultrasound, electromagnetic pulses, shelf life.

Abstract

Heat treatment, freezing, drying, packaging under aseptic conditions and treatment with antimicrobial agents are the main ways to preserve fruits and vegetables. At the same time, the canning methods used can have a negative impact on the quality of vegetables and fruits, so scientists are constantly searching and developing new technologies for processing raw materials that can ensure not only the safety of products, but also preserve their quality and nutritional value as much as possible. The purpose of the article is to review existing modern technologies for processing fruits and vegetables, their advantages and disadvantages, as well as prospects for industrial implementation in order to increase the shelf life of fruits and vegetables.

  The review includes articles in English and Russian. The search for foreign scientific literature in English on this topic was carried out in the bibliographic databases Scopus and Web of Science. To select scientific articles in Russian, we conducted a search using keywords in the “Scientific Electronic Library eLIBRARY.RU”.

  Preserving the quality and nutritional value of the product itself, ensuring its microbiological safety and increasing shelf life are the main goals of food industry enterprises. Traditional methods of food preservation used in industrial production are thermal processing methods. Research conducted over more than two decades is aimed at developing effective technologies that guarantee not only food safety, but also improve their quality (improved appearance, preserve nutritional value, etc.), increase shelf life and reduce production costs. These technologies are known as "emerging technologies". Examples of these include the use of high hydrostatic pressure, electromagnetic pulses, ohmic heating, cold plasma, the use of ultraviolet disinfection, ozonation, and smart packaging.

  Modern processing technologies have both many advantages and some significant limitations that do not allow these processing methods to be used effectively in industrial settings. The presented review can serve as material for other authors and researchers who carry out scientific developments in this direction. The results of this article may be useful to food industry specialists when choosing and implementing technology for processing fruits and vegetables

References

Бурак Л. Ч. Существующие способы обработки пищевых продуктов и их влияние на пищевую ценность и химический состав // Технологии пищевой и перерабатывающей промышленности АПК – продукты здорового питания. 2021. № 3. С. 59-73. https://doi.org/10.24412/2311-6447-2021-3-59-73

Salami S. A.,Luciano G., O’Grady M. N., Biondi L., Newbold C. J., Kerry J. P., Priolo A. Sustainability of Feeding Plant By-Products: A Review of the Implications for Ruminant Meat Production //Anim. Feed Sci. Technol. 2019.V. 251.p. 37–55. https://doi.org/10.1016/j.anifeedsci.2019.02.006

Mostafidi, M., Sanjabi, M. R.; Shirkhan, F.; Zahedi, M. T. A Review of Recent Trends in the Development of the Microbial Safety of Fruits and Vegetables // Trends Food Sci. Technol. 2020. V. 103.pp. 321–332 https://doi.org/10.1016/j.tifs.2020.07.009

Nerín, C.; Aznar, M.; Carrizo, D. Food Contamination During Food Process // Trends Food Sci. Technol. 2016. V.48.pp. 63–68. https://doi.org/10.1016/j.tifs.2015.12.004

Han, J. W.; Ruiz-Garcia, L.; Qian, J. P.; Yang, X. T. Food Packaging: A Comprehensive Review and Future Trends // Compr. Rev. Food Sci. Food Saf. 2018. V.17(4). pp. 860–877. https://doi.org/10.1111/1541-4337.12343

Nardella S., Conte A. Del Nobile MA. State-of-Art on the Recycling of By-Products from Fruits and Vegetables of Mediterranean Countries to Prolong Food Shelf Life.//Foods. 2022.V. 11(5) p. 665. https://doi.org/10.3390/foods11050665

Atuonwu J. C., Leadley C., Bosman A., Tassou S. A., Lopez-Quiroga E., Fryer P. J. Comparative Assessment of Innovative and Conventional Food Preservation Technologies: Process Energy Performance and Greenhouse Gas Emissions. Innov. Food Sci. Emerg. Technol. 2018, 50, 174–187. https://doi.org/10.1016/j.ifset.2018.09.008

Sayed-Ahmed, K. and Shabana, Y. M. Nanomaterials for Postharvest Management and Value Addition // CABI Books. CABI. 2023. V.8. https://doi.org/10.1079/9781800623095.0008

Leneveu-Jenvrin, C.; Charles, F.; Barba, F. J.; Remize, F. Role of Biological Control Agents and Physical Treatments in Maintaining the Quality of Fresh and Minimally-Processed Fruit and Vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60(17), 2837–2855. https://doi.org/10.1080/10408398.2019.1664979

Liang Y., Yao Y., Liu Y., Li Y., Xu C., Fu, L. Curcumin-loaded HKUST-1@ carboxymethyl starch-based composites with moisture-responsive release properties and synergistic antibacterial effect for perishable fruits// International Journal of BiologicalMacromolecules. 2022. V. 214. pp. 181– 191 https://doi.org/10.1016/j.ijbiomac.2022.06.022

Burak L. Ch., Sapach A.N., Pisarik M.I. Intelligent packaging for vegetables and fruits, classification and prospects for use: Review of the subject field // Health, Food & Biotechnology. 2023. T. 5. No. 1. P. 51-80.https://doi.org/10.36107/hfb.2023.i1.s165

López-Dávila E., Houbraken M., De Rop J. et al. Pesticide traces in local crops of Sancti Spíritus, Cuba: risk assessment study // FoodContamination . 2021.V.8 N.1 https://doi.org/10.1186/s40550-021-00081-2

Рыбкин И. Д., Григорьева М.В. Условия рационального использования химических средств защиты растений и минеральных удобрений в органическом сельском хозяйстве // Аграрный вестник Нечерноземья. 2022. № 2(6). С. 22-31.DOI 10.52025/2712-8679_2022_02_22

Yang R.,Xu T., Fan J., Zhang,Q., Ding, M., Huang,M.,Deng L, Guo Y. Natural Products-Based Pesticides: Design, Synthesis and Pesticidal Activities of Novel Fraxinellone Derivatives Containing N-Phenylpyrazole Moiety // Ind. Crop Prod. 2018.V. 117. pp.50–57. https://doi.org/10.1016/j.indcrop.2018.02.088

Yang R., Huang X., Che Z., Zhang Y., Xu H. Application of Sustainable Natural Resources in Crop Protection: Podophyllotoxin-Based Botanical Pesticides Derived from Podophyllum Hexandrum for Controlling Crop-Threatening Insect Pests// Ind. Crop Prod. 2017. V.107. pp. 45–53. https://doi.org/10.1016/j.indcrop.2017.05.033

Rashwan R. S., Hammad D. M. Toxic Effect of Spirulina Platensis and Sargassum Vulgar as Natural Pesticides on Survival and Biological Characteristics of Cotton Leaf Worm Spodoptera Littoralis // Sci. Afr. 2020.V.8. e00323. https://doi.org/10.1016/j.sciaf.2020.e00323

Pérez-Lavalle L, Carrasco E, Valero A. Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products // Foods. 2020. V. 28;9(11). P.1558. https://doi.org/10.3390%2Ffoods9111558

Özen T., Koyuncu M.A., Erbaş D. Effect of ozone treatments on the removal of pesticide residues and postharvest quality in green pepper // J Food Sci Technol. 2021. V. 58(6) pp.2186-2196. https://doi.org/10.1007/s13197-020-04729-3

Chen Y., Xie H., Tang J., Lin M., Hung Y. C., Lin H. Effects of Acidic Electrolyzed Water Treatment on Storability, Quality Attributes and Nutritive Properties of Longan Fruit During Storage //Food Chem. 2020. V.320.p. 126641. https://doi.org/10.1016/j.foodchem.2020.126641

Nyamende NE, Domtchouang FR, Belay ZA, Keyser Z, Oyenihi A, Caleb OJ. Alternative postharvest pre-treatment strategies for quality and microbial safety of 'Granny Smith' apple // Heliyon. 2021. V.21.7(5). e07104 https://doi.org/10.1016%2Fj.heliyon.2021.e07104

Sun, J.; Chen, H.; Xie, H.; Li, M.; Chen, Y.; Hung, Y. C.; Lin, H. Acidic Electrolyzed Water Treatment Retards Softening and Retains Cell Wall Polysaccharides in Pulp of Postharvest Fresh Longans and Its Possible Mechanism // Food Chem. X. 2022.V. 13. P.100265. https://doi.org/10.1016/j.fochx.2022.100265

Jia L., Li Y., Liu G., He J. Acidic Electrolyzed Water Improves the Postharvest Quality of Jujube Fruit by Regulating Antioxidant Activity and Cell Wall Metabolism // Sci. Hortic. 2022. V.304. p. 111253. https://doi.org/10.1016/j.scienta.2022.111253

Mahajan, P. V.; Caleb, O. J.; Singh, Z.; Watkins, C. B.; Geyer, M. Postharvest Treatments of Fresh Produce //Philos. Trans. Royal Soc. A. 2014.V. 372(2017).20130309 https://doi.org/10.1098/rsta.2013.0309

Liu D. K., Xu C. C., Guo C. X., Zhang X. X. Sub-Zero Temperature Preservation of Fruits and Vegetables: A Review // J. Food Eng. 2020.V. 275.p. 109881. https://doi.org/10.1016/j.jfoodeng.2019.109881

Yang R., Han Y., Han Z., Ackah S., Li Z., Bi Y., Yang Q., Prusky D. Hot Water Dipping Stimulated Wound Healing of Potato Tubers // Postharvest. Biol. Technol. 2020.V. 167. p.111245. https://doi.org/10.1016/j.postharvbio.2020.111245

El Hamahmy M. A. M., ElSayed A. I., Odero D. C. Physiological Effects of Hot Water Dipping, Chitosan Coating and Gibberellic Acid on Shelf-Life and Quality Assurance of Sugar Snap Peas (Pisum Sativum L. Var. Macrocarpon) // Food Packag. Shelf Life. 2017. V.11.pp. 58–66. https://doi.org/10.1016/j.fpsl.2016.12.002

Endo H., Miyazaki K.,Ose K., Imahori Y. Hot Water Treatment to Alleviate Chilling Injury and Enhance Ascorbate-Glutathione Cycle in Sweet Pepper Fruit During Postharvest Cold Storage // Sci. Hortic. 2019.V. 257.p. 108715. https://doi.org/10.1016/j.scienta.2019.108715

Гусейнова Б.М., Асабутаев И.Х., Даудова Т.И. Влияние низкотемпературных режимов консервирования на сохранность товарных качеств и нутриентного состава абрикосов с учетом сортовых особенностей и сроков хранения // Хранение и переработка сельхозсырья. 2021. №1. С.14-29 https://doi.org/10.36107/spfp.2021.185

James C., Seignemartin V., James S. J. The Freezing and Supercooling of Garlic (Allium Sativum L.) // Intern. J. Refrig. 2009.V. 32(2).pp. 253–260. https://doi.org/10.1016/j.ijrefrig.2008.05.012

Celli G. B.,Ghanem A., Su-Ling B. M. Influence of Freezing Process and Frozen Storage on Fruits and Fruit Products Quality. Food Rev. Int. 2015.V. 32(3).pp. 280–304. https://doi.org/10.1080/87559129.2015.1075212

Felizian E., Lichter A., Smilanick J. L., Ippolito A. Disinfecting Agents for Controlling Fruit and Vegetable Diseases After Harvest. Postharvest // Biol. Technol. 2016. V. 122. pp.53–69. https://doi.org/10.1016/j.postharvbio.2016.04.

Maisanaba, S.; Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Puerto, M.; Prieto, A. I.; Jos, A.; Cameán, A. M. New Advances in Active Packaging Incorporated with Essential Oils or Their Main Components for Food Preservation // Food Rev. Int. 2017.V. 33(5).pp. 447–515. https://doi.org/10.1080/87559129.2016.1175010

Ngnitcho P. F. K., Khan I.,Tango C. N., Hussain M. S., Oh D. H. Inactivation of Bacterial Pathogens on Lettuce, Sprouts, and Spinach Using Hurdle Technology. Innov// Food Sci. Emerg. Technol. 2017.V. 43.pp. 68–76. https://doi.org/10.1016/j.ifset.2017.07.033

Ramos-Villarroel A. Y., Martín-Belloso O., Soliva-Fortuny R. Combined Effects of Malic Acid Dip and Pulsed Light Treatments on the Inactivation of Listeria Innocua and Escherichia coli on Fresh-Cut Produce. // Food Control. 2015. V.52.pp. 112–118. https://doi.org/10.1016/j.foodcont.2014.12.020

Bhargava, K.; Conti, D. S.; da Rocha, S. R. P.; Zhang, Y. Application of an Oregano Oil Nanoemulsion to the Control of Foodborne Bacteria on Fresh Lettuce. Food Microbiol. 2015, 47, 69–73. https://doi.org/10.1016/j.fm.2014.11.007

Salvia-Trujillo L., Rojas-Graü M. A., Soliva-Fortuny R., Martín-Belloso O. Use of Antimicrobial Nanoemulsions as Edible Coatings: Impact on Safety and Quality Attributes of Fresh-Cut Fuji Apples. Postharvest // Biol. Technol. 2015. V.105.pp. 8–16. https://doi.org/10.1016/j.postharvbio.2015.03.009

Gao M.; Feng L., Jiang, T. Browning Inhibition and Quality Preservation of Button Mushroom (Agaricus bisporus) by Essential Oils Fumigation Treatmen t// Food Chem. 2014.V. 149. pp.107–113. https://doi.org/10.1016/j.foodchem.2013.10.073

Morales-de la Peña, M.; Welti-Chanes, J.; Martín-Belloso, O. Novel Technologies to Improve Food Safety and Quality // Curr. Opin. Food Sci. 2019. V. 30. pp. 1–7. https://doi.org/10.1016/j.cofs.2018.10.009

Yamamoto K. Food Processing by High Hydrostatic Pressure // Bioscience, Biotechnol. Biochem. 2017. V. 81(4). pp. 672–679. https://doi.org/10.1080/09168451.2017.1281723

Daher D., Le Gourrierec S., Pérez-Lamela C. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages //Agriculture. 2017. V.7(9). p. 72. https://doi.org/10.3390/agriculture7090072

Hu K., Peng D., Wang L. Liu H.,Xie B. ,Sun Z. Effect of Mild High Hydrostatic Pressure Treatments on Physiological and Physicochemical Characteristics and Carotenoid Biosynthesis in Postharvest Mango //Postharvest. Biol. Technol. 2021. V.172.p. 111381. https://doi.org/10.1016/j.postharvbio.2020.111381

Rux G., Gelewsky R., Schlüter O., Herppich W. B. High Hydrostatic Pressure Effects on Membrane-Related Quality Parameters of Fresh Radish Tubers //Postharvest. Biol. Technol. 2019. 151. pp.1–9. https://doi.org/10.1016/j.postharvbio.2019.01.007

Paciulli, M.; Medina-Meza, I. G.; Chiavaro, E.; Barbosa-Cánovas, G. V. Impact of Thermal and High-Pressure Processing on Quality Parameters of Beetroot (Beta Vulgaris L.) // LWT. 2016. V.68. pp.98–104. DOI: 10.1016/j.lwt.2015. 12.029

Viacava F., Ortega-Hernández E., Welti-Chanes J., Cisneros-Zevallos L., Jacobo-Velázquez D. A. Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the Biosynthesis of Free and Bound Phenolics in Whole Carrots // Food Bio. process Technol. 2020.V. 13(10). pp. 1717–1727 https://doi.org/10.1007/s11947-020-02512-y

Yu, G.; Bei, J.; Zhao, J.; Li, Q.; Cheng, C. Modification of Carrot (Daucus carota Linn. Var. Sativa Hoffm.) Pomace Insoluble Dietary Fiber with Complex Enzyme Method, Ultrafine Comminution, and High Hydrostatic Pressure // Food Chem. 2018.V. 257.pp. 333–340. DOI: 10.1016/j.foodchem.2018.03.037

Xie, F.; Zhang, W.; Lan, X.; Gong, S.; Wu, J.; Wang, Z. Effects of High Hydrostatic Pressure and High-Pressure Homogenization Processing on Characteristics of Potato Peel Waste Pectin // Carbohydr. Polym. 2018. V. 196.pp. 474–482. DOI: 10.1016/j.carbpol.2018.05.061

Zhou, C. L.; Liu, W.; Zhao, J.; Yuan, C.; Song, Y.; Chen, D.; Ni, Y. Y.; Li, Q. H. The Effect of High Hydrostatic Pressure on the Microbiological Quality and Physical-Chemical Characteristics of Pumpkin (Cucurbita Maxima Duch.) During Refrigerated Storage // Innov. Food Sci. Emerg. Technol. 2014. V. 21. pp.24–34. DOI: 10.1016/j.ifset.2013. 11.002.

Maitland, J. E.; Boyer, R. R.; Eifert, J. D.; Williams, R. C. High Hydrostatic Pressure Processing Reduces Salmonella enterica Serovars in Diced and Whole Tomatoes // Int. J. Food Microbiol. 2011.V. 149(2). pp.113–117. DOI: 10.1016/j.ijfoodmicro.2011.05.024.

Gürsul, I.; Gueven, A.; Grohmann, A.; Knorr, D. Pulsed Electric Fields on Phenylalanine Ammonia Lyase Activity of Tomato Cell Culture // J. Food Eng. 2016. V.188. pp.66–76 DOI: 10.1016/j.jfoodeng.2016.05.007

Jacobo-Velázquez, D. A.; Cuéllar-Villarreal, M. R.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Ramos-Parra, P. A.; Hernández-Brenes, C. Nonthermal Processing Technologies as Elicitors to Induce the Biosynthesis and Accumulation of Nutraceuticals in Plant Foods // Trends Food Sci. Technol. 2017.V. 60. pp. 80–87. https://doi.org/10.1016/j.tifs.2016.10.021

López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Electric Fields Affect Endogenous Enzyme Activities, Respiration and Biosynthesis of Phenolic Compounds in Carrots. Postharvest. Biol. Technol. 2020. V. 168.p. 111284. https://doi.org/10.1016/j.postharvbio.2020.111284

Salehi, F. Application of Pulsed Light Technology for Fruits and Vegetables Disinfection: A Review // J. Appl. Microbiol. 2022.V. 132(4). pp.2521–2530. DOI: 10.1111/jam.15389.

Li, J.; Shi, J.; Huang, X.; Wang, T.; Zou, X.; Li, Z.; Zhang, D.; Zhang, W.; Xu, Y. Effects of Pulsed Electric Field Pretreatment on Frying Quality of Fresh-Cut Lotus Root Slices // LWT. 2020.V.132. p. 109873. DOI: 10.1016/j.lwt.2020. 109873.

Katsenios, N.; Christopoulos, M. V.; Kakabouki, I.; Vlachakis, D.; Kavvadias, V.; Efthimiadou, A. Effect of Pulsed Electromagnetic Field on Growth, Physiology and Postharvest Quality of Kale (Brassica oleracea), Wheat (Triticum durum) and Spinach (Spinacia oleracea) Microgreens // Agronomy. 2021.V. 11(7).p. 1364. https://doi.org/10.3390/agronomy11071364

Liu, C.; Pirozzi, A.; Ferrari, G.; Vorobiev, E.; Grimi, N. Impact of Pulsed Electric Fields on Vacuum Drying Kinetics and Physicochemical Properties of Carrot // Food. Res. Int. 2020.V. 137.p. 109658. DOI: 10.1016/j.foodres. 2020.109658.

Hua, X.; Li, T.; Wu, C.; Zhou, D.; Fan, G.; Li, X.; Cong, K.; Yan, Z.; Wu, Z. Novel Physical Treatments (Pulsed Light and Cold Plasma) Improve the Quality of Postharvest Apricots After Long-Distance Simulated Transportation. Postharvest // Biol. Technol. 2022.V. 194. P.112098 https://doi.org/10.1016/j.postharvbio.2022.112098

Ertugay, M. F.; Başlar, M.; Ortakci, F. Effect of Pulsed Electric Field Treatment on Polyphenol Oxidase, Total Phenolic Compounds, and Microbial Growth of Apple Juice //Turk. J. Agric. For. 2013.V. 37. pp.772–780 DOI: 10.3906/ tar-1211-17

Gavahian, M.; Tiwari, B. K.; Chu, Y. H.; Ting, Y.; Farahnaky, A. Food Texture as Affected by Ohmic Heating: Mechanisms Involved, Recent Findings, Benefits, and Limitations // Trends Food Sci. Technol. 2019.V. 86. pp. 328–339. DOI: 10.1016/j.tifs.2019.02.022

Alcántara-Zavala, A. E.; Figueroa-Cárdenas, J. D.; Morales-Sánchez, E.; Aldrete-Tapia, J. A.; Arvizu-Medrano, S. M.; Martínez-Flores, H. E. Application of Ohmic Heating to Extend Shelf Life and Retain the Physicochemical, Microbiological, and Sensory Properties of Pulque // Food Bioprod. Process. 2019.V. 118.pp. 139–148. DOI: 10.1016/j. fbp.2019.09.007.

Kaur, N.; Singh, A. K. Ohmic Heating: Concept and Applications—A Review //Crit. Rev. Food Sci. Nutr. 2016. V. 56 (14). pp. 2338–2351. DOI: 10.1080/10408398.2013.835303

Jaeger, H.; Roth, A.; Toepfl, S.; Holzhauser, T.; Engel, K. H.; Knorr, D.; Vogel, R. F.; Bandick, N.; Kulling, S.; Heinz, V., et al. Opinion on the Use of Ohmic Heating for the Treatment of Foods // Trends Food Sci. Technol. 2016.V. 55.pp. 84–97 DOI: 10.1016/j.tifs.2016.07.007

Samaranayake, C. P.; Sastry, S. K. Effect of Moderate Electric Fields on Inactivation Kinetics of Pectin Methylesterase in Tomatoes: The Roles of Electric Field Strength and Temperature // J. Food Eng. 2016.V. 186.pp. 17–26. DOI: 10.1016/j.jfoodeng.2016.04.006.

Barrón-García, O. Y.; Nava-Álvarez, B.; Gaytán-Martínez, M.; Gonzalez-Jasso, E.; Morales-Sánchez, E. Ohmic Heating Blanching of Agaricus Bisporus Mushroom: Effects on Polyphenoloxidase Inactivation Kinetics, Color, and Texture// Innov. Food Sci. Emerg. Technol. 2022. V.80.p. 103105. DOI: 10.1016/j.ifset.2022.103105

Farahnaky, A.; Azizi, R.; Gavahian, M. Accelerated Texture Softening of Some Root Vegetables by Ohmic Heating // J. Food Eng. 2012.V. 113(2).pp. 275–280. DOI: 10.1016/j.jfoodeng.2012.05.039

Farber, R.; Dabush-Busheri, I.; Chaniel, G.; Rozenfeld, S.; Bormashenko, E.; Multanen, V.; Cahan, R. Biofilm Grown on Wood Waste Pretreated with Cold Low-Pressure Nitrogen Plasma: Utilization for Toluene Remediation // Int. Biodeterior. Biodegradation. 2019.V.139,.pp.62–69 https://doi.org/10.1016/j.ibiod.2019.03.003

Zhu, Y.; Li, C.; Cui, H.; Lin, L. Feasibility of Cold Plasma for the Control of Biofilms in Food Industry //Trends Food Sci. Technol. 2020. V. 99.pp. 142–151 https://doi.org/10.1016/j.tifs.2020.03.001

Deng, L. Z.; Mujumdar, A. S.; Pan, Z.; Vidyarthi, S. K.; Xu, J.; Zielinska, M.; Xiao, H. W. Emerging Chemical and Physical Disinfection Technologies of Fruits and Vegetables: A Comprehensive Review // Crit. Rev. Food Sci. Nutr. 2020. V. 60.pp. 2481–2508. https://doi.org/10.1080/10408398.2019.1649633

Lee, H.; Kim, J. E.; Chung, M. S.; Min, S. C. Cold Plasma Treatment for the Microbiological Safety of Cabbage, Lettuce, and Dried Figs // Food Microbiol. 2015.V. 51. pp.74–80 https://doi.org/10.1016/j.fm.2015.05.004

Giannoglou, M.; Stergiou, P.; Dimitrakellis, P.; Gogolides, E.; Stoforos, N. G.; Katsaros, G. Effect of Cold Atmospheric Plasma Processing on Quality and Shelf-Life of Ready-To-Eat Rocket Leafy Salad //Innov. Food Sci. Emerg. Technol. 2020. V. 66.p. 102502. https://doi.org/10.1016/j.ifset.2020.102502

Kumar-Mahnot, N.; Siyu, L. -P.; Wan, Z.; Keener, K. M.; Misra, N. N. In-Package Cold Plasma Decontamination of Fresh-Cut Carrots: Microbial and Quality Aspects. // J. Phys D: Appl Phys. 2020.V. 53(15). P. 154002. DOI: 10.1088/ 1361-6463/ab6cd3.

Zhang, X. L.; Zhong, C. S.; Mujumdar, A. S.; Yang, X. H.; Deng, L. Z.; Wang, J.; Xiao, H. W. Cold Plasma Pretreatment Enhances Drying Kinetics and Quality Attributes of Chili Pepper (Capsicum Annuum L.) // J. Food Eng. 2019.V. 241. pp. 51–57. https://doi.org/10.1016/j.jfoodeng.2018.08.002

Гафизов, Г. К.Ю., Пиреева М. А. Холодное хранение черешни без заморозки: выход стандартных плодов и потери // Плодоводство и виноградарство Юга России. – 2022. – № 77(5). С. 243-260. DOI 10.30679/2219-5335-2022-5-77-243-260

Mao, L.; Mhaske, P.; Zing, X.; Kasapis, S.; Majzoobi, M.; Farahnaky, A. Cold Plasma: Microbial Inactivation and Effects on Quality Attributes of Fresh and Minimally Processed Fruits and Ready-To-Eat Vegetables //Trends Food Sci. Technol. 2021.V. 116.pp.146–175 https://doi.org/10.1016/j.tifs.2021.07.002

Mousavi, S. M.; Imani, S.; Dorranian, D.; Larijani, K.; Shojaee, M. Effect of Cold Plasma on Degradation of Organophosphorus Pesticides Used on Some Agricultural Products// J. Plant Prot. Res. 2017. V.57(1). pp. 25–35. DOI: 10.1515/jppr-2017-0004

Gavahian, M.; Khaneghah, A. M. Cold Plasma as a Tool for the Elimination of Food Contaminants: Recent Advances and Future Trends // Crit. Rev. Food Sci. Nutr. 2020.V. 60(9). pp. 1581–1592. https://doi.org/10.1080/10408398.2019.1584600

Bergman RS. Germicidal UV Sources and Systems // Photochem Photobiol. 2021 V.97(3). pp.466-470 https://doi.org/10.1111/php.13387

Zhang, W.; Jiang, W. UV Treatment Improved the Quality of Postharvest Fruits and Vegetables by Inducing Resistance // Trends Food Sci. Technol. 2019. V. 92. pp. 71–80 https://doi.org/10.1016/j.tifs.2019.08.012

Pataro, G.; Donsi, G.; Ferrari, G. Post-Harvest UV-C and PL Irradiation of Fruits and Vegetables. // Chemi. Eng. Trans. 2015. V. 44. pp. 31–36 https://doi.org/10.3303/CET1544006

Le Goff, L.; Hubert, B.; Favennec, L.; Villena, I.; Ballet, J. J.; Agoulon, A.; Orange, N.; Gargala, G. Pilot-Scale Pulsed UV Light Irradiation of Experimentally Infected Raspberries Suppresses Cryptosporidium Parvum Infectivity in Immunocompetent Suckling Mice // J. Food Prot. 2015. V. 78(12). pp.2247–2252. https://doi.org/10.4315/0362-028x.jfp-15-062

Bermúdez-Aguirre, D.; Barbosa-Cánovas, G. V. Disinfection of Selected Vegetables Under Nonthermal Treatments: Chlorine, Acid Citric, Ultraviolet Light and Ozone // Food Control. 2013.V. 29(1).pp 82–90. https://doi.org/10.1016/j.foodcont.2012.05.073

Baykuş, G.; Akgün, M. P.; Unluturk, S. Effects of Ultraviolet-Light Emitting Diodes (UV-LEDs) on Microbial Inactivation and Quality Attributes of Mixed Beverage Made from Blend of Carrot, Carob, Ginger, Grape and Lemon Juice // Innov. Food Sci. Emerg. Technol. 2020. V. 67,.p.102572 https://doi.org/10.1016/j.ifset.2020.102572

Du, W. -X.; Avena-Bustillos, R. J.; Breksa, A. P.; McHugh, T. H. UV-B Light as a Factor Affecting Total Soluble Phenolic Contents of Various Whole and Fresh-Cut Specialty Crops // Postharvest. Biol. Technol. 2014.V. 93.pp. 72–82. https://doi.org/10.1016/j.postharvbio.2014.02.004

Vázquez-Ovando, A.; López-Hilerio, H.; Salvador-Figueroa, M.; Adriano-Anaya, L.; Rosas-Quijano, R.; GálvezLópez, D. Uso combinado de radiación UV-C y biorecubrimiento de quitosán con aceites esenciales para el control de hongos en papaya Maradol // Revista Bras. Frutic. 2018. V. 40(3). e688. DOI: 10.1590/0100-29452018688

Brodowska, A. J.; Nowak, A.; Śmigielski, K. Ozone in the Food Industry: Principles of Ozone Treatment, Mechanisms of Action, and Applications: An Overview // Crit. Rev. Food Sci. Nutr. 2018.V. 58(13).pp. 2176–2201. https://doi.org/10.1080/10408398.2017.1308313

Pandiselvam, R.; Kaavya, R.; Jayanath, Y.; Veenuttranon, K.; Lueprasitsakul, P.; Divya, V.; Kothakota, A.; Ramesh, S. V. Ozone as a Novel Emerging Technology for the Dissipation of Pesticide Residues in Foods–A Review // Trends Food Sci. Technol. 2020. V.97. pp. 38–54. https://doi.org/10.1016/j.tifs.2019.12.017

Mohammad, Z.; Kalbasi-Ashtari, A.; Riskowski, G.; Juneja, V.; Castillo, A. Inactivation of Salmonella and Shiga Toxin-Producing Escherichia coli (STEC) from the Surface of Alfalfa Seeds and Sprouts by Combined Antimicrobial Treatments Using Ozone and Electrolyzed Water // Food. Res. Int. 2020.V. 136. p. 109488. https://doi.org/10.1016/j.foodres.2020.109488

Taiye-Mustapha, A.; Zhou, C.; Wahia, H.; Amanor-Atiemoh, R.; Otu, P.; Qudus, A.; Abiola Fakayode, O.; Ma, H. Sonozonation: Enhancing the Antimicrobial Efficiency of Aqueous Ozone Washing Techniques on Cherry Tomato // Ultrason. Sonochem. 2020. V. 64.p.105059. https://doi.org/10.1016/j.ultsonch.2020.105059

Бурак, Л. Ч. Использование озоновой технологии в пищевой промышленности // Минск : Государственное предприятие «СтройМедиаПроект». 2022. 144 с. ISBN 978-985-7172-84-9 https://doi.org/10.12731/978-985-7172-84-9

Sharma, P.; Shehin, V. P.; Kaur, N.; Vyas, P. Application of Edible Coatings on Fresh and Minimally Processed Vegetables: A Review // Int. J. Veg. Sci. 2019.V. 25(3). pp. 295–314. https://doi.org/10.1080/19315260.2018.1510863

Hassan, B.; Chatha, S. A. S.; Hussain, A. I.; Zia, K. M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review // Int. J. Biol. Macromol. 2018.V. 109. pp.1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

Janesch, J.; Arminger, B.; Gindl-Altmutter, W.; Hansmann, C. Coatings Superhydrophobic Coatings on Wood Made of Plant Oil and Natural Wax // Prog. Org. Coat. 2020.V. 148. P.105891. https://doi.org/10.1016/j.porgcoat.2020.105891

Singh, S.; Khemariya, P.; Rai, A.; Chandra, A.; Koley, T. K.; Singh, B. Carnauba Wax-Based Edible Coating Enhances Shelf-Life and Retain Quality of Eggplant (Solanum melongena) Fruits // LWT. 2016. V. 74. pp.420–426. https://doi.org/10.1016/j.lwt.2016.08.004

Oregel-Zamudio, E.; Angoa-Pérez, M. V.; Oyoque-Salcedo, G.; Aguilar-González, C. N.; Mena-Violante, H. G. Effect of Candelilla Wax Edible Coatings Combined with Biocontrol Bacteria on Strawberry Quality During the Shelf-Life. Sci. Hortic. 2017, 214, 273–279. https://doi.org/10.1016/j.scienta.2016.11.038

Ayesha, T.; Nasrin, A.; Rahman, A.; Sadia, M.; Islam, N. Effect of Novel Coconut Oil and Beeswax Edible Coating on Postharvest Quality of Lemon at Ambient Storage. // J. Agric. Food Res. 2020. V. 2. P.100019. https://doi.org/10.1016/j.jafr.2019.100019

Feng, Z.; Wu, G.; Liu, C.; Li, D.; Jiang, B.; Zhang, X. Edible Coating Based on Whey Protein Isolate Nanofibrils for Antioxidation and Inhibition of Product Browning // Food Hydrocoll. 2018. V.79.pp. 179–188. https://doi.org/10.1016/j.foodhyd.2017.12.028

Tulamandi, S.; Rangarajan, V.; Rizvi, S. S. H.; Singhal, R. S.; Chattopadhyay, S. K.; Saha, N. C. A Biodegradable and Edible Packaging Film Based on Papaya Puree, Gelatin, and Defatted Soy Protein // Food Packag. Shelf Life. 2016.V. 10. pp. 60–71. https://doi.org/10.1016/j.fpsl.2016.10.007

Cortez-Vega, W. R.; Pizato, S.; De Souza, J. T. A.; Prentice, C. Using Edible Coatings from Whitemouth Croaker (Micropogonias furnieri) Protein Isolate and Organo-Clay Nanocomposite for Improve the Conservation Properties of Fresh-Cut “Formosa” Papaya // Innov. Food Sci. Emerg. Technol. 2014.V. 22. pp. 197–202. DOI: 10.1016/ j.ifset.2013.12.007.

Grosso, A. L.; Asensio, C. M.; Grosso, N. R.; Nepote, V. Increase of Walnuts’ Shelf Life Using a Walnut Flour Protein-Based Edible Coating // LWT. 2020.V. 118. p. 108712. https://doi.org/10.1016/j.lwt.2019.108712

González-Estrada, R. R.; Chalier, P.; Ragazzo-Sánchez, J. A.; Konuk, D.; Calderón-Santoyo, M. Antimicrobial Soy Protein Based Coatings: Application to Persian Lime (Citrus latifolia Tanaka) for Protection and Preservation // Postharvest. Biol. Technol. 2017. 132. pp. 138–144. https://doi.org/10.1016/j.postharvbio.2017.06.005

Mohamed, S. A. A.; El-Sakhawy, M.; El-Sakhawy, M. A. M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review // Carbohydr. Polym. 2020.V. 238.p. 116178. https://doi.org/10.1016/j.carbpol.2020.116178

Lara, G.; Yakoubi, S.; Villacorta, C. M.; Uemura, K.; Kobayashi, I.; Takahashi, C.; Nakajima, M.; Neves, M. A. Spray Technology Applications of Xanthan Gum-Based Edible Coatings for Fresh-Cut Lotus Root (Nelumbo nucifera). Food. Res. Int. 2020.V. 137.p. 109723. https://doi.org/10.1016/j.foodres.2020.109723

Dos Passos-Braga, S.; Magnani, M.; Madruga, M. S.; de Souza-Galvão, M.; de Medeiros, L. L.; Batista, A. U. D.; Dias, R. T. A.; Fernandes, L. R.; de Medeiros, E. S.; de Souza, E. L. Characterization of Edible Coatings Formulated with Chitosan and Mentha Essential Oils and Their Use to Preserve Papaya (Carica Papaya L.) // Innov. Food Sci. Emerg. Technol. 2020. V. 65.p. 102472. https://doi.org/10.1016/j.ifset.2020.102472

Hu, X.; Saravanakumar, K.; Sathiyaseelan, A.; Wang, M. -H. Chitosan Nanoparticles as Edible Surface Coating Agent to Preserve the Fresh-Cut Bell Pepper (Capsicum Annuum L. Var. grossum (L.) Sendt). Int. J. Biol. Macrom. 2020. V. 165.pp. 948–957. https://doi.org/10.1016/j.ijbiomac.2020.09.176

Salama, H. E.; Abdel Aziz, M. S. Optimized Alginate and Aloe Vera Gel Edible Coating Reinforced with NTiO2 for the Shelf-Life Extension of Tomatoes // Int. J. Biol. Macrom. 2020.V.165.pp. 2693–2701. https://doi.org/10.1016/j.ijbiomac.2020.10.108

Monzón-Ortega, K.; Salvador-Figueroa, M.; Gálvez-López, D.; Rosas-Quijano, R.; Ovando-Medina, I.; VázquezOvando, A. Characterization of Aloe Vera-Chitosan Composite Films and Their Use for Reducing the Disease Caused by Fungi in Papaya Maradol. J. Food Sci. Technol. 2018, 55(12), 4747–4757. https://doi.org/10.1007/s13197-018-3397-2

Wu, S. Extending Shelf-Life of Fresh-Cut Potato with Cactus Opuntia Dillenii Polysaccharide-Based Edible Coatings // Int. J. Biol. Macrom. 2019. V. 130.pp. 640–644. https://doi.org/10.1016/j.ijbiomac.2019.03.022

Kumar, K.; Srivastav, S.; Sharanagat, V. S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-Products: A Review // Ultrason. Sonochem. 2021. V.70. p.105325. https://doi.org/10.1016/j.ultsonch.2020.105325

Bhargava, N.; Mor, R. S.; Kumar, K.; Sharanagat, V. S. Advances in Application of Ultrasound in Food Processing: A Review // Ultrason. Sonochem. 2021.V. 70.p. 105293. https://doi.org/10.1016/j.ultsonch.2020.105293

Jiang, L.; Yang, Y.; Chen, Y.; Zhou, Q. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications // Nano. Energy. 2020. 77.p. 105131. https://doi.org/10.1016/j.nanoen.2020.105131

Cuéllar-Villarreal, M. R.; Ortega-Hernández, E.; Becerra-Moreno, A.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. A. Effects of Ultrasound Treatment and Storage Time on the Extractability and Biosynthesis of Nutraceuticals in Carrot (Daucus carota )// Postharvest. Biol. Technol. 2016.V. 119. pp. 18–26. https://doi.org/10.1016/j.postharvbio.2016.04.013

Millan-Sango, D.; Garroni, E.; Farrugia, C.; Van Impe, J. F.; Valdramidis, V. P. Determination of the Efficacy of Ultrasound Combined with Essential Oils on the Decontamination of Salmonella Inoculated Lettuce Leaves // LWT. 2016.V. 73. pp. 80–87. https://doi.org/10.1016/j.lwt.2016.05.039

Millan-Sango, D.; Sammut, E.; Van Impe, J. F.; Valdramidis, V. P. Decontamination of Alfalfa and Mung Bean Sprouts by Ultrasound and Aqueous Chlorine Dioxide // LWT. 2017.V. 78. pp. 90–96. https://doi.org/10.1016/j.lwt.2016.12.015

Xin, Y.; Zhang, M.; Adhikari, B. Ultrasound Assisted Immersion Freezing of Broccoli (Brassica Oleracea L. Var. Botrytis L.) // Ultrason. Sonochem. 2014. V.21(5). pp.1728–1735. https://doi.org/10.1016/j.ultsonch.2014.03.017

Tu, J.; Zhang, M.; Xu, B.; Liu, H. Effects of Different Freezing Methods on the Quality and Microstructure of Lotus (Nelumbo nucifera) Root // Int. J. Refrig. 2015. V. 52. pp.59–65. https://doi.org/10.1016/j.ijrefrig.2014.12.015

Mu, Y.; Feng, Y.; Wei, L.; Li, C.; Cai, G.; Zhu, T. Combined Effects of Ultrasound and Aqueous Chlorine Dioxide Treatments on Nitrate Content During Storage and Postharvest Storage Quality of Spinach (Spinacia Oleracea L.) // Food Chem. 2020.V. 333. P.127500 https://doi.org/10.1016/j.foodchem.2020.127500

Chiozzi, V.; Agriopoulou, S.; Varzakas, T. Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) Against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing // Appl. Sci. 2022.V. 12(4).p. 2202. https://doi.org/10.3390/app12042202

Wohner, B.; Gabriel, V. H.; Krenn, B.; Krauter, V.; Tacker, M. Environmental and Economic Assessment of Food-Packaging Systems with a Focus on Food Waste. Case Study on Tomato Ketchup // Sci. Total Environ. 2020. V. 738.p. 139846. https://doi.org/10.1016/j.scitotenv.2020.139846

Nilsen-Nygaard J, Fernández EN, Radusin T, et al. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies // Compr Rev Food Sci Food Saf. 2021. V.20(2). pp. 1333-1380 https://doi.org/10.1111/1541-4337.12715

Deepa, G. T.; Chetti, M. B.; Khetagoudar, M. C.; Adavirao, G. M. Influence of Vacuum Packaging on Seed Quality and Mineral Contents in Chilli (Capsicum Annuum L.) // J. Food Sci. Technol. 2013. V. 50(1). pp.153–158. https://doi.org/10.1007/s13197-011-0241-3

Padmanaban, G.; Singaravelu, K.; Annavi, S. T. Increasing the Shelf-Life of Papaya Through Vacuum Packing // J. Food Sci. Technol. 2014.V. 51(1).pp. 163–167. https://doi.org/10.1007/s13197-011-0468-z

Zhang, S. J.; Hu, T. T.; Liu, H. K.; Chen, Y. Y.; Pang, X. J.; Zheng, L. L.; Chang, S. M.; Kang, Y. F. Moderate Vacuum Packing and Low Temperature Effects on Qualities of Harvested Mung Bean (Vigna Radiata L.) // Sprouts. Postharvest. Biol. Technol. 2018. V.145.pp. 83–92. https://doi.org/10.1016/j.postharvbio.2018.06.

Zandi, M.; Ganjloo, A.; Bimakr, M.; Moradi, N.; Nikoomanesh, N. Effect of Active Coating Containing Radish Leaf Extract with or Without Vacuum Packaging on the Postharvest Changes of Sweet Lemon During Cold Storage // J. Food Process Preserv. 2021. V.45(3). e15252. https://doi.org/10.1111/jfpp.15252

Dorostkar, M.; Moradinezhad, F. Postharvest Quality Responses of Pomegranate Fruit (Cv. Shishekab) to Ethanol, Sodium Bicarbonate Dips and Modified Atmosphere Packaging // Adv. Hortic. Sci. 2022.V. 36(2).pp. 107–117. https://doi.org/10.36253/ahsc-12041

Wilson, M. D.; Stanley, R. A.; Eyles, A.; Ross, T. Innovative Processes and Technologies for Modified Atmosphere Packaging of Fresh and Fresh-Cut Fruits and Vegetables // Crit. Rev. Food Sci. Nutr. 2019. V. 59(3). pp. 411–422. https://doi.org/10.1080/10408398.2017.1375892

Kim, S. Y.; Bang, I. H.; Min, S. C. Effects of Packaging Parameters on the Inactivation of Salmonella Contaminating Mixed Vegetables in Plastic Packages Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment // J. Food Eng. 2019. V.242. pp. 55–67. https://doi.org/10.1016/j.jfoodeng.2018.08.020

Han-Lyn, F.; Maryam-Adilah, Z. A.; Nor-Khaizura, M. A. R.; Jamilah, B.; Nur-Hanani, Z. A. Application of Modified Atmosphere and Active Packaging for Oyster Mushroom (Pleurotus ostreatus) // Food Packag. Shelf Life. 2020. V. 23.p. 100451. https://doi.org/10.1016/j.fpsl.2019.100451

Mudau, A. R.; Soundy, P.; Araya, H. T.; Mudau, F. N. Influence of Modified Atmosphere Packaging on Postharvest Quality of Baby Spinach (Spinacia Oleracea L.) Leaves //HortScience. 2018. V.53(2). pp. 224–230. https://doi.org/10.21273/HORTSCI12589-17

Candir, E.; Ozdemir, A. E.; Aksoy, M. C. Effects of Chitosan Coating and Modified Atmosphere Packaging on Postharvest Quality and Bioactive Compounds of Pomegranate Fruit Cv.‘Hicaznar’ // Sci. Hortic. 2018. V. 235. pp. 235–243. https://doi.org/10.1016/j.scienta.2018.03.017

Olawuyi, I. F.; Park, J. J.; Lee, J. J.; Lee, W. Y. Combined Effect of Chitosan Coating and Modified Atmosphere Packaging on Fresh-Cut Cucumber // Food Sci. Nutr. 2019. V. 7(3). pp. 1043–1052. https://doi.org/10.1002/fsn3.937

Бурак, Л. Ч. Cапач А.Н. Инновационная упаковка для пищевых продуктов // Научное обозрение. Технические науки. 2023. № 2. С. 50-57. https://doi.org/10.17513/srts.1434

Gaona-Forero, A.; Agudelo-Rodríguez, G.; Herrera, A. O.; Castellanos, D. A. Modeling and Simulation of an Active Packaging System with Moisture Adsorption for Fresh Produce. Application in ‘Hass’ Avocado // Food Packag. Shelf Life. 2018. V.17. pp.187–195. https://doi.org/10.1016/j.fpsl.2018.07.005

Priyadarshi, R.; Sauraj, K.; Negi, B.; S, Y. Chitosan Film Incorporated with Citric Acid and Glycerol as an Active Packaging Material for Extension of Green Chilli Shelf Life //Carbohydr. Polym. 2018. V. 195. pp. 329–338. https://doi.org/10.1016/j.carbpol.2018.04.089

Szabo, K.; Teleky, B. E.; Mitrea, L.; Călinoiu, L. F.; Martău, G. A.; Simon, E.; Varvara, R. A.; Vodnar, D. C. Active Packaging—Poly(vinyl Alcohol) Films Enriched with Tomato By-Products Extract // Coatings. 2020.V. 10(2).p. 141. https://doi.org/10.3390/coatings10020141

Sanches, M. A. R.; Camelo-Silva, C.; Da Silva Carvalho, C.; De Mello, J. R.; Barroso, N. G.; Da Silva Barros, E. L.; Paulino, S. P.; Pertuzatti, P. B. Active Packaging with Starch, Red Cabbage Extract and Sweet Whey: Characterization and Application in Meat //LWT. 2021. V. 135.p.110275. https://doi.org/10.1016/j.lwt.2020.110275

Fuertes, G.; Soto, I.; Carrasco, R.; Vargas, M.; Sabattin, J.; Lagos, C. Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety // J. Sens. 2016.V. 2016.p. 4046061. https://doi.org/10.1155/2016/4046061

Бурак, Л. Ч. Обзор разработок биоразлагаемых упаковочных материалов для пищевой промышленности // Ползуновский вестник. 2023. № 1. С. 91-105. https://doi.org/10.25712/ASTU.2072-8921.2023.01.012

Dirpan, A.; Latief, R.; Syarifuddin, A.; Rahman, A. N. F.; Putra, R. P.; Hidayat, S. H. The Use of Colour Indicator as a Smart Packaging System for Evaluating Mangoes Arummanis (Mangifera Ndica Var, L. The Use of Colour Indicator as A Smart Packaging System for Evaluating Mangoes Arummanis (Mangifera ndica. IOP Conf. S.: Earth Environ. Sci. 2018.V.157. p.012031. DOI: 10.1088/1755-1315/157/1/012031

Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and Smart Biodegradable Packaging Based on Starch and Natural Extracts. //Carbohydr. Polym. 2017. V. 176.pp. 187–194. https://doi.org/10.1016/j.carbpol.2017.08.079

Бурак Л. Ч., Сапач А.Н., Писарик М.И. Интеллектуальная упаковка для овощей и фруктов, классификация и перспективы использования: Обзор предметного поля // Health, Food & Biotechnology. 2023. Т. 5. № 1. С. 51-80 https://doi.org/10.36107/hfb.2023.i1.s165

Wang, C.; Yusufu, D.; Mills, A. A Smart Adhesive “Consume Within” (CW) Indicator for Food Packaging // Food Pack. Shelf Life. 2019. V. 22. p. 100395. https://doi.org/10.1016/j.fpsl.2019.100395

Latos-Brozio, M.; Masek, A. The Application of Natural Food Colorants as Indicator Substances in Intelligent Biodegradable Packaging Materials // Food. Chem. Toxicol. 2020. V. 135. P. 110975. https://doi.org/10.1016/j.fct.2019.110975

Shao, P., Liu, L., Yu, J., Zheng, L., Sun, P. Novel aldehyde sensitive bio-based colorimetric film for kiwi fruit freshness monitoring // LWT. V.159. p. 113177. https://doi.org/10.1016/j.lwt.2022.113177

Lu, P., Liu, R., Liu, X., Wu, M. Preparation of Self-supporting bagasse cellulose nanofibrils hydrogels induced by zinc ions // Nanomaterials. 2018. V. 8(10). P.800. https://doi.org/10.3390/nano8100800

Warsiki, E., & Rofifah, N. Dragon fruit freshness detector based on methyl red colour indicator //IOP Conference Series: Earth and Environmental Science. 2018.V.209.p. 012016. https://doi.org/10.1088/1755-1315/209/1/012016

Kuswandi, B., & Murdyaningsih, E. A. Simple on package indicator label for monitoring of grape ripening process using colorimetric pH sensor // Journal of Food Measurement and Characterization. 2017 V. 11(4) pp.2180– 2194. https://doi.org/10.1007/s11694-017-9603-5

Zhou, W., Wu, Z., Xie, F., Tang, S., Fang, J., & Wang, X. 3D printed nanocellulose-based label for fruit freshness keeping and visual monitoring // Carbohydrate Polymers. 2021. V.273. p.118545. https://doi.org/10.1016/j.carbpol.2021.118545

Maftoonazad, N., & Ramaswamy, H. Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab) //PolymerTesting. 2019.V. 75. pp. 76– 84

https://doi.org/10.1016/j.polymertesting.2019.01.011

Liu, M., Zhang, J., Liu, S., & Li, B. A label-free visual aptasensor for zearalenone detection based on target-responsive aptamer-cross-linked hydrogel and color change of gold nanoparticles // Food Chemistry. 2022. V. 389. P.133078. https://doi.org/10.1016/j.foodchem.2022.133078

Onyeaka, H.; Miri, T.; Hart, A.; Anumudu, C.; Nwabor, O. F. Application of Ultrasound Technology in Food Processing with Emphasis on Bacterial Spores // Food Rev. Int. 2021. V. 1–13. pp. 3663-3675 https://doi.org/10.1080/87559129.2021.2013255

Mieszczakowska-Frąc, M.; Celejewska, K.; Płocharski, W. Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products // Antioxidants. 2021.V. 10(1). p. 54. https://doi.org/10.3390/antiox10010054

Hradecky, J.; Kludska, E.; Belkova, B.; Wagner, M.; Hajslova, J. Ohmic Heating: A Promising Technology to Reduce Furan Formation in Sterilized Vegetable and Vegetable/Meat Baby Foods // Innov. Food Sci. Emerg. Technol. 2017.V. 43.pp. 1–6. https://doi.org/10.1016/j.ifset.2017.07.018

Wang, M. S.; Wang, L. H.; Bekhit, A. E. D. A.; Yang, J.; Hou, Z. P.; Wang, Y. Z.; Dai, Q. Z.; Zeng, X. A. A Review of Sublethal Effects of Pulsed Electric Field on Cells in Food Processing // J. Food Eng. 2018. V. 223.pp. 32–41. https://doi.org/10.1016/j.jfoodeng.2017.11.035

Wu, X.; Wang, C.; Guo, Y. Effects of the High-Pulsed Electric Field Pretreatment on the Mechanical Properties of Fruits and Vegetables // J. Food Eng. 2020. V. 274. P.109837. DOI: 10.1016/j.jfoodeng.2019.109837.

Li, Z.; Yang, H.; Fang, W.; Huang, X.; Shi, J.; Zou, X. Effects of Variety and Pulsed Electric Field on the Quality of Fresh-Cut Apples // Agriculture. 2023. V.13.p. 929. https://doi.org/10.3390/agriculture13050929

Sharma, R. R.; Reddy, S. V. R.; Sethi, S. Cold Plasma Technology for Surface Disinfection of Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables // Siddiqui, M.W., Ed.; Cambridge, USA: Academic Press. 2018 pp. 197–209. https://doi.org/10.3390%2Fijms20205216

Admane, N.; Genovese, F.; Altieri, G.; Tauriello, A.; Trani, A.; Gambacorta, G.; Verrastro, V.; Di Renzo, G. C. Effect of Ozone or Carbon Dioxide Pre-Treatment During Long-Term Storage of Organic Table Grapes with Modified Atmosphere Packaging // LWT. 2018. V. 98.pp. 170–178. https://doi.org/10.1016/j.lwt.2018.08.041

Sethi, S.; Joshi, A.; Arora, B. UV Treatment of Fresh Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Cambridge. USA: Academic Press. 2020. pp. 137–157 https://doi.org/10.1590/1981-6723.32118

Severo, J.; De Oliveira, I. R.; Tiecher, A.; Chaves, F. C.; Rombaldi, C. V. Postharvest UV-C Treatment Increases Bioactive, Ester Volatile Compounds and a Putative Allergenic Protein in Strawberry // LWT. 2015. V.64(2). pp. 685–692. https://doi.org/10.1016/j.lwt.2015.06.041

Severo, J.; de Oliveira, I. R.; Bott, R.; Le Bourvellec, C.; Renard, C. M. G. C.; Page, D.; Chaves, F. C.; Rombaldi, C. V. Preharvest UV-C Radiation Impacts Strawberry Metabolite Content and Volatile Organic Compound Production // LWT. 2017. V. 85. pp.390–393 https://doi.org/10.1016/j.lwt.2016.10.032

Babu, P. J.; Longchar, B.; Rajasekhar, A. Nanobiotechnology-Mediated Sustainable Agriculture and Post-Harvest Management // Curr. Res. Biotechnol. 2022.V. 4. pp.326–336. https://doi.org/10.1016/j.crbiot.2022.07.004

Simunovic, J.; Sandeep, K. P. Key Technological Advances and Industrialization of Continuous Flow Microwave Processing for Foods and Beverages. In Food Engineering Innovations Across the Food Supply Chain; Juliano, P., Buckow, R., Nguyen, M.H., Knoerzer, K. and Sellahewa, J., Eds.; Cambridge, USA // Academic Press. 2022. pp. 149–162.

Tan, G. H.; Ali, A.; Siddiqui, Y. C. S. Perspectives and Challenges in Management and Control of Postharvest Diseases of Papaya // Sci. Hortic. 2022.V. 301.p. 111139 https://doi.org/10.1016/j.scienta.2022.111139

Алексеенко Е. В., Каримова Н. Ю., Цветкова А. А. Способы переработки ягод черники: современное состояние и перспективы развития // Хранение и переработка сельхозсырья. 2023. №.1. С. 22-44 https://doi.org/10.36107/spfp.2023.353

Published

2024-03-29

How to Cite

Burak Л. Ч. (2024). USE OF MODERN PROCESSING TECHNOLOGIES TO INCREASE THE STORAGE LIFE OF FRUIT AND VEGETABLES. REVIEW OF THE SUBJECT FIELD: AQZOQO. Polzunovskiy VESTNIK, (1), 99–119. https://doi.org/10.25712/ASTU.2072-8921.2024.01.013

Issue

Section

SECTION 1. FOOD TECHNOLOGY