FILLING OF THE ULTRA-HIGH MOLECULAR WEIGHT POLYETHLENE WITH SYNTHETIC WOLLASTONITE OBTAINED FROM VARIOUS TYPES OF BY-PRODUCTS

WTMALC

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2025.02.026

Keywords:

ultra-high molecular weight polyethylene, wollastonite, borogypsum, rice husk ash, mechanical and antifriction properties

Abstract

The work presents a comparative analysis of the influence of wollastonite on the mechanical and tribological properties of ultra-high molecular weight polyethylene (UHMWPE). The relevance of the work is discussed by obtaining fundamentally new data on the modification of UHMWPE and the development of a new composition of polymer composite materials. The polymer matrix of UHMWPE in this work is characterized by an average molecular weight and an average particle size, which are characterized by high strength and self-lubricating properties. However, this polymer matrix is characterized by low wear resistance, so synthetic wollastonite is used for its modification and reinforcement. It is rational to synthesize this calcium silicate on the basis of rice husk ash and waste from boric acid production (borogypsum). Wollastonite obtained from rice husk was used to modify ultra-high molecular weight polyethylene (UHMWPE) with a high molecular weight of 9 million g/mol. Wollastonite from borogypsum was used to modify another UHMWPE sample with a molecular weight of 5 million g/mol. It was found that wollastonite obtained from boric acid waste is more effective in terms of improving the deformation and strength characteristics of UHMWPE and increasing its elastic modulus. Thus, the strength of composites increases by 27%, the elastic modulus by 50%, and the relative elongation by 18%, while wear resistance increases threefold. Wollastonite obtained from rice husk waste has proven itself to be a promising material for imparting antifriction properties to UHMWPE, such as a lower friction coefficient and minimum mass wear rate. It has been shown that this type of wollastonite reduces the rate of mass wear rate by 36% and the friction coefficient by 29% compared to the initial polymer.

References

СПИСОК ЛИТЕРАТУРЫ

Валуева М.И., Колобков А.С., Малаховский С.С. Сверхвысокомолекулярный полиэтилен: рынок, свойства, направления применения (обзор) //Труды ВИАМ. 2020. № 3 (87). С. 49-57. doi 10.18577/2307-6046-2020-0-3-49-57.

Галибеев С.С., Хайруллин Р.З., Архиреев В.П. Сверхвысокомолекулярный полиэтилен. Тенденции и перспективы //Вестник Казанского технологического университета. 2008. № 2. С. 50-55.

Gineika A., Dambrauskas T., Baltakys K. Synthesis and characterisation of wollastonite with aluminium and fluoride ions //Ceramics International. 2021. Vol. 47. N 16. P. 22900-22910. doi 10.1016/j.ceramint.2021.05.003.

Regueiro González-Barros M.M., García Ten J., Alonso-Jimenez A. Synthesis of wollastonite from diatomite-rich marls and its potential ceramic uses //Boletín de la Sociedad Española de Cerámica y Vidrio. 2022. Vol. 61, Issue 6. P. 585-594. doi 10.1016/j.bsecv.2021.05.002

Исламова Г.Г. Технология синтетического волластонита из природных кальций- и кремнийсодержащих соединений: автореф. дис. … канд. техн. наук. Казань, 2012. 20 с.

Материал на основе синтетического волластонита и его влияние на функциональные свойства мелкозернистого бетона / П.С. Гордиенко [и др.] //Перспективные материалы. 2017. № 9. С. 40.

Synthesis and characterization of nano-wollastonite from rice husk ash and limestone / Ismail H. [et al.] //Materials Science Forum. Trans Tech Publications Ltd, 2013. Vol. 756. P. 43-47.

Silica extraction from sodium silicate for wollastonite synthesis at low temperatures / Bekhiekh I. [et al.] //Journal of Engineering Research. 2024. doi 10.1016/j.jer.2024.06.019.

Комплексная переработка отходов производства борной кислоты с получением материалов для стройиндустрии / Гордиенко П. С. [и др.] //Горный информационно-аналитический бюллетень (научно-технический журнал). 2014. №. S4-9. С. 60-66.

Получение оксида кремния из рисовой шелухи методом термической обработки / Аскарулы К. [и др.] //Горение и плазмохимия. 2019. Т. 17. № 3. С. 178-183. doi 10.18321/cpc324.

Novembre D., Pace C., Gimeno D. Synthesis and characterization of wollastonite-2M by using a diatomite precursor //Mineralogical Magazine. 2018. Vol. 82. N 1. P. 95-110. doi 10.1180/minmag.2017.081.025.

Vakalova T.V., Pogrebenkov V.M., Karionova N.P. Solid-phase synthesis of wollastonite in natural and technogenic siliceous stock mixtures with varying levels of calcium carbonate component //Ceramics International. 2016. Vol. 42. N 15. P. 16453-16462. doi 10.1016/j.ceramint.2016.06.060.

In-vitro evaluation of wollastonite nanopowder produced by a facile process using cheap precursors for biomedical applications / Amin A.M.M. [et al.] //Ceramics International. 2021. Vol. 47. N 13. P. 18684-18692. doi 10.1016/j.ceramint.2021.03.201.

Способ получения волластонита / Гордиенко П.С. [и др.]. Пат. 2595682 Рос. Федерации № 2015141614/05; заявл. 30.09.2015; опубл. 27.08.2016, Бюл. № 24.

Готлиб Е.М., Ха Т.Н.Ф. Получение синтетического волластонита на основе рисовой шелухи //Вестник технологического университета. 2019. Т. 22. № 7. С. 42–46.

Markandan K., Lai C.Q. Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: A review //Composites Part B: Engineering. 2023. Vol. 256. P. 110661. doi 10.1016/j.compositesb.2023.110661.

Material Design Methodology for Optimized Wear-Resistant Thermoplastic–Matrix Composites Based on Polyetheretherketone and Polyphenylene Sulfide / Panin S.V. [et al.] //Materials. 2020. Vol. 13. N 3. P. 524. doi 10.3390/ma13030524.

Kadhim T.R., Oleiwi J.K., Hamad Q.A. Investigation of Compression and Hardness for UHMWPE Bio-composites as Internal Bone Plate Fixation //Engineering and Technology Journal. 2022. Vol. 40. N 12. P. 1783-1794. doi 10.30684/etj.2022.135083.1258.

Ха Тхи Нья Фыонг Эпоксидные композиции, наполненные природным волластонитом и синтетическим силикатом кальция на основе золы рисовой шелухи: дис. … канд. техн. наук. Казань, 2021.

Самоорганизация и структурное модифицирование в металлополимерных трибосистемах: монография / Ю. К. Машков [и др.]. Омск: Изд-во ОмГТУ, 2013. 222 с.

Smith B. The infrared spectra of polymers II: polyethylene //Spectroscopy. 2021. Vol. 36. Issue 9. P. 24–29. doi 10.56530/spectroscopy.xp7081p7.

Природа первичных актов фрикционного взаимодействия СВМПЭ с поверхностью стали / Краснов А.П. [и др.] // Трение и износ. 2013. Т. 34. № 2. С. 154-164.

REFERENCES

Valueva, M.I., Kolobkov, A.S., & Malakhovskiy, S.S. (2020). Ultra-high molecular weight polyethylene: market, properties, directions of application (review). Proceedings of VIAM, 3 (87), 49-57. (In Russ.). DOI: 10.18577/2307-6046-2020-0-3-49-57.

Galibeev, S.S., Hajrullin, R.Z., & Arhireev, V.P. (2008). Ultra-high molecular weight polyeth-ylene. Trends and prospects. Bulletin of the Techno-logical University, (2), 50-55. (In Russ.).

Gineika, A., Dambrauskas, T., & Baltakys, K. (2021). Synthesis and characterisation of wollaston-ite with aluminium and fluoride ions. Ceramics International, 47 (16), 22900-22910. DOI 10.1016/j.ceramint.2021.05.003.

Regueiro González-Barros, M.M., García Ten, J., & Alonso-Jimenez, A. (2022). Synthesis of wollas-tonite from diatomite-rich marls and its potential ce-ramic uses. Boletín de la Sociedad Española de Cerámica y Vidrio, 61 (6), P. 585-594. DOI 10.1016/j.bsecv.2021.05.002

Islamova, G.G. (2012). Technology of syn-thetic wollastonite from natural calcium- and silicon-containing compounds: autoref. dis. … kand. tehn. nauk, Kazan. (in Russ.).

Gordienko, P.S., Yarusova, S.B., Kozin, A.V., Ivin, V.V., Silantiev, V.E., Lizunova, P.Yu., & Shornikov, K.O. (2017). Synthetic wollastonite-based material and its effect on the functional properties of fine-grained concrete. Perspektivnye materialy, (9), 40. (in Russ.).

Ismail, H., Shamsudin, R., Hamid, M.A.A., & Jalar, A. (2013). Synthesis and characterization of nano-wollastonite from rice husk ash and limestone. In Materials Science Forum. Trans Tech Publications Ltd, 756, 43-47.

Bekhiekh, I., Bouzerara, F., Bouatrous, M., & Ghouil, B. (2024). Silica extraction from sodium sili-cate for wollastonite synthesis at low temperatures. Journal of Engineering Research. DOI 10.1016/j.jer.2024.06.019.

Gordienko, P.S., Kozin, A.V., Yarusova, S.B., Zgibly, I.G. (2014). Complex processing of the boric acid production waste with manufacture of materials for construction industry. Mining informational and analytical bulletin (Scientific and Technical Journal), (S4-9), 60-66. (in Russ.).

Askaruli, K., Azat, S., Eleuov, M., Kerimkulo-va, A.R., Zhantikeyev, U.N., & Berdikhanov, A.E. (2019). Obtaining of silica from risk husk by thermal treatment. Combustion and plasma chemistry, 17 (3), 178-183. (in Russ.). DOI 10.18321/cpc324.

Novembre, D., Pace, C., & Gimeno, D. (2018). Synthesis and characterization of wollaston-ite-2M by using a diatomite precursor. Mineralogical Magazine, 82 (1), 95-110. DOI 10.1180/minmag.2017.081.025.

Vakalova, T.V., Pogrebenkov, V.M., & Kari-onova, N.P. (2016). Solid-phase synthesis of wollas-tonite in natural and technogenic siliceous stock mix-tures with varying levels of calcium carbonate com-ponent. Ceramics International, 42 (15), 16453-16462. DOI 10.1016/j.ceramint.2016.06.060.

Amin, A.M., El-Amir, A.A., Karunakaran, G., Kuznetsov, D., & Ewais, E.M. (2021). In-vitro evalua-tion of wollastonite nanopowder produced by a facile process using cheap precursors for biomedical ap-plications. Ceramics International, 47 (13), 18684-18692. DOI 10.1016/j.ceramint.2021.03.201.

Gordienko, P.S., Yarusova, S.B., Kozin, A.V., Stepanova, V.A., SHabalin, I.A., & ZHevtun, I.G. Method of producing wollastonite: Pat. 2595682 Russ. Federation, publ. 27.08.2016, Bull. № 24. (In Russ.).

Gotlib, E.M., & Ha, Ph. (2019). Obtaining synthetic wollastonite using rice husk. Bulletin of the Technological University, 22 (7), 42-46. (In Russ.).

Markandan, K., & Lai, C.Q. (2023) Fabrica-tion, properties and applications of polymer compo-sites additively manufactured with filler alignment control: A review. Composites Part B: Engineering, 256, 110661. DOI 10.1016/j.compositesb.2023.110661.

Panin, S.V., Lyukshin, B.A., Bochkareva, S.A., Kornienko, L.A., Nguyen, D.A., Hiep, L.T.M., Panov, I.L., & Grishaeva, N.Y. (2020). Material Design Methodology for Optimized Wear-Resistant Thermo-plastic–Matrix Composites Based on Polyetherether-ketone and Polyphenylene Sulfide. Materials, 13 (3), 524. DOI 10.3390/ma13030524.

Kadhim, T.R., Oleiwi, J.K., & Hamad, Q.A. (2022). Investigation of Compression and Hardness for UHMWPE Bio-composites as Internal Bone Plate Fixation. Engineering and Technology Journal, 40 (12), 1783-1794. DOI 10.30684/etj.2022.135083.1258.

Ha Thi N'ya Fyong (2021). Epoxy composi-tions filled with natural wollastonite and synthetic calcium silicate based on rice husk ash: dis. … kand. tehn. nauk, Kazan. (in Russ.).

Mashkov, Yu.K., Kropotin, O.V., SHil'ko, S.V., & Pleskachevskij, Yu.M. (2013). Self-organization and structural modification in metal-polymer tribosys-tems. Omsk: Izd-vo OmGTU, 222 p. (in Russ.).

Smith, B. (2021) The infrared spectra of polymers II: polyethylene. Spectroscopy, 36 (9), 24–29. DOI 10.56530/spectroscopy.xp7081p7.

Krasnov, A.P., Naumkin, A.V., Yudin, A.S., Solov'eva, V.A., Afonicheva, O.V., Buyaev, D.I., & Tikhonov N.N. (2013). Nature of initial acts of friction of ultrahigh molecular weight polyethylene with steel surface. Journal of Friction and Wear, 34 (2), 154-164. (in Russ.).

Published

2025-06-23

How to Cite

Danilova С. Н., Yamaleeva Е. С. ., Gotlib Е. М. ., Yarusova С. Б. ., Gordienko П. С. ., Okhlopkova А. А. ., & Ivanova Л. Н. . (2025). FILLING OF THE ULTRA-HIGH MOLECULAR WEIGHT POLYETHLENE WITH SYNTHETIC WOLLASTONITE OBTAINED FROM VARIOUS TYPES OF BY-PRODUCTS: WTMALC. Polzunovskiy VESTNIK, (2), 168–175. https://doi.org/10.25712/ASTU.2072-8921.2025.02.026

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)

1 2 > >>