DEVELOPMENT AND RESEARCH OF ULTRASONIC COAGULA-TOR BASED ON VORTEX ACOUSTIC FLOWS
EDN: OVLXGO
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.011Keywords:
ultrasonic, ultrasonic transducer, coagulation, standing wave, secondary effects, coagulatorAbstract
The paper presents a new method and design of gas cleaning equipment, consisting of an ultrasonic coagulator providing increased efficiency in separating particles smaller than 2.5 μm from the gaseous medium and a cyclone for subsequent capture of coarse particles at the coagulator outlet. An increase in the efficiency of particle trapping is achieved through a combination of two acoustic mechanisms: exposure in a standing wave and the formation of vortex acoustic flows. For the practical implementation of the ultrasonic coagulator, a flat flexural-oscillating disk radiator was used. It has been experimentally revealed that when the size of the air gap between the radiator and the reflector is a multiple of half the wavelength, vortex acoustic flows are formed in it. In this case, dispersed particles are involved in oscillatory motion, and the particles are repeatedly redirected along the gas flow lines. This provides a local increase in the concentration of dispersed particles in the peripheral region of the vortex and their mutual movement within the nodal regions and between them. The results of the experimental studies have shown that the combined action of two acoustic mechanisms provides an increase in the probability of collision of particles and their residence time in the ultrasonic field. The experiments performed have shown that the efficiency of capturing 2.5 µm particles by the developed gas cleaning equipment increases from 50% to 96%.
References
Halonen, J., Lanki, T., Yli-Tuomi, T., Tittanen, P., Kumala, V. & Pekkanen, J. (2009). Particulate air pollution acute cardio respiratory hospital admissions and mortality among the elderly. American Journal of Epidemilogy, 20(1), 143-153.
Khmelev, V.N., Shlunov, A.V., Bochenkov, A.S., Nesterov, V.A., Terentiev, S.A. & Zorin, S.S. Experimental Stand for the Research of the Process of Ultrasonic Coagulation of Aerosols. 20th International Conference of Young Specialists on Mi-cro/Nanotechnologies and Electron Devices. EDM'2019: Conference Proceedings. NSTU: Novosibirsk, Russia.
Khmelev, V.N., Shalunov, A.V., Nesterov, V.A, Dorovskikh, R.S. & Golykh, R.N. Ultrasonic radiators for the action on gaseous media at high temperatures. EDM'2015: Conference Proceedings. NSTU: Novosibirsk, Russia.
Khmelev, V.N., Nesterov, V.A., Bochenkov, A.S. & Shalunov, A.V. (2021). The Limits of fine particles ultrasonic coagulation. Symmetry, 13(9), 1-19, DOI: 10.3390/sym13091607.
Gallego-Juarez, J.A., Rodriguez, G., Acosta, V. & Riera, E. (2010). Power ultrasonic transducer with extensive radiator for industrial processing. Ultrasonic Sonochemistry, 17, 954-964.
Andres, R.R, Acosta, V.M., Lucas, M. & Riera, E. (2018). Modal analysis and nonlinear characterization of an airborne power ultrasonic transducer with rectangular plate radiator. Ultrasonic, 82, 345-356.
Khmelev, V.N., Nesterov, V.A., Shalunov, A.V., Barsukov, R.V. & Tsyganok, S.N. (2020). Longitudinally oscillating ultrasonic emitter for influencing gas-dispersed systems. J. Phys., 1679, 1-8, DOI:10.1088/1742-6596/1679/2/022008.
Sheng, C. & Shen, X. (2007). Simulation of acoustic agglomeration processes of poly-disperse solid particles. Aerosol Science and Technology, 41, 1-13.
Capperan, P., Somers, J., Richter, K. & Fourcaudot, S. (1995). Accoustic agglomeration of a glycol for aerosol: Influence of particle concentration and intensity of the sound field at two frequencies. Aerosol Sci. 26, 595-612.
Sarabia, E., Gallego-Juarez, J.A., Rodrigues-Corral, G., Elvira-Segura, L. & Gonzalez-Gomaz, I. (2000). Application of high-power ultrasound enhance fluid/solid particle separation processes. Ultrasonics, 38, 642-646.
Song L., Koopmann G.H. & Hoffmann T.L. (1994). An improved theoretical model of acoustic agglomeration. J Vib Acoust. 116, 208-214.
Riera, E., Gonzalez, I., Rodrigues-Corral, G. & Gallego-Juarez, J.A. (2015). Ultrasonic agglomeration and preconditioning of aerosol particles for environmental and other applications. Ultrasonics. 1023-1058.
Khmelev, V.N., Shalunov, A.V., Dorovskikh, R.S., Golykh, R.N. & Nesterov, V.A. The measurements of acoustic power in-troduced into gas medium by the ultrasonic apparatuses with the disk-type radiators. EDM'2016: Conference Proceedings. NSTU: Novosibirsk, Russia
Ta-Chih, H., Sheng-Hsiu, H., Chia-Wei, H., Chih-Chieh, C. & Po-Kai, C. (2015). Effects of the geometric configuration on cyclone performance. Journal of Aerosol Science, 86, 1-12.
Xie B., Li S., Jin H., Hu S., Wang F. & Zhou F. (2018). Analysis of the performance of a novel dust collector combining cyclone separator and cartridge filter. Powder Technology, 339, 695-701.
Хмелев, В.Н., Шалунов, А.В., Голых, Р.Н., Нестеров В.А., Боченков А.С. Моделирование вихревых акустических течений в воздушном промежутке как фактора бесконтактной ультразвуковой интенсификации химико-технологических процессов // "). Сборник научных трудов Международного научно-технического симпозиума, посвященного 110-летию А.Н. Плановского, в рамках Третьего Международного Косыгинского форума "Современные задачи инженерных наук". Москва: ФГБОУ ВО «РГУ им. А.Н. Косыгина», 2021. – С. 190–194.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Andrey V.Shalunov, Viktor A.Nesterov, Roman N.Golykh, Alexander S.Bochenkov, Roman S. Dorovskikh, Vladimir N.Khmelev
This work is licensed under a Creative Commons Attribution 4.0 International License.