ULTRASONIC TRANSDUCER WITH RADIALLY POSITIONED PIE-ZOCERAMIC PACKAGES

Authors

  • Andrey V. Shalunov Biysk Technological Institute (branch) of the Polzunov Altai State Тechnical University
  • Vladimir N. Khmelev Biysk Technological Institute (branch) of the Polzunov Altai State Тechnical University
  • Victor A. Nesterov Biysk Technological Institute (branch) of the Polzunov Altai State Тechnical University
  • Alexander S. Bochenkov Biysk Technological Institute (branch) of the Polzunov Altai State Тechnical University

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.009

Keywords:

Langevin transducer, ultrasonic transducer, high-frequency oscillations

Abstract

This article describes the design of an ultrasonic piezoelectric transducer with increased power. The increase in power is achieved by summing the power of several Langevin converters installed on a single radiating patch.

The conducted studies have shown that the main disadvantage of this piezoelectric transducer is the destruction of piezoceramic rings due to the high uneven distribution of oscillation amplitudes in the region of their attachment.

Theoretical and experimental studies have made it possible to optimize and eliminate the main drawback of the piezoelectric transducer. In this case, the maximum uniformity of the distribution of vibration amplitudes in the area of attachment of piezoceramic rings was chosen as an optimization criterion.As a result of the research, an optimized design of high-frequency converters has been developed.It has been determined that the installation of 9-11 radially arranged piezoceramic packages provides the minimum non-uniformity of oscillations in the area of piezoring attachment, while the transducer designed for 30 kHz provides acoustic power of at least 1450 W with an efficiency of 78%.

References

Riera, E., Golás, Y., Blanco, A., Gallego-Juárez, J.A., Blasco, M. & Mulet, A. (2004). Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrasonics Sonochemistry, (11), 241-244. DOI: 10.1016/j.ultsonch.2004.01.019.

Khmelev, V.N., Shalunov, A.V., Dorovskikh, R.S., Nesterov, V.A., Golykh, R.N. & Kozhevnikov, I.S. Ultrasonic coagulation to improve the efficiency of the gas cleaning systems. 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). NSTU: Novosibirsk, Russia. DOI: 10.1109/EDM.2017.7981759.

Khmelev, V.N., Kuzovnikov, Y.M., Tsyganok, S.N., Levin, S.V., & Khmelev, S.S. Evaluation of the area of intensive coagulation of dispersed-phase particles in emulsion and suspension due to high-intensive ultrasonic treatment. International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices, Erlagol, Altai, 2012. NSTU: Novosibirsk, Russia. DOI: 10.1109/EDM.2012.6310205.

Kuzovnikov, Y.M., Khmelev, S.S., Tsyganok, S.N. & Khmelev, V.N. Studying of coagulation and sedimentation of small hard particles in liquid medium during ultrasonic treatment. 11th International Conference and Seminar on Micro/Nanotechnologies and Electron Devices (EDM). NSTU: Novosibirsk, Russia. DOI: 10.1109/EDM.2010.5568805.

Avvaru, B., Patil, M.N., Gogate, P.R. & Pandit, A.B. (2006). Ultrasonic atomization: Effect of liquid phase properties. Ultrasonics. (44), 146-158. DOI: 10.1016/j.ultras.2005.09.003.

Khmelev, V.N., Galakhov, A.N., Shalunov A.V., Nesterov, A.V., Golykh, R.N. & Shalunova A.V. Study of the process of liquid atomization from the ultrasonic disk radiator. 14th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). NSTU: Novosibirsk, Russia. DOI: 10.1109/EDM.2013.6641956.

Transducer, B.L., Takahashi, T. & Adachi, K. (1998). Influence of static prestress on the characteristics of bolt-clamped Langevin-type transducers. Jpn. J. Appl. Phys. (37), 2982-2987. DOI: 10.1143/JJAP.37.2982.

Adachi, K., Konno, Y. & Masaki, S. (1994). Development of bolt-clamped Langevin-type transducer factor for excitation of large torsional vibration with high mechanical quality. Jpn. J. Appl. Phys. (33), 1182-1188. DOI: 10.1143/JJAP.33.1182.

Abdullah, A., Shahini, M. & Pak, A. (2009). An approach to design a high power piezoelectric ultrasonic transducer. J. Electroceram. (22), 369-382.

Shahini, M., Abdullah, A. & Rezaei, M. (2004). Design and Manufacture of an Ultrasonic Transducer with 1 kW Power and 22 kHz Frequency Using Piezoceramics. Extended abstract of master of science thesis. AmirKabir University of Technology.

Lin, S. (2006). Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal–flexural composite vibrational mode. Ultrasonics. (44), 109-114. DOI: 10.1016/j.ultras.2005.09.002.

Lin, S. & Zhang, F. (2000). Measurement of ultrasonic power and electro-acoustic efficiency of high power transducers. Ultrasonics. (37), 549-554. DOI: 10.1016/S0041-624X(99)00076-1.

Lin, S., Xu, L. & Wenxu, H. (2011). A new type of high power composite ultrasonic transducer. J. Sound Vib. (330), 1419-1431. DOI: 10.1016/j.jsv.2010.10.009.

Lais, H., Lowe, P.S., Gan, T.H. & Wrobel, L.C. (2018). Numerical modelling of acoustic pressure fields to optimize the ultrasonic cleaning technique for cylinders. Ultrason. Sonochem. (45), 7-16. DOI: 10.1016/j.ultsonch.2018.02.045.

Wei, X., Yang, Y., Yao, W. & Zhang, L. (2017). PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration. Sensors. (17), 2253 (1-18). DOI: 10.3390/s17102253.

Bar-Cohen, Y., Sherrit, S. & Herz, J.L. (2007). ULTRASONIC/ SONICJACKHAMMER. Patent 20070193757A1. US, published on 23.08.2007.

Хмелев В.Н. Высокочастотный электроакустический излучатель с увеличенной мощностью воздействия // Южно-сибирский научный вестник. 2019. № 4(28). С. 270-278. DOI: 0.25699/SSSB.2019.28.46386.

Berlincourt, D.A., Curran, D.R. & Jaffe, H. (1964). Piezoelectric and Piezomagnetic Materials and Their Function in Transducers. Physical Acoustics. 169-270. DOI: 10.1016/B978-1-4832-2857-0.50009-5.

Khmelev, V.N., Barsukov, R.V., Tsyganok, S.N., Steer, V.N., Shalunov, A.V. & Lebedev, A.N. (2003). Adjusting and calibration electronic ultrasonic generators. Siberian Russian Workshop on Electron Devices and Materials. 202-204. DOI: 10.1109/SREDM.2003.1224227.

Khmelev, V.N., Barsukov, R.V., Shalunov, A.V., Abramenko, D.S., Genne, D.V. & Abramov, A.D. Design features of electronic generators for radiators intended for influence on gas media. 11th International Conference and Seminar on Micro/Nanotechnologies and Electron Devices (EDM). NSTU: Novosibirsk, Russia. DOI: 10.1109/EDM.2010.5568802.

Khmelev, V.N., Tsyganok, S.N., Barsukov, R.V. & Lebedev, A.N. A system of a automatic measurement of acoustic power of the ultrasonic equipment. International Siberian Workshop on Electron Devices and Materials 2004. Erlagol, Altai, Russia. DOI: 10.1109/PESC.2004.241344.

Kazancev, I.V., Lebedev, A.N. & Abramenko, D.S. The Method of Oscillations Amplitude Measuring. Siberian Russian Workshop and Tutorial on Electron Devices and Materials 2007. Erlagol, Altai, Russia. DOI: 10.1109/SIBEDM.2007.4292987.

Published

2022-12-30

How to Cite

Shalunov А. В., Khmelev В. Н., Nesterov В. А., & Bochenkov А. С. (2022). ULTRASONIC TRANSDUCER WITH RADIALLY POSITIONED PIE-ZOCERAMIC PACKAGES. Polzunovskiy VESTNIK, 2(4), 66–76. https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.009

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)