Luminescence of europium(III) ions in a fluorinated yttrium-aluminum oxide matrix

GYLNQT

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2024.01.034

Keywords:

sol-gel synthesis, ethyl acetate, fluorinated yttrium-aluminum compositions, lanthanides, europium, luminescence

Abstract

The subject of many scientific works is oxides of yttrium and aluminum, as well as complex yttrium-aluminum oxide compositions. In many ways, the interest shown in them is determined by the need of modern optoelectronic technology for materials with improved optical, physicochemical and mechanical properties. In the vast majority of works, the attention of researchers is concentrated on individual oxide phases, as well as garnet and perovskite phases. Research on compositions of complex phase composition is limited, despite the potential for their use as compact luminescent sensors of electromagnetic radiation and in a number of other applications. We synthesized luminescent powders of complex phase composition based on yttrium and aluminum oxides at the atomic ratio Y3+ : Al3+ = 3 : 5 by thermal destruction of europium(III) activated gel systems prepared on the basis of ethyl acetate. The main components of the powders, depending on the composition of the initial mixtures and synthesis conditions, are oxides of yttrium, europium, complex oxides of yttrium and aluminum, as well as yttrium oxyfluorides of various compositions. Eu3+ ions form activator centers in the structure of oxide and oxyfluoride phases.  The luminescence of powders is associated with the return of 4f-electrons of Eu3+ ions from the metastable 5D0 to the ground electronic state. Excitation of luminescence occurs as a result of the transition of electrons from the ground 7F0 to excited electronic states, the transfer of energy from the vibrational motion of the oxoanion matrix to excited energy levels, and the transition of 2p-electrons of oxygen ions to vacant 4f-orbitals of Eu3+ ions. Changes in the multiplicity and intensity of bands and their individual components in the spectra are associated with the inclusion of fluorine atoms in the composition of europium activator centers and the influence of Al3+ ions on their symmetry in fluorinated yttrium-aluminum oxide phases. The distortion of the unit cell parameters confirms the deep interaction of phases, which affects the symmetry and luminescence of activator centers, which begin to form as a result of the strong coordination interaction of salts in the initial solution and further in the gel-like system based on ethyl acetate.

References

Progress in Ceramic Lasers / A. Ikesue [еt al.] // Annu. Rev. Mater. Res. 2006. V. 36. P. 397–429. doi: 10.1146/annurev.matsci.36.011205.152926.

Eu3+ – Doped Ln3Al5O12 (Ln = Er, Tm, Yb, Lu) garnets: Synthesis, characterization and investigation of structural and luminescence properties / L. Pava-saryte [еt al.] // Journal of Luminescence. 2019. V. 212. P. 14–22. doi: 10.1016/ j.jlumin.2019.04.005.

Fabrication and microstructural characteriza-tions of lasing grade Nd:Y2O3 ceramics / D. Yin [еt al.] // J. Am. Ceram. Soc. 2019. V. 102(12). P. 7462. doi: 10.1111/jace.16671.

Control of defects and their luminescence properties in Nd:YAG crystals by laser irradiation / S. Panahibakhsh [еt al.] // Journal of Luminescence. 2020. V. 218. Р. 116813. doi: 10.1016/j.jlumin.2019.116813.

Upconversion luminescence in Cr3+:YAG single crystal under infrared excitation / M. Chaika [еt al.] // Journal of Luminescence. 2020. V. 226. P. 117467. doi: 10.1016/j.jlumin.2020.117467.

Tailoring the 3F4 level lifetime in Tm3+: Y3Al5O12 by Eu3+ co-doping for signal processing application / Z. Zhang [еt al.] // Journal of Lumines-cence. 2020. V. 222. P. 117107. doi: 10.1016/j.jlumin.2020.117107.

Tuned structure of europiumdoped Al2O3-ytrium luminescent composites and their spectrosco-pic behavior / A. Riul [еt al.] // Journal of Lumines-cence. 2021. V. 233. P. 117925. doi: 10.1016/

j.jlumin.2021.117925.

Уклеина И.Ю. Оксифториды иттрия и РЗЭ: синтез, люминесценция и оптика: дис. … канд. хим. наук. Ставрополь : СтГУ, 2005. 158 с.

Rakov N., Maciel G.S. Comparative Study of Er3+ and Tm3+ Co-Doped YOF and Y2O3 Powders as Red Spectrally Pure Upconverters // Opt. Mater. 2013. V. 35. P. 2372–2375. doi: 10.1016/

j.optmat.2013.06.037.

Fabrication and luminescent enhancement of Eu3+-doped Y2O3@YOF core-shell nanocrystals / Y. Tian [еt al.] // J. Nanosci Nanotechnol. 2011. V. 11, № 11. P. 9631–9635. doi: 10.1166/jnn.2011.5312.

Неорганические нанофториды и нано-композиты на их основе / С.В. Кузнецов [и др.] // Успехи химии. 2006. Т. 75, № 12. С. 1193–1211.

Исследование структуры и люминесцентных свойств наночастиц YAG:Eu / М.Д. Ми-хайлов [и др.] // Современные проблемы науки и образования. 2012. № 4. С. 335.

Сигловая Н.В. Исследование люминес-центных свойств и разработка технологии произ-водства катодолюминофоров красного цвета све-чения на основе Y2O3 для дисплейных и проекционных ЭЛТ: дис. … канд. хим. наук. Ставрополь: СтГУ, 2003. 143 с.

Синтез и спекание субмикронных частиц ИАГ:Nd, полученных из карбонатных прекурсоров / Т.Ю. Коломиец [и др.] // Неорганические матери-алы. 2017. Т 53, № 8. С. 890–899. doi: 10.7868/S0002337X17080152.

Luminescent Properties of Rare Earth (Er, Yb) Doped Yttrium Aluminium Garnet Thin Films and Bulk Samples Synthesised by an Aqueous Sol-Gel Technique / E. Garskaite [еt al.] // Journal of the Eu-ropean Ceramic Society. 2010. V. 30. P. 1707–1715. doi: 10.1016/j.jeurceramsoc.2010.01.001.

Modified Pechini method for the synthesis of weakly-agglomerated nanocrystalline yttrium aluminum garnet (YAG) powders / D.V. Mamonova [еt al.] // Materials Chemistry and Physics. 2017. V. 189. P. 245–251. doi: 10.1016/j.matchemphys.2016.12.025.

Multicolour and upconversion fluorescence of lanthanide doped Vernier phase yttrium oxyfluo-ride nanocrystals / T. Wen [еt al.] // J. Mater. Chem. C. 2013. V. 1. P. 1995–2001.

Об аномальной эффективности люми-несценции субмикронного фосфора Y2O3 : Eu3+ / Т.А. Помелова [и др.] // Физика твердого тела. 2014. Т. 56, № 12. С. 2410–2419.

Structural and spectroscopic analyses of euro¬pium doped yttrium oxyfluoride powders pre-pared by combustion synthesis / N. Rakov [еt al.] // Journal of Applied Physics. 2013. V. 114(4). P. 043517. doi: 10.1063/1.4816623.

Morphology Control and Luminescence Properties of YAG:Eu Phosphors Prepared by Spray Pyrolysis / Y.H. Zhou [еt al.] // Materials Research Bulletin. 2003. V. 38, № 8. P. 1289–1299. doi: 10.1016/S0025-5408(03)00141-7.

Cho T.H., Shin S.C. Novel synthetic method for the preparation of Y2O3:Eu3+ red phosphors // J. of Adv. Science. 2006. V. 18, № 3–4. P. 229–234. doi: 10.2978/jsas.18.229.

Смагин В.П., Худяков А.П. Влияние условий синтеза на люминесценцию европийсодер-жащих композиций на основе оксида и оксифто-ридов иттрия // Неорганические материалы. 2019. Т. 55, № 1. С. 67–79. doi: 10.1134/S0002337X19010147.

Смагин В.П., Худяков А.П. Фотолюминес-ценция европийсодержащих композиций на основе фторированных оксидов иттрия и алюминия // Неорганические материалы. 2020. Т. 56, № 10. С. 1095–1106. doi: 10.31857/S0002337X20100140.

Смагин В.П., Худяков А.П., Бирюков А.А. Синтез и фотолюминесценция фторированных иттрий-алюминиевых оксидных композитов // Не-органические материалы. 2021. Т. 57, № 10. С. 1113–1121. doi: 10.31857/S0002337X21100158.

Изомерия в димере тригидрата трифторацетата тербия(III) / В.И. Белый [и др.] // Журнал структурной химии. 2002. Т. 43, № 4. С. 634–641.

Смагин В.П., Мокроусов Г.М. Физико-химические аспекты формирования и свойства оптически прозрачных металлсодержащих поли-мерных материалов : монография. Барнаул : Изд-во Алт. ун-та, 2014. 258 с.

Dieke G.H. Spectra and Energy Levels of Rare Earth Ions in Crystals. New York : Interscience Publishers, 1968. 457 p.

Binnemans K. Interpretation of europium(III) spectra // Coordination Chemistry Reviews. 2015. V. 295. Р. 1–45. doi: 10.1016/j.ccr.2015.02.015.

Манаширов О.Я., Зверева Е.М., Воробьев В.А. Сравнительное исследование различных классов люминофоров, активированных ионами Yb3+, при ИК-возбуждении // Вестник Южного научного центра РАН. 2012. Т. 8, № 4. С. 38–49.

Смагин В.П., Еремина Н.С., Мичуева З.В. Синтез и спектрально-люминесцентные свойства композиций (Y2O3-YOF) : Ln(III) // Неорганические материалы. 2017, Т. 53, № 8. С. 851–860. doi: 10.7868/S0002337X17080103.

Synthesis and fabrication of Y2O3:Tb3+ and Y2O3:Eu3+ thin films for electroluminescent applications: Optical and structural characteristics / G. Alarcón-Flores [еt al.] // Materials Chemistry and Physics. 2015. V. 149–150. P. 34–42. doi: 10.1016/

j.matchemphys.2014.09.020.

Ćirć A., Stojadinović S. Structural and photoluminescence properties of Y2O3 and Y2O3:Ln3+ (Ln = Eu, Er, Ho) films synthesized by plasma electrolytic oxidation of yttrium substrate // Journal of Lumines-cence. 2020. V. 217. P. 116762. doi: 10.1016/

j.jlumin.2019.116762.

Published

2024-03-29

How to Cite

Khudyakov А. П., Omelko Н. А. ., Smagin В. П. ., Zatonskaya Л. В., & Novozhenov В. А. . (2024). Luminescence of europium(III) ions in a fluorinated yttrium-aluminum oxide matrix: GYLNQT. Polzunovskiy VESTNIK, (1), 264–274. https://doi.org/10.25712/ASTU.2072-8921.2024.01.034

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)