SPECTRAL AND ELECTRICAL PROPERTIES OF EUROPIUM-GALLIUM GARNET

FZBPGJ

Authors

DOI:

https://doi.org/10.25712/ASTU.2072-8921.2024.03.031

Keywords:

metal gallates,, europium gallate, lanthanides, electrical resistance, luminescence

Abstract

Particular attention of researchers to complex metal oxides with a garnet structure is associated with their widespread use in the chemical industry, micro- and optoelectronics. Rare earth garnets of the composition Ln3M5O12, where M is Ga, Al or Fe, are used in solid-state lasers, microwave and ultrasonic devices, optical pressure sensors, as well as for the production of various types of ceramics, catalysts, radio- and anti-corrosion protective coatings and for some processing in the metallurgical and chemical industries. The synthesis of lanthanide gallates is a complex multi-stage process that uses high temperatures, mechanical activation of reagents, as well as repeated grinding of products followed by repeated annealing. Existing technologies are being improved, but their temperature characteristics remain consistently high. The authors of this work synthesized mixed oxide of europium and gallium by coprecipitation method from aqueous solutions of europium and gallium nitrates at a molar salt ratio of 3 : 5, as well as from compositions containing an excess of gallium salt, followed by annealing at a temperature of 800 °C for 24 hours. Technological hazards associated with the volatility of gallium compounds are identified and ways to eliminate them are shown. The composition and structure of the synthesis product were determined by chemical and X-ray phase analysis methods. The parameters of the crystal lattice have been determined: a = b = c = 1,2403 nm, true density 6.678 ± 0.006 g/cm3, active and reactive electrical resistance in the temperature range (25–150) °C when the frequency of the electric current changes from 50 Hz to 200 kHz. Based on the change in electrical characteristics, a conclusion was made about the semiconductor properties of the synthesized compound, which was confirmed by studying its luminescence. The luminescence of Eu3Ga5O12 is associated with 5D0,1 → 7Fj electronic transitions in Eu3+ ions. Excitation of luminescence occurs in the absorption bands of Eu3+, as well as result of their interaction with matrix components. In addition, a broad luminescence band with a maximum in the region of 450 nm was detected, associated with recombination processes at the levels of defects in the structure of Eu3Ga5O12 after excitation as a result of the interband transition of electrons in europium gallate.

References

Портной К.И., Тимофеева Н.И. Кислород-ные соединения редкоземельных элементов. М. : Металлургия, 1986. 480 с.

Middleton R.C., Muthu D.V.S., Kruger M.B. High-pressure spectroscopic studies of europium gallium and gadolinium aluminum garnets // Solid State Communications. 2008. V. 148, № 7-8. Р. 310–313. doi: 10.1016/j.ssc.2008.09.002.

Study of the relationship between crystal structure and luminescence in rare-earth-implanted Ga2O3 nanowires during annealing treatments / I. Lopez [et al.]. // Journal of Materials Science. 2014. V. 49, № 3. P.1279–1285. doi: 10.1007/s10853-013-7811-x.

Boulon G. Fifty years of advances in solid-state laser materials // Optical Materials. 2012. V. 34, № 3. P. 499–512. doi: 10.1016/j.optmat.2011.04.018.

Кристаллическая структура и магнитные свойства твердых растворов Gd1–xLaxMO3 (M = Sc, In, Ga) / И.Н. Кандидатова [и др.]. // Труды БГТУ. № 3. Химия и технология неорганических веществ. 2013. № 3. С. 43–48.

Brusset H., Gillier-Pandraud H., Saine M.C. Etude de gallo-aluminates de lanthanides // Bulletin de la Societe chimique de France. 1969. V. 8. P. 2244–2249.

Kestigian M., Smith A.B., Bekebrede W.R. Past, present and future small-bubble-diameter mag-netic memory materials // Journal of Applied Physics. 1979. V. 50, № В3. P. 2161–2166. https://doi.org/

1063/1.327039.

Pressure-induced structural evolution and amorphization in Eu3Ga5O12/ C.L. Lin [et al.]. // Journal of Applied Physics. 2013. V. 114, № 16. P. 163521 (1–7).https://doi.org/10.1063/1.4827836.

Synthesis and Luminescent Properties of Lu3Ga5O12 : RE3+ (RE = Eu, Tb, Pr) Nanocrystalline Phosphors via Sol-Gel Process / X.Liu [et al.]. // J. Electrochem. Soc. 2008. V. 155, № 3. P. 21–27. doi: 10.1149/1.2825138.

Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices / V. Venkatramu [et al.]. // Nanotechnology. 2010. V. 21, № 17. P. 175703. doi: 10.1088/0957-4484/21/

/175703.

Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure / V. Monteseguro [et al.]. // Phys. Chem. Chem. Phys. 2015. V. 17, № 14. P. 9454–9464. doi: 10.1039/c4cp05903d.

Способ получения галлатов неодима NdGaO3, Nd5Ga3O12 и Nd4Ga2O9: пат. 2721700 Рос. Федерация № 2019126486 ; заявл. 20.08.2019; опубл. 21.05.2021, Бюл. № 15. 10 с.

Бусев А.И., Типцова В.Г., Иванов В.М. Практическое руководство по аналитической химии редких элементов. М.: Химия, 1966. 410 с.

Измерение массы, объема и плотности / С.И. Гаузнер [и др.]. М.: Изд-во Стандартов, 1972. 623 с.

Актаком. Прецизионный измеритель RLC АМ-3016. – URL: https://www.aktakom.ru/kio/

index.php?SECTION_ID=2116&ELEMENT_ID=11289668(дата обращения: 18.12.2023).

Васильев И. Особенности измерения удельного и поверхностного сопротивления четырехзондовым методом // Вектор высоких техноло-гий. 2020. №. 2(47). С. 54–61.

Смагин В.П., Худяков А.П. Влияние условий синтеза на люминесценцию европийсодержа-щих композиций на основе оксида и оксифторидов иттрия // Неорганические материалы. 2019. Т. 55, № 1. С. 67–79. doi: 10.1134/S0002337X19010147.

Taylor D. Thermal Expansion Data: III Ses-quioxides, M2O3, with the corundum and the A-, B- and C-M2O3 structures // Trans. J. Br. Ceram. Soc.1984. V. 83. P. 92–98.

Колесников И.Е. Исследование люминес-центных свойств оксидных нанокристаллических порошков, легированных ионами европия:дис. …канд. физ-мат. наук. Санкт-Петербург, 2015. 134 с.

Шека И.А., Чаус И.С., Митюрева Т.Т. Галлий. Киев :Гостехиздат УССР, 1963. 296 с.

Влияние гранулометрического состава прекурсоров на синтез кальций-алюминатных фаз / М.А. Трубицын [и др.]. // Журнал прикладной химии. 2023. Т. 96, № 3. С. 269–281. doi:10.31857/

S0044461823030052.

Eu3+ - Doped Ln3Al5O12 (Ln = Er, Tm, Yb, Lu) garnets: Synthesis, characterization and investigation of structural and luminescence properties / L. Pavasaryte[еt al.]. // Journal of Luminescence. 2019. V. 212. P. 14–22. doi: 10.1016/ j.jlumin.2019.04.005.

Паташинский А.З.,Покровский В.Л. Флуктуационная теория фазовых переходов. М. : Наука, 1982. 382 с.

Гуфан Ю.М. Фазовые переходы второго рода // Соросовский образовательный журнал. 1997. № 7. 109–115.

Шалимова К.В. Физика полупроводни-ков.М. : Энергоатомиздат, 1985. 392 с.

Crystal growth of Ln3GaO6 (Ln = Nd, Sm, Eu and Gd): Structural and optical properties / W.G.Zeier [et al.]. // Solid State Sciences. 2009. V. 11. P. 1965–1970. doi: 10.1016/j.solidstatesciences.2009.07.004.

Уклеина И.Ю. Оксифториды иттрия и РЗЭ: синтез, люминесценция и оптика: дис. … канд. хим. наук. Ставрополь : СтГУ, 2005. 158 с.

Ćirć A., Stojadinović S. Structural and photo-luminescence properties of Y2O3 and Y2O3:Ln3+ (Ln = Eu, Er, Ho) films synthesized by plasma electrolytic oxidation of yttrium substrate // Journal of Lumines-cence. 2020. V. 217. P. 116762. doi: 10.1016/

j.jlumin.2019.116762.

Synthesis and fabrication of Y2O3:Tb3+ and Y2O3:Eu3+ thin films for electroluminescent applica-tions: Optical and structural characteristics / G. Alarcón-Flores [еt al.]. // Materials Chemistry and Physics. 2015. V. 149–150. P. 34–42. doi: 10.1016/

j.matchemphys.2014.09.020

Published

2024-10-10

How to Cite

Roshkolaeva А. Б. ., Novozhenov В. А. ., Smagin В. П. . ., Shmakov И. А. ., Zatonskaya Л. В., Strucheva Н. Е. . ., & Belova О. В. . . (2024). SPECTRAL AND ELECTRICAL PROPERTIES OF EUROPIUM-GALLIUM GARNET: FZBPGJ. Polzunovskiy VESTNIK, (3), 213–222. https://doi.org/10.25712/ASTU.2072-8921.2024.03.031

Issue

Section

SECTION 2. CHEMICAL TECHNOLOGIES, MATERIALS SCIENCES, METALLURGY

Most read articles by the same author(s)