DEVELOPMENT AND PREDICTION OF PROPERTIES A NEW BIOPEPTIDE FOR DIETARY NUTRITION
MSGTOG
DOI:
https://doi.org/10.25712/ASTU.2072-8921.2025.03.005Keywords:
biologically active peptides, macrocyclization, lactamization, antimicrobial activity, type 2 diabetes mellitus, oral administrationAbstract
Peptides play a key role in the pharmaceutical and food industries, but their clinical use is often limited by their low stability in the body. This paper presents a new biopeptide GD-20 synthesized on the basis of cyclic peptide [Nphe5]SFTI-1(100). Analysis of the amino acid composition, molecular weight and structure showed that this peptide has a high resistance to proteolysis and significant therapeutic potential. Its Fsp3 index (0.78) indicates a promising use in oral preparations. It has been established that GD-20 does not contain antigenic determinants, which means it does not cause allergic reactions, which makes it safe for use as a biologically active substance. The high predicted biological activity of the peptide (0.916,819 units at a maximum of 1.0) confirms its potential. Due to these properties, GD-20 can be considered as a promising functional ingredient in food products aimed at preventing type 2 diabetes. The results obtained confirm the possibility of developing new degradation-resistant peptides with improved pharmacokinetic characteristics
References
A. Henninot, J.C. Collins, J.M. Nuss. The cur-rent state of peptide drug discovery: back to the future? J. Med Chem. 61 (2018). 1382-1414. https://doi.org/10.1021/ acs.jmedchem.7b00318.
M. Muttenthaler, G.F. King, D.J. Adams, [et al.]. Trends in peptide drug discovery, Nat. Rev. Drug Dis-cov. 20 (2021). 309-325. https://doi.org/10.1038/s41573- 020-00135-8.
F.J. Chen, N. Pinnette, F. Yang, [et al.]. A cyste-ine-directed proximity-driven crosslinking method for native peptide bicyclization, Angew. Chem. Int Ed. Engl. 62 (2023). e202306813. https://doi.org/10.1002/anie.202306813.
D.J. Drucker. Advances in oral peptide thera-peutics, Nat. Rev. Drug Discov. 19 (2020). 277-289. https://doi.org/10.1038/s41573-019-0053-0.
L. Liu, X. Fan, B. Wang, [et al.]. P(III) - Directed Late-Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis, Angew. Chem. Int Ed. Engl. 61 (2022). e202206177. https://doi.org/10.1002/anie.202206177.
A.S. Mackay, J.W.C. Maxwell, M.J. Bedding, [et al.]. Electrochemical modification of polypeptides at selenocysteine, Angew. Chem. Int Ed. Engl. 62 (2023). e202313037. https://doi.org/10.1002/anie.202313037.
D. Garcia Jimenez, V. Poongavanam, J. Kihlberg. Macrocycles in drug discovery-learning from the past for the future, J. Med Chem. 66 (2023) 5377-5396. https://doi.org/10.1021/acs.jmedchem.3c00134.
D. Sethio, V. Poongavanam, R. Xiong, [et al.]. Simulation reveals the chameleonic behavior of macrocycles, J. Chem. Inf. Model 63 (2023). 138-146. https://doi. org/10.1021/acs.jcim.2c01093.
H.Y. Chow, Y. Zhang, E. Matheson, [et al.]. Ligation tech-nologies for the synthesis of cyclic peptides, Chem. Rev. 119 (2019). 9971-10001. https://doi.org/10.1021/acs.chemrev.8b00657.
J. Iegre, J.S. Gaynord, N.S. Robertson, [et al.]. Twocomponent stapling of biologically active and conformationally constrained peptides: past, present, and future, Adv. Ther. 1 (2018). 1800052. https://doi.org/10.1002/adtp.201800052.
X. Li, Y. Zou, H.G. Hu. Different stapling-based peptide drug design: mimicking ahelix as inhibitors of protein-protein interaction, Chin. Chem. Lett. 29 (2018). 1088-1092. https://doi.org/10.1016/j.cclet.2018.01.018.
Y.W. Zhang, J.B. Guo, J.J. Cheng, [et al.]. High-throughput screening of stapled helical peptides in drug discovery, J. Med Chem. (2022). https://doi.org/ 10.1021/acs. jmedchem.2c01541.
X. Li, S. Chen, W.D. Zhang, [et al.]. Stapled hel-ical peptides bearing different anchoring residues, Chem. Rev. 120 (2020). 10079-10144. https://doi.org/10.1021/acs.chemrev. 0c00532.
M. Buyanova, D. Pei. Targeting intracellular protein-protein interactions with macrocyclic peptides, Trends Pharm. Sci. 43 (2022). 234-248. https://doi.org/ 10.1016/j.tips.2021.11.008.
M.G. Ricardo, A.M. Ali, J. Plewka, [et al.]. Multi-component peptide stapling as a diversity-driven tool for the development of inhibitors of protein-protein in-teractions, Angew. Chem. Int Ed. Engl. 59 (2020). 5235-5241. https://doi.org/ 10.1002/anie.201916257.
A.M. Ali, J. Atmaj, N. Van Oosterwijk, [et al.]. Stapled peptides inhibitors: a new window for target drug discovery, Comput. Struct. Biotechnol. J. 17 (2019). 263-281. https://doi.org/10.1016/j.csbj.2019.01.012.
W. Li, F. Separovic, N.M. O’Brien-Simpson, [et al.]. Chemically modified and conjugated antimicrobial peptides against superbugs, Chem. Soc. Rev. 50 (2021) 4932-4973. https://doi.org/10.1039/d0cs01026j.
M.H. Wu, Q. Chen, Y.D. Wang, [et al.]. Structural modification and antitumor activity of antimicrobial pep-tide HYL, Chin. Chem. Lett. 31 (2020). 1288-1292. https://doi.org/10.1016/j.cclet.2019.10.013.
A.M. Felix, E.P. Heimer, C.T. Wang, [et al.]. Syn-thesis, biological activity and conformational analysis of cyclic GRF analogs, Int. J. Pept. Protein Res. 32 (1988). 441-454. https://doi.org/10.1111/j.1399-3011.1988.tb01375.x.
J.W. Taylor. The synthesis and study of side-chain lactam-bridged peptides, Biopolymers 66 (2002). 49-75. https://doi.org/10.1002/bip.10203.
Yulei Li, Minghao Wu, Yinxue Fu, Jingwen Xue, Fei Yuan, Tianci Qu, Anastassia N. Rissanou, Yilin Wang, Xiang Li, Honggang Hu. Therapeutic stapled peptides: Efficacy and molecular targets, Pharmacologi-cal Research, Volume 203, 2024, 107137, ISSN 1043-6618. https://doi.org/10.1016/ j.phrs.2024.107137.
S. Mahesh, V. Adebomi, Z.P. Muneeswaran, [et al.]. Bioinspired nitroalkylation for selective protein modification and peptide stapling, Angew. Chem. Int Ed. Engl. 59 (2020). 2793-2801. https://doi.org/10.1002/anie.201908593.
M. Moiola, M.G. Memeo, P. Quadrelli, stapled peptides-a useful improvement for peptide-based drugs, Molecules 24 (2019). https://doi.org/10.3390/ molecules 24203654.
J. Liu, P. Wang, Z. Yan, [et al.]. Recent advanc-es in late-stage construction of stapled peptides via C-H activation, Chembiochem 22 (2021) 2762-2771. https://doi.org/10.1002/ cbic.202100044.
X. Li, W.D. Tolbert, H.G. Hu, [et al.]. Dithiocar-bamate-inspired side chain stapling chemistry for pep-tide drug design, Chem. Sci. 10 (2019) 1522-1530. https://doi. org/10.1039/c8sc03275k.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sergey L. Tikhonov, Natalya V. Tikhonova, Olga O. Babich, Stanislav A. Suhih, Evgeny B. Sysuev, Darya A. Zvereva

This work is licensed under a Creative Commons Attribution 4.0 International License.











.
This work is licensed under a 